1
|
Rasmussen T, Filmer HL, Dux PE. On the role of prefrontal and parietal cortices in mind wandering and dynamic thought. Cortex 2024; 178:249-268. [PMID: 39053349 DOI: 10.1016/j.cortex.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Mind wandering is a common phenomenon in our daily lives and can have both an adaptive and detrimental impact. Recently, a dynamic framework has been proposed to characterise the heterogeneity of internal thoughts, suggesting there are three distinct thought types which can change over time - freely moving, deliberately constrained, and automatically constrained (thoughts). There is currently very little evidence on how different types of dynamic thought are represented in the brain. Previous research has applied non-invasive transcranial direct current stimulation (tDCS) to causally implicate the prefrontal cortex and inferior parietal lobule in mind wandering. However, a more recently developed and nuanced technique, high-definition tDCS (HD-tDCS), delivers more focal stimulation able to target specific brain regions. Therefore, the current study investigated the effect of anodal HD-tDCS applied to the left prefrontal and right inferior parietal cortices (with the occipital cortex included as an active control) on mind wandering, and specifically, the causal neural substrates of the three internal dynamic thought types. This was a single session study using a novel task which allows investigation into how dynamic thoughts are associated with behavioural variability and the recruitment of executive control operations across the three brain regions. There was no evidence to support our hypothesised effect of stimulation reducing task unrelated thought. Furthermore, the hypothesis driven analyses found no evidence of stimulation affecting the dynamic thought types, nor any evidence for our hypothesised effects of stimulation reducing behavioural variability and increasing randomness. There was only evidence for a relationship between these two measures of performance when participants thoughts were freely moving. However, there was evidence from our exploratory analyses that anodal stimulation to the prefrontal cortex decreased freely moving thought and anodal stimulation to the parietal lobule decreased deliberately constrained thought, relative to the sham conditions. The exploratory analyses also suggested stimulation may increase freely moving thought in the occipital cortex. Overall, these findings suggest stimulation does not affect the dynamic thought types, however there is preliminary evidence to support the heterogenous nature of mind wandering, whereby different brain regions may be causally implicated in distinct dynamic thought types.
Collapse
Affiliation(s)
- Tara Rasmussen
- School of Psychology, The University of Queensland, Australia.
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| |
Collapse
|
2
|
Ehrhardt SE, Wards Y, Rideaux R, Marjańska M, Jin J, Cloos MA, Deelchand DK, Zöllner HJ, Saleh MG, Hui SCN, Ali T, Shaw TB, Barth M, Mattingley JB, Filmer HL, Dux PE. Neurochemical Predictors of Generalized Learning Induced by Brain Stimulation and Training. J Neurosci 2024; 44:e1676232024. [PMID: 38531634 PMCID: PMC11112648 DOI: 10.1523/jneurosci.1676-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Małgorzata Marjańska
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Siemens Healthcare Pty Ltd., Brisbane, Queensland 4006, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dinesh K Deelchand
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tonima Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Leow LA, Jiang J, Bowers S, Zhang Y, Dux PE, Filmer HL. Intensity-dependent effects of tDCS on motor learning are related to dopamine. Brain Stimul 2024; 17:553-560. [PMID: 38604563 DOI: 10.1016/j.brs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), are popular methods for inducing neuroplastic changes to alter cognition and behaviour. One challenge for the field is to optimise stimulation protocols to maximise benefits. For this to happen, we need a better understanding of how stimulation modulates cortical functioning/behaviour. To date, there is increasing evidence for a dose-response relationship between tDCS and brain excitability, however how this relates to behaviour is not well understood. Even less is known about the neurochemical mechanisms which may drive the dose-response relationship between stimulation intensities and behaviour. Here, we examine the effect of three different tDCS stimulation intensities (1 mA, 2 mA, 4 mA anodal motor cortex tDCS) administered during the explicit learning of motor sequences. Further, to assess the role of dopamine in the dose-response relationship between tDCS intensities and behaviour, we examined how pharmacologically increasing dopamine availability, via 100 mg of levodopa, modulated the effect of stimulation on learning. In the absence of levodopa, we found that 4 mA tDCS improved and 1 mA tDCS impaired acquisition of motor sequences relative to sham stimulation. Conversely, levodopa reversed the beneficial effect of 4 mA tDCS. This effect of levodopa was no longer evident at the 48-h follow-up, consistent with previous work characterising the persistence of neuroplastic changes in the motor cortex resulting from combining levodopa with tDCS. These results provide the first direct evidence for a role of dopamine in the intensity-dependent effects of tDCS on behaviour.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, Australia; Edith Cowan University, St Lucia, Australia.
