1
|
Elul D, Levin N. The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction. Curr Neurol Neurosci Rep 2024; 24:611-620. [PMID: 39266871 PMCID: PMC11538192 DOI: 10.1007/s11910-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE OF REVIEW Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions. RECENT FINDINGS Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer's disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity. Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.
Collapse
Affiliation(s)
- Deena Elul
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
2
|
Remodeling of lateral geniculate nucleus projections to extrastriate area MT following long-term lesions of striate cortex. Proc Natl Acad Sci U S A 2022; 119:2117137119. [PMID: 35058366 PMCID: PMC8794847 DOI: 10.1073/pnas.2117137119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Lesions of the primary visual area (V1) in primates cause blindness by severing the main pathway which brings information from the thalamus to the cortex. However, some visual abilities remain, which are hypothesized to be mediated by thalamic neurons that innervate surviving areas such as the middle temporal (MT) cortex. We found that V1 lesions trigger long-term plasticity in the connections between the thalamus and cortex, including the emergence of a pathway that brings information to MT from cell populations that would normally project to V1. These results reveal potential targets for rehabilitation strategies to ameliorate the consequences of cortical blindness. Here, we report on a previously unknown form of thalamocortical plasticity observed following lesions of the primary visual area (V1) in marmoset monkeys. In primates, lateral geniculate nucleus (LGN) neurons form parallel pathways to the cortex, which are characterized by the expression of different calcium-binding proteins. LGN projections to the middle temporal (MT) area only originate in the koniocellular layers, where many neurons express calbindin. In contrast, projections to V1 also originate in the magnocellular and parvocellular layers, where neurons express parvalbumin but not calbindin. Our results demonstrate that this specificity is disrupted following long-term (1 to 3 y) unilateral V1 lesions, indicating active rearrangement of the geniculocortical circuit. In lesioned animals, retrograde tracing revealed MT-projecting neurons scattered throughout the lesion projection zone (LPZ, the sector of the LGN that underwent retrograde degeneration following a V1 lesion). Many of the MT-projecting neurons had large cell bodies and were located outside the koniocellular layers. Furthermore, we found that a large percentage of magno- and parvocellular neurons expressed calbindin in addition to the expected parvalbumin expression and that this coexpression was present in many of the MT-projecting neurons within the LPZ. These results demonstrate that V1 lesions trigger neurochemical and structural remodeling of the geniculo-extrastriate pathway, leading to the emergence of nonkoniocellular input to MT. This has potential implications for our understanding of the neurobiological bases of the residual visual abilities that survive V1 lesions, including motion perception and blindsight, and reveals targets for rehabilitation strategies to ameliorate the consequences of cortical blindness.
Collapse
|
3
|
Sims JR, Chen AM, Sun Z, Deng W, Colwell NA, Colbert MK, Zhu J, Sainulabdeen A, Faiq MA, Bang JW, Chan KC. Role of Structural, Metabolic, and Functional MRI in Monitoring Visual System Impairment and Recovery. J Magn Reson Imaging 2021; 54:1706-1729. [PMID: 33009710 PMCID: PMC8099039 DOI: 10.1002/jmri.27367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The visual system, consisting of the eyes and the visual pathways of the brain, receives and interprets light from the environment so that we can perceive the world around us. A wide variety of disorders can affect human vision, ranging from ocular to neurologic to systemic in nature. While other noninvasive imaging techniques such as optical coherence tomography and ultrasound can image particular sections of the visual system, magnetic resonance imaging (MRI) offers high resolution without depth limitations. MRI also gives superior soft-tissue contrast throughout the entire pathway compared to computed tomography. By leveraging different imaging sequences, MRI is uniquely capable of unveiling the intricate processes of ocular anatomy, tissue physiology, and neurological function in the human visual system from the microscopic to macroscopic levels. In this review we discuss how structural, metabolic, and functional MRI can be used in the clinical assessment of normal and pathologic states in the anatomic structures of the visual system, including the eyes, optic nerves, optic chiasm, optic tracts, visual brain nuclei, optic radiations, and visual cortical areas. We detail a selection of recent clinical applications of MRI at each position along the visual pathways, including the evaluation of pathology, plasticity, and the potential for restoration, as well as its limitations and key areas of ongoing exploration. Our discussion of the current and future developments in MR ocular and neuroimaging highlights its potential impact on our ability to understand visual function in new detail and to improve our protection and treatment of anatomic structures that are integral to this fundamental sensory system. LEVEL OF EVIDENCE 3: TECHNICAL EFFICACY STAGE 3: .