| | - Jiaqin Jiang
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Samantha Bowers
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Yuhan Zhang
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
4
|
Hemmerich K, Lupiáñez J, Martín-Arévalo E. HD-tDCS mitigates the executive vigilance decrement only under high cognitive demands. Sci Rep 2024; 14:7865. [PMID: 38570619 PMCID: PMC10991279 DOI: 10.1038/s41598-024-57917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Maintaining vigilance is essential for many everyday tasks, but over time, our ability to sustain it inevitably decreases, potentially entailing severe consequences. High-definition transcranial direct current stimulation (HD-tDCS) has proven to be useful for studying and improving vigilance. This study explores if/how cognitive load affects the mitigatory effects of HD-tDCS on the vigilance decrement. Participants (N = 120) completed a modified ANTI-Vea task (single or dual load) while receiving either sham or anodal HD-tDCS over the right posterior parietal cortex (rPPC). This data was compared with data from prior studies (N = 120), where participants completed the standard ANTI-Vea task (triple load task), combined with the same HD-tDCS protocol. Against our hypotheses, both the single and dual load conditions showed a significant executive vigilance (EV) decrement, which was not affected by the application of rPPC HD-tDCS. On the contrary, the most cognitively demanding task (triple task) showed the greatest EV decrement; importantly, it was also with the triple task that a significant mitigatory effect of the HD-tDCS intervention was observed. The present study contributes to a more nuanced understanding of the specific effects of HD-tDCS on the vigilance decrement considering cognitive demands. This can ultimately contribute to reconciling heterogeneous effects observed in past research and fine-tuning its future clinical application.
Collapse
Affiliation(s)
- Klara Hemmerich
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| |
Collapse
|
5
|
Willmot N, Leow LA, Filmer HL, Dux PE. Exploring the intra-individual reliability of tDCS: A registered report. Cortex 2024; 173:61-79. [PMID: 38382128 DOI: 10.1016/j.cortex.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has become an important tool for the study of in-vivo brain function due to its modulatory effects. Over the past two decades, interest in the influence of tDCS on behaviour has increased markedly, resulting in a large body of literature spanning multiple domains. However, the effect of tDCS on human performance often varies, bringing into question the reliability of this approach. While reviews and meta-analyses highlight the contributions of methodological inconsistencies and individual differences, no published studies have directly tested the intra-individual reliability of tDCS effects on behaviour. Here, we conducted a large scale, double-blinded, sham-controlled registered report to assess the reliability of two single-session low-dose tDCS montages, previously found to impact response selection and motor learning operations, across two separate time periods. Our planned analysis found no evidence for either protocol being effective nor reliable. Post-hoc explorative analyses found evidence that tDCS influenced motor learning, but not response selection learning. In addition, the reliability of motor learning performance across trials was shown to be disrupted by tDCS. These findings are amongst the first to shed light specifically on the intra-individual reliability of tDCS effects on behaviour and provide valuable information to the field.
Collapse
Affiliation(s)
- Nicholas Willmot
- Department of Defence, Edinburgh, SA, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, Australia.
| | - Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Fassi L, Hochman S, Daskalakis ZJ, Blumberger DM, Cohen Kadosh R. The importance of individual beliefs in assessing treatment efficacy. eLife 2024; 12:RP88889. [PMID: 38547008 PMCID: PMC10977967 DOI: 10.7554/elife.88889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual's subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants' subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.