Collapse
Affiliation(s)
- Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Anna M. Chen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Zhe Sun
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Nicole A. Colwell
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Max K. Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Jingyuan Zhu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, New York, USA
| |
Collapse
|
4
|
Bhat S, Lührs M, Goebel R, Senden M. Extremely fast pRF mapping for real-time applications. Neuroimage 2021; 245:118671. [PMID: 34710584 DOI: 10.1016/j.neuroimage.2021.118671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Population receptive field (pRF) mapping is a popular tool in computational neuroimaging that allows for the investigation of receptive field properties, their topography and interrelations in health and disease. Furthermore, the possibility to invert population receptive fields provides a decoding model for constructing stimuli from observed cortical activation patterns. This has been suggested to pave the road towards pRF-based brain-computer interface (BCI) communication systems, which would be able to directly decode internally visualized letters from topographically organized brain activity. A major stumbling block for such an application is, however, that the pRF mapping procedure is computationally heavy and time consuming. To address this, we propose a novel and fast pRF mapping procedure that is suitable for real-time applications. The method is built upon hashed-Gaussian encoding of the stimulus, which tremendously reduces computational resources. After the stimulus is encoded, mapping can be performed using either ridge regression for fast offline analyses or gradient descent for real-time applications. We validate our model-agnostic approach in silico, as well as on empirical fMRI data obtained from 3T and 7T MRI scanners. Our approach is capable of estimating receptive fields and their parameters for millions of voxels in mere seconds. This method thus facilitates real-time applications of population receptive field mapping.
Collapse
Affiliation(s)
- Salil Bhat
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Research and Development, Brain Innovation B.V., Maastricht, the Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Research and Development, Brain Innovation B.V., Maastricht, the Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mario Senden
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients. Nat Commun 2021; 12:6102. [PMID: 34671032 PMCID: PMC8528839 DOI: 10.1038/s41467-021-26345-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Damage to the primary visual cortex (V1) causes homonymous visual-field loss long considered intractable. Multiple studies now show that perceptual training can restore visual functions in chronic cortically-induced blindness (CB). A popular hypothesis is that training can harness residual visual functions by recruiting intact extrageniculostriate pathways. Training may also induce plastic changes within spared regions of the damaged V1. Here, we link changes in luminance detection sensitivity with retinotopic fMRI activity before and after visual discrimination training in eleven patients with chronic, stroke-induced CB. We show that spared V1 activity representing perimetrically-blind locations prior to training predicts the amount of training-induced recovery of luminance detection sensitivity. Additionally, training results in an enlargement of population receptive fields in perilesional V1, which increases blind-field coverage and may support further recovery with subsequent training. These findings uncover fundamental changes in perilesional V1 cortex underlying training-induced restoration of conscious luminance detection sensitivity in CB. In humans, stroke damage to V1 causes large visual field defects. Spared V1 activity prior to training predicts the amount of training-induced recovery in luminance detection sensitivity. Moreover, visual training changes population receptive field properties within residual V1 circuits.
Collapse
|
6
|
Uddin LQ. Stability and plasticity of functional brain networks after hemispherectomy: implications for consciousness research. Quant Imaging Med Surg 2020; 10:1408-1412. [PMID: 32550146 DOI: 10.21037/qims-20-554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Georgy L, Lewis JD, Bezgin G, Diano M, Celeghin A, Evans AC, Tamietto M, Ptito A. Changes in peri-calcarine cortical thickness in blindsight. Neuropsychologia 2020; 143:107463. [PMID: 32275967 PMCID: PMC7322521 DOI: 10.1016/j.neuropsychologia.2020.107463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 11/24/2022]
Abstract
Blindsight is the ability of patients with primary visual cortex (V1) damage to process information in their clinically blind visual field in the absence of conscious awareness. In addition to those with localized V1 lesions, some patients exhibiting this phenomenon have had a cerebral hemisphere removed or disconnected from the rest of the brain for the treatment of drug-resistant epilepsy (hemispherectomy). Research into the underlying neural substrates of blindsight has long implicated the intact visual cortex in maintaining residual vision and supporting visuo-guided responses to stimuli presented ipsilaterally within the blind visual field while operating outside the geniculo-striate pathway. A recent study demonstrated functional reorganization in the dorsal visual areas of the intact hemisphere, thereby supporting its compensatory role in non-conscious vision. In this study, we used cortical thickness analysis to examine anatomical differences in the visual cortex of the intact hemisphere of three subjects with varying degrees of cortical damage and well documented blindsight: two with a right hemispherectomy (complete and partial), and one with a left V1 lesion. T1-weighted MRI data were obtained for the subjects while control data were chosen from publicly available NKI-dataset to match closely the acquisition parameters of our blindsight cases. Our results show significant increases in cortical thickness in the visual cortex of all blindsight subjects compared to healthy controls, irrespective of age-onset, etiology, and extent of the damage. Our findings add to accumulating evidence from behavioral, functional imaging, and tractography studies of cerebral compensation and reorganization. Examined anatomical changes in the intact visual cortex of rare blindsight patients. First comparison of hemispherectomy and lesion patients to a large control sample. Blindsight subjects show significant increases in peri-calcarine cortical thickness. Similar changes observed despite differences in etiology and age at time of lesion. Increases are possible morphological signs of compensation underlying blindsight.