Collapse
Affiliation(s)
- Luisa Fassi
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
- Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Shachar Hochman
- School of Psychology, University of SurreySurreyUnited Kingdom
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California, San DiegoSan DiegoUnited States
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention at the Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- School of Psychology, University of SurreySurreyUnited Kingdom
| |
Collapse
|
7
|
Nejati V, Zamiran B, Nitsche MA. The Interaction of the Dorsolateral and Ventromedial Prefrontal Cortex During Mind Wandering. Brain Topogr 2023:10.1007/s10548-023-00970-z. [PMID: 37202646 DOI: 10.1007/s10548-023-00970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Mind wandering refers to spontaneously occurring, often disruptive thoughts during an ongoing task or resting state. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are two main cortical areas which are involved in this process. This study aimed to explore the interaction of these areas during mind wandering by enhancing specific oscillatory activity of these areas via transcranial alternating current stimulation (tACS) in the theta frequency range. MATERIAL AND METHODS Eighteen healthy adults participated in a randomized, single-blinded, crossover study. tACS (1.5 mA, 6 Hz) was applied in five sessions with one week interval via (1) two channels with synchronized stimulation over the left dlPFC and right vmPFC, (2) the same electrode placement with anti-phase stimulation, (3) stimulation over the left dlPFC only, (4) stimulation over right vmPFC only, and (5) sham stimulation. The return electrodes were placed over the contralateral shoulder in all conditions. The sustained attention to response task (SART) with embedded probes about task-unrelated-thoughts and awareness of these thoughts was performed during intervention. RESULTS Stimulation did not alter SART performance. Right vmPFC stimulation decreased mind wandering and increased awareness of mind wandering. Left dlPFC stimulation and desynchronized stimulation over the dlPFC and vmPFC increased mind wandering compared to the sham stimulation condition. Synchronized stimulation had no effect on mind wandering, but increased awareness of mind wandering. CONCLUSION The results suggest that regional entrainment of the vmPFC decreases mind wandering and increases awareness of mind wandering, whereas regional entrainment of the dlPFC increases mind wandering, but decreases awareness. Under desynchronized stimulation of both areas, the propensity of mind wandering was increased, whereas synchronized stimulation increased the awareness of mind wandering. These results suggest a role of the dlPFC in initiation of mind wandering, whereas the vmPFC downregulates mind wandering, and might exert this function by counteracting respective dlPFC effects via theta oscillations.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University Tehran, Tehran, Iran.
| | - Bahar Zamiran
- Department of Psychology, Shahid Beheshti University Tehran, Tehran, Iran
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
8
|
Martínez-Pérez V, Andreu A, Sandoval-Lentisco A, Tortajada M, Palmero LB, Castillo A, Campoy G, Fuentes LJ. Vigilance decrement and mind-wandering in sustained attention tasks: Two sides of the same coin? Front Neurosci 2023; 17:1122406. [PMID: 37056308 PMCID: PMC10086236 DOI: 10.3389/fnins.2023.1122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundDecrements in performance and the propensity for increased mind-wandering (i.e., task-unrelated thoughts) across time-on-task are two pervasive phenomena observed when people perform vigilance tasks. In the present study, we asked whether processes that lead to vigilance decrement and processes that foster the propensity for mind-wandering (MW) can be dissociated or whether they share a common mechanism. In one experiment, we introduced two critical manipulations: increasing task demands and applying anodal high-definition transcranial direct current stimulation (HD-tDCS) to the left dorsolateral prefrontal cortex.MethodSeventy-eight participants were randomly assigned to one of four groups resulting from the factorial combination of task demand (low, high) and stimulation (anodal, sham). Participants completed the sustained attention to response task (SART), which included thought probes on intentional and unintentional MW. In addition, we investigated the crucial role of alpha oscillations in a novel approach. By assessing pre-post resting EEG, we explored whether participants’ variability in baseline alpha power predicted performance in MW and vigilance decrement related to tDCS or task demands, respectively, and whether such variability was a stable characteristic of participants.ResultsOur results showed a double dissociation, such that task demands exclusively affected vigilance decrement, while anodal tDCS exclusively affected the rate of MW. Furthermore, the slope of the vigilance decrement function and MW rate (overall, intentional and unintentional) did not correlate. Critically, resting state alpha-band activity predicted tDCS-related gains in unintentional MW alone, but not in vigilance decrement, and remained stable after participants completed the task.ConclusionThese results show that when a sustained attention task involving executive vigilance, such as the SART, is designed to elicit both vigilance decrement effects and MW, the processes leading to vigilance decrement should be differentiated from those responsible for MW, a claim that is supported by the double dissociation observed here and the lack of correlation between the measures chosen to assess both phenomena. Furthermore, the results provide the first evidence of how individual differences in alpha power at baseline may be of crucial importance in predicting the effects of tDCS on MW propensity.
Collapse
|
9
|
Nawani H, Mittner M, Csifcsák G. Modulation of mind wandering using transcranial direct current stimulation: A meta-analysis based on electric field modeling. Neuroimage 2023; 272:120051. [PMID: 36965860 DOI: 10.1016/j.neuroimage.2023.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Mind wandering (MW) is a heterogeneous construct involving task-unrelated thoughts. Recently, the interest in modulating MW propensity via non-invasive brain stimulation techniques has increased. Single-session transcranial direct current stimulation (tDCS) in healthy controls has led to mixed results in modulating MW propensity, possibly due to methodological heterogeneity. Therefore, our aim was to conduct a systematic meta-analysis to examine the influence of left dorsolateral prefrontal cortex (lDLPFC) and right inferior parietal lobule (rIPL) targeted tDCS on MW propensity. Importantly, by computational modeling of tDCS-induced electric fields, we accounted for differences in tDCS-dose across studies that varied strongly in their applied methodology. Fifteen single-session, sham-controlled tDCS studies published until October 2021 were included. All studies involved healthy adult participants and used cognitive tasks combined with MW thought-probes. Heterogeneity in tDCS electrode placement, stimulation polarity and intensity were controlled for by means of electric field simulations, while overall methodological quality was assessed via an extended risk of bias (RoB) assessment. We found that RoB was the strongest predictor of study outcomes. Moreover, the rIPL was the most promising cortical area for influencing MW, with stronger anodal electric fields in this region being negatively associated with MW propensity. Electric field strength in the lDLPFC was not related to MW propensity. We identified several severe methodological problems that could have contributed to overestimated effect sizes in this literature, an issue that needs urgent attention in future research in this area. Overall, there is no reliable evidence for tDCS influencing MW in the healthy. However, the analysis also revealed that increasing neural excitability in the rIPL via tDCS might be associated with reduced MW propensity. In an exploratory approach, we also found some indication that targeting prefrontal regions outside the lDLPFC with tDCS could lead to increased MW propensity.
Collapse
Affiliation(s)
- Hema Nawani
- Institute for Psychology, UiT The Arctic University of Norway.
| | | | - Gábor Csifcsák
- Institute for Psychology, UiT The Arctic University of Norway.
| |
Collapse
|
10
|
Guo J, Luo J, An Y, Xia T. tDCS Anodal Stimulation of the Right Dorsolateral Prefrontal Cortex Improves Creative Performance in Real-World Problem Solving. Brain Sci 2023; 13:brainsci13030449. [PMID: 36979259 PMCID: PMC10046742 DOI: 10.3390/brainsci13030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Brain regions associated with creativity is a focal point in research related to the field of cognitive neuroscience. Previous studies have paid more attention to the role of activation of the left dorsolateral prefrontal cortex in creativity tasks, which are mostly abstract conceptual tasks, and less attention to real-world creativity tasks. The right dorsolateral prefrontal cortex is involved in functions such as visuospatial processing, which may have a positive impact on innovative solutions to real-world problems. In this study, tDCS technology was used to explore the effect of anodal stimulation of the right dorsolateral prefrontal cortex on design creativity performance in a real-word problem-solving task related to product design. The experimental task comprised three stages, of which the first two were idea generation stages based on divergent thinking using text and graphics, respectively, whereas the third was the creative evaluation stage based on convergent thinking. Thirty-six design students were recruited to partake in the experiment. They were randomly assigned into anodal stimulation and sham stimulation groups. The results showed that anodal stimulation of the right dorsolateral prefrontal cortex produced a significant positive effect during the creative evaluation stage, promoting the usefulness of ideas (p = 0.009); thus, improving product creativity scores. However, there was no significant impact on the idea generation stage (p > 0.05), which is dominated by divergent thinking. The results suggest that activating the right dorsolateral prefrontal cortex with tDCS can improve people’s performance in creative activities by promoting convergent thinking rather than divergent thinking. It also provides further evidence that the right hemisphere of the brain has an advantage in solving complex problems that require the participation of visuospatial information.