Collapse
Affiliation(s)
- Loraine Georgy
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Canada; McGill Centre for Studies in Aging, Douglas Institute, McGill University, Montreal, Canada
| | - Matteo Diano
- Department of Psychology, University of Torino, Torino, Italy
| | | | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Marco Tamietto
- Department of Psychology, University of Torino, Torino, Italy; Center of Research on Psychology in Somatic Diseases - CoRPS - Tilburg University, the Netherlands
| | - Alain Ptito
- Montreal Neurological Institute, McGill University, Montreal, Canada; Department of Psychology, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
8
|
Kliemann D, Adolphs R, Tyszka JM, Fischl B, Yeo BTT, Nair R, Dubois J, Paul LK. Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere. Cell Rep 2019; 29:2398-2407.e4. [PMID: 31747608 PMCID: PMC6914265 DOI: 10.1016/j.celrep.2019.10.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/26/2019] [Accepted: 10/15/2019] [Indexed: 11/26/2022] Open
Abstract
A reliable set of functional brain networks is found in healthy people and thought to underlie our cognition, emotion, and behavior. Here, we investigated these networks by quantifying intrinsic functional connectivity in six individuals who had undergone surgical removal of one hemisphere. Hemispherectomy subjects and healthy controls were scanned with identical parameters on the same scanner and compared to a large normative sample (n = 1,482). Surprisingly, hemispherectomy subjects and controls all showed strong and equivalent intrahemispheric connectivity between brain regions typically assigned to the same functional network. Connectivity between parts of different networks, however, was markedly increased for almost all hemispherectomy participants and across all networks. These results support the hypothesis of a shared set of functional networks that underlie cognition and suggest that between-network interactions may characterize functional reorganization in hemispherectomy.
Collapse
Affiliation(s)
- Dorit Kliemann
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - J Michael Tyszka
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02114, USA; Division of Health Sciences and Technology and Engineering and Computer Science MIT, Cambridge, MA 02139, USA
| | - B T Thomas Yeo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore 119077, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Remya Nair
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julien Dubois
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Halbertsma HN, Haak KV, Cornelissen FW. Stimulus- and Neural-Referred Visual Receptive Field Properties following Hemispherectomy: A Case Study Revisited. Neural Plast 2019; 2019:6067871. [PMID: 31565050 PMCID: PMC6745132 DOI: 10.1155/2019/6067871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 01/20/2023] Open
Abstract
Damage to the visual system can result in (a partial) loss of vision, in response to which the visual system may functionally reorganize. Yet the timing, extent, and conditions under which this occurs are not well understood. Hence, studies in individuals with diverse congenital and acquired conditions and using various methods are needed to better understand this. In the present study, we examined the visual system of a young girl who received a hemispherectomy at the age of three and who consequently suffered from hemianopia. We did so by evaluating the corticocortical and retinocortical projections in the visual system of her remaining hemisphere. For the examination of these aspects, we analyzed the characteristics of the connective fields ("neural-referred" receptive fields) based on both resting-state (RS) and retinotopy data. The evaluation of RS data, reflecting brain activity independent from visual stimulation, is of particular interest as it is not biased by the patient's atypical visual percept. We found that, primarily when the patient was at rest, the connective fields between V1 and both early and late visual areas were larger than normal. These abnormally large connective fields could be a sign either of functional reorganization or of unmasked suppressive feedback signals that are normally masked by interhemispheric signals. Furthermore, we confirmed our previous finding of abnormal retinocortical or "stimulus-referred" projections in both early and late visual areas. More specifically, we found an enlarged foveal representation and smaller population receptive fields. These differences could also be a sign of functional reorganization or rather a reflection of the interruption visual information that travels, via the remainder of the visual pathway, from the retina to the visual cortex. To conclude, while we do find indications for relatively subtle changes in visual field map properties, we found no evidence of large-scale reorganization-even though the patient could have benefitted from this. Our work suggests that at a later developmental stage, large-scale reorganization of the visual system no longer occurs, while small-scale properties may still change to facilitate adaptive processing and viewing strategies.
Collapse
Affiliation(s)
- Hinke N. Halbertsma
- Laboratory of Experimental Ophthalmology-Visual Neurosciences, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Koen V. Haak
- Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Frans W. Cornelissen
- Laboratory of Experimental Ophthalmology-Visual Neurosciences, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| |
Collapse
|