Collapse
|
11
|
Wong YS, Willoughby AR, Machado L. Reconceptualizing mind wandering from a switching perspective. PSYCHOLOGICAL RESEARCH 2023; 87:357-372. [PMID: 35348846 PMCID: PMC9928802 DOI: 10.1007/s00426-022-01676-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Mind wandering is a universal phenomenon in which our attention shifts away from the task at hand toward task-unrelated thoughts. Despite it inherently involving a shift in mental set, little is known about the role of cognitive flexibility in mind wandering. In this article we consider the potential of cognitive flexibility as a mechanism for mediating and/or regulating the occurrence of mind wandering. Our review begins with a brief introduction to the prominent theories of mind wandering-the executive failure hypothesis, the decoupling hypothesis, the process-occurrence framework, and the resource-control account of sustained attention. Then, after discussing their respective merits and weaknesses, we put forward a new perspective of mind wandering focused on cognitive flexibility, which provides an account more in line with the data to date, including why older populations experience a reduction in mind wandering. After summarizing initial evidence prompting this new perspective, drawn from several mind-wandering and task-switching studies, we recommend avenues for future research aimed at further understanding the importance of cognitive flexibility in mind wandering.
Collapse
Affiliation(s)
- Yi-Sheng Wong
- Department of Psychology and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Nusajaya, Malaysia.
| | - Adrian R Willoughby
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Nusajaya, Malaysia
- Department of Psychology, Monash University Malaysia, Subang Jaya, Malaysia
| | - Liana Machado
- Department of Psychology and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
12
|
Ehrhardt SE, Ballard T, Wards Y, Mattingley JB, Dux PE, Filmer HL. tDCS augments decision-making efficiency in an intensity dependent manner: A training study. Neuropsychologia 2022; 176:108397. [DOI: 10.1016/j.neuropsychologia.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
13
|
Coulborn S, Fernández-Espejo D. Prefrontal tDCS is unable to modulate mind wandering propensity or underlying functional or effective brain connectivity. Sci Rep 2022; 12:18021. [PMID: 36289366 PMCID: PMC9606118 DOI: 10.1038/s41598-022-22893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
There is conflicting evidence over the ability to modulate mind-wandering propensity with anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (prefrontal tDCS). Here, 20 participants received 20-min of active and sham prefrontal tDCS while in the MRI scanner, in two separate sessions (counterbalanced). In each session, they completed two runs of a sustained attention to response task (before and during tDCS), which included probes recording subjective responses of mind-wandering. We assessed the effects of tDCS on behavioural responses as well as functional and effective dynamics, via dynamic functional network connectivity (dFNC) and dynamic causal modelling analyses over regions of the default mode, salience and executive control networks. Behavioural results provided substantial evidence in support of no effect of tDCS on task performance nor mind-wandering propensity. Similarly, we found no effect of tDCS on frequency (how often) or dwell time (time spent) of underlying brain states nor effective connectivity. Overall, our results suggest that prefrontal tDCS is unable to modulate mind-wandering propensity or influence underlying brain function. This expands previous behavioural replication failures in suggesting that prefrontal tDCS may not lead to even subtle (i.e., under a behavioural threshold) changes in brain activity during self-generated cognition.
Collapse
Affiliation(s)
- Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- University of California, Berkeley, USA
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Gordon MS, Seeto JXW, Dux PE, Filmer HL. Intervention is a better predictor of tDCS mind-wandering effects than subjective beliefs about experimental results. Sci Rep 2022; 12:13110. [PMID: 35908042 PMCID: PMC9338927 DOI: 10.1038/s41598-022-16545-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Blinding in non-invasive brain stimulation research is a topic of intense debate, especially regarding the efficacy of sham-controlled methods for transcranial direct current stimulation (tDCS). A common approach to assess blinding success is the inclusion of correct guess rate. However, this method cannot provide insight into the effect of unblinding on observed stimulation outcomes. Thus, the implementation of measures to systematically evaluate subjective expectation regarding stimulation is needed. Previous work evaluated subjective effects in an earlier study which reported a mind-wandering and tDCS data set and concluded that subjective belief drove the pattern of results observed. Here we consider the subjective and objective intervention effects in a key contrast from that data set-2 mA vs. sham-which was not examined in the reanalysis. In addition, we examine another key contrast from a different tDCS mind-wandering study that employed similar methodology. Our findings support objective intervention as the strongest predictor of the observed effects of mind-wandering in both re-analyses, over and above that of subjective intervention. However, it is important to control for and understand the possible inadequacies of sham-controlled methods.
Collapse
Affiliation(s)
- Matilda S Gordon
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia.
| | - Jennifer X W Seeto
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| |
Collapse
|
15
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Self-reported mind wandering reflects executive control and selective attention. Psychon Bull Rev 2022; 29:2167-2180. [PMID: 35672655 DOI: 10.3758/s13423-022-02110-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
Mind wandering is ubiquitous in everyday life and has a pervasive and profound impact on task-related performance. A range of psychological processes have been proposed to underlie these performance-related decrements, including failures of executive control, volatile information processing, and shortcomings in selective attention to critical task-relevant stimuli. Despite progress in the development of such theories, existing descriptive analyses have limited capacity to discriminate between the theories. We propose a cognitive-model based analysis that simultaneously explains self-reported mind wandering and task performance. We quantitatively compare six explanations of poor performance in the presence of mind wandering. The competing theories are distinguished by whether there is an impact on executive control and, if so, how executive control acts on information processing, and whether there is an impact on volatility of information processing. Across two experiments using the sustained attention to response task, we find quantitative evidence that mind wandering is associated with two latent factors. Our strongest conclusion is that executive control is impaired: increased mind wandering is associated with reduced ability to inhibit habitual response tendencies. Our nuanced conclusion is that executive control deficits manifest in reduced ability to selectively attend to the information value of rare but task-critical events.
Collapse
|
17
|
Kam JWY, Mittner M, Knight RT. Mind-wandering: mechanistic insights from lesion, tDCS, and iEEG. Trends Cogn Sci 2022; 26:268-282. [PMID: 35086725 PMCID: PMC9166901 DOI: 10.1016/j.tics.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/04/2023]
Abstract
Cognitive neuroscience has witnessed a surge of interest in investigating the neural correlates of the mind when it drifts away from an ongoing task and the external environment. To that end, functional neuroimaging research has consistently implicated the default mode network (DMN) and frontoparietal control network (FPCN) in mind-wandering. Yet, it remains unknown which subregions within these networks are necessary and how they facilitate mind-wandering. In this review, we synthesize evidence from lesion, transcranial direct current stimulation (tDCS), and intracranial electroencephalogram (iEEG) studies demonstrating the causal relevance of brain regions, and providing insights into the neuronal mechanism underlying mind-wandering. We propose that the integration of complementary approaches is the optimal strategy to establish a comprehensive understanding of the neural basis of mind-wandering.
Collapse
Affiliation(s)
- Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | | | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
18
|
Fassi L, Cohen Kadosh R. Letter to the editor: How some brain stimulation studies fail to evaluate blinding adequately. J Psychiatr Res 2021; 137:452-453. [PMID: 33798970 DOI: 10.1016/j.jpsychires.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Luisa Fassi
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| |
Collapse
|
19
|
Boayue NM, Csifcsák G, Kreis IV, Schmidt C, Finn I, Hovde Vollsund AE, Mittner M. The interplay between executive control, behavioural variability and mind wandering: Insights from a high-definition transcranial direct-current stimulation study. Eur J Neurosci 2020; 53:1498-1516. [PMID: 33220131 DOI: 10.1111/ejn.15049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
While the involvement of executive processes in mind wandering is largely undebated, their exact relationship is subject to an ongoing debate and rarely studied dynamically within-subject. Several brain-stimulation studies using transcranial direct current stimulation (tDCS) have attempted to modulate mind-wandering propensity by stimulating the left dorsolateral prefrontal cortex (DLPFC) which is an important hub in the prefrontal control network. In a series of three studies testing a total of N = 100 participants, we develop a novel task that allows to study the dynamic interplay of mind wandering, behavioural varibility and the flexible recruitment of executive resources as indexed by the randomness (entropy) of movement sequences generated by our participants. We consistently find that behavioural variability is increased and randomness is decreased during periods of mind wandering. Interestingly, we also find that behavioural variability interacts with the entropy-MW effect, opening up the possibility to detect distinct states of off-focus cognition. When applying a high-definition transcranial direct-current stimulation (HD-tDCS) montage to the left DLPFC, we find that propensity to mind wander is reduced relative to a group receiving sham stimulation.
Collapse
Affiliation(s)
- Nya M Boayue
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gábor Csifcsák
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Isabel V Kreis
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Carole Schmidt
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Iselin Finn
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Matthias Mittner
- Institute for Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Filmer HL, Marcus LH, Dux PE. Stimulating task unrelated thoughts: tDCS of prefrontal and parietal cortices leads to polarity specific increases in mind wandering. Neuropsychologia 2020; 151:107723. [PMID: 33307101 DOI: 10.1016/j.neuropsychologia.2020.107723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/12/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022]
Abstract
Mind wandering has been associated with both adaptive outcomes and performance impairment, depending on the context. Recently, non-invasive brain stimulation has been applied in several studies with the aim to investigate the neural region(s) casually involved in mind wandering. However, to date there has been little definitive work assessing whether or not the stimulation of different brain regions leads to distinct mind wandering outcomes. The present preregistered study considered the role of the prefrontal cortex and inferior parietal lobule in mind wandering using two stimulation intensities (1mA and 2mA) and two stimulation polarity montages. One-hundred and fifty subjects were randomly allocated to one of the four active stimulation groups or a sham group. Participants' mind wandering propensity was measured via a task unrelated thought probe dispersed throughout an attention-based task completed directly after stimulation. Anodal stimulation to the prefrontal cortex, and cathodal stimulation to the inferior parietal lobule, increased mind wandering propensity and this effect was relatively unaffected by stimulation dosage. These findings support a causal role for these two regions in mind wandering, one that is polarity specific.
Collapse
Affiliation(s)
- Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Australia.
| | - Leo H Marcus
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
21
|
van Schouwenburg MR, Sligte IG, Giffin MR, Günther F, Koster D, Spronkers FS, Vos A, Slagter HA. Effects of Midfrontal Brain Stimulation on Sustained Attention. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00179-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractSustained attention is defined as the ability to maintain attention over longer periods of time, which typically declines with time on task (i.e., the vigilance decrement). Previous studies have suggested an important role for the dorsomedial prefrontal cortex (mPFC) in sustained attention. In two experiments, we aimed to enhance sustained attention by applying transcranial electrical current stimulation over the mPFC during a sustained attention task. In the first experiment, we applied transcranial direct current stimulation (tDCS) in a between-subject design (n = 97): participants received either anodal, cathodal, or sham stimulation. Contrary to our prediction, we found no effect of stimulation on the vigilance decrement. In the second experiment, participants received theta and alpha transcranial alternating current stimulation (tACS) in two separate sessions (n = 47, within-subject design). Here, we found a frequency-dependent effect on the vigilance decrement, such that contrary to our expectation, participants’ performance over time became worse after theta compared with alpha stimulation. However, this result needs to be interpreted with caution given that this effect could be driven by differential side effects between the two stimulation frequencies. To conclude, across two studies, we were not able to reduce the vigilant decrement using tDCS or theta tACS.
Collapse
|
22
|
Modulating brain activity and behaviour with tDCS: Rumours of its death have been greatly exaggerated. Cortex 2020; 123:141-151. [DOI: 10.1016/j.cortex.2019.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
|