1
|
Vitamin B1 Intake in Multiple Sclerosis Patients and its Impact on Depression Presence: A Pilot Study. Nutrients 2020; 12:nu12092655. [PMID: 32878159 PMCID: PMC7551277 DOI: 10.3390/nu12092655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Vitamin B1, or thiamine, is one of the most relevant vitamins in obtaining energy for the nervous system. Thiamine deficiency or lack of activity causes neurological manifestations, especially symptoms of depression, intrinsic to multiple sclerosis (MS) and related to its pathogenesis. On this basis, the aim of this study was to determine the possible relationship between the nutritional habits of patients with MS and the presence of depression. Therefore, a cross-sectional and observational descriptive study was conducted. An analysis of dietary habits and vitamin B1 consumption in a Spanish population of 51 MS patients was performed by recording the frequency of food consumption. Results showed a vitamin B1 intake within the established range, mainly provided by the consumption of ultra-processed products such as cold meats or pastries, and a total carbohydrate consumption lower than recommended, which stands out for its high content of simple carbohydrates deriving from processed foods such as dairy desserts, juice, snacks, pastries, chocolate bars, soft drinks and fermented alcohol. In addition, a significant negative correlation between depression and the intake of thiamine and total carbohydrates was observed. These findings could explain the influence of MS patients' eating habits, and consequently vitamin B1 activity, on depression levels.
Collapse
|
2
|
Thiamine Deficiency Causes Long-Lasting Neurobehavioral Deficits in Mice. Brain Sci 2020; 10:brainsci10080565. [PMID: 32824629 PMCID: PMC7464042 DOI: 10.3390/brainsci10080565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Thiamine deficiency (TD) has detrimental effects on brain health and neurobehavioral development, and it is associated with many aging-related neurological disorders. To facilitate TD-related neuropsychological studies, we generated a TD mouse model by feeding a thiamine-deficient diet for 30 days, followed by re-feeding the control diet for either one week or 16 weeks as recovery treatment. We then performed neurobehavioral tests in these two cohorts: cohort of one week post TD treatment (1 wk-PTDT) and 16 weeks post TD treatment (16 wks-PTDT). The TD mice showed no significant difference from control in any tests in the 1 wk-PTDT cohort at the age of 13-14 weeks. The tests for the 16 wks-PTDT cohort at the age of 28-29 weeks, however, demonstrated anxiety and reduced locomotion in TD animals in open field and elevated plus maze. In comparison, rotor rod and water maze revealed no differences between TD and control mice. The current findings of the differential effects of the same TD treatment on locomotion and anxiety at different ages may reflect the progressive and moderate change of TD-induced neurobehavioral effects. The study suggests that, even though the immediate neurobehavioral impact of TD is modest or negligible at a young age, the impact could develop and become severe during the aging process.
Collapse
|
3
|
Oh SY, Lee J, Kang JJ, Park YH, Kim KW, Lee JM, Kim JS, Dieterich M. Altered Resting-State Functional Connectivity in Wernicke's Encephalopathy With Vestibular Impairment. Front Neurol 2019; 10:1035. [PMID: 31611841 PMCID: PMC6776602 DOI: 10.3389/fneur.2019.01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives: To reveal the neural basis of Wernicke's encephalopathy (WE) with impaired vestibulo-ocular reflex (VOR), we evaluated resting-state functional connectivity (rs-fc) in the vestibular processing brain regions. Methods: Rs-fc between the vestibular regions and the rest of the brain were compared with neurotological features including the head-impulse tests (vHIT) and caloric responses in patients with WE (n = 5, mean age 53.4 ± 10 years) and healthy controls (n = 20, mean age 55.0 ± 9.2 years). Rs-fc analyses employed a region of interest (ROI)-based approach using regions selected a priori that participate in vestibular processing including the cerebellar vermis, insula, parietal operculum, and calcarine cortex. Results: The main neurologic findings for patients with WE were mental changes; gait ataxia; spontaneous and gaze-evoked nystagmus (GEN); and bilaterally positive HIT for the horizontal canals. Video HIT documented bilateral horizontal canal dysfunction with decreased gain and corrective saccades. Caloric irrigation and rotation chair testing revealed prominent bilateral horizontal canal paresis. Patients with WE also had decreased spatial memory, which substantially recovered after treatments. Functional connections at the predefined seed regions, including the insular cortex and parietal operculum, were attenuated in the WE group compared to healthy controls. Conclusions: WE is related to impaired VOR and visuospatial dysfunction, and fMRI documented changes in the rs-fc of multisensory vestibular processing regions including the insula, parietal operculum, and superior temporal gyrus, which participate in integration of vestibular perception.
Collapse
Affiliation(s)
- Sun-Young Oh
- Department of Neurology, School of Medicine, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University, Jeonju, South Korea
| | - Juhyung Lee
- Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University, Jeonju, South Korea.,Department of Preventive Medicine, School of Medicine, Chonbuk National University Hospital, Jeonju, South Korea
| | - Jin-Ju Kang
- Department of Neurology, School of Medicine, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University, Jeonju, South Korea
| | - Yeong-Hun Park
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Ko Woon Kim
- Department of Neurology, School of Medicine, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University, Jeonju, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University School of Medicine, Seoul, South Korea
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
4
|
Vyas S, Kothari S, Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Makino M, Takahashi-Ito K, Murasawa H, Pawlak A, Kashimoto Y, Kitano Y. Memantine ameliorates learning and memory disturbance and the behavioral and psychological symptoms of dementia in thiamine-deficient mice. Pharmacol Biochem Behav 2019; 183:6-13. [PMID: 31175916 DOI: 10.1016/j.pbb.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022]
Abstract
Several studies have reported on the beneficial effects of memantine on behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer's disease. However, the effects of memantine on BPSD-like behaviors in animals have not been well addressed. Here, the effects of memantine on memory disturbance and BPSD-like behaviors were evaluated in thiamine-deficient (TD) mice. Memantine (3 and 10 mg/kg, b.i.d.) was orally administered to ddY mice fed a TD diet for 22 days. During the treatment period, the forced swimming test, elevated plus-maze test, passive avoidance test, and locomotor activity test were performed. Neurotransmitter levels in the brain were analyzed after the treatment period. Daily oral administration of memantine ameliorated the memory disturbances, anxiety-like behavior, and depression-like behavior observed in TD mice. Memantine did not have a significant effect on monoamine levels, but increased glutamate levels in the hippocampus in TD mice. These results suggest that memantine prevents or suppresses the progression of BPSD-like behaviors that develop due to TD. This effect may be mediated in part by the enhancement of glutamatergic neuron activity in the hippocampus.
Collapse
Affiliation(s)
- Mitsuhiro Makino
- Specialty Medicine Research Laboratories II, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Kaori Takahashi-Ito
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyasu Murasawa
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Akiko Pawlak
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Yoshinori Kashimoto
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Kitano
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
6
|
Wang Y, Liu C, Wang H, Jiang Y, Wang P, Shang H. Systematic Review of Basic Research on Alzheimer's Disease with Shen Zhi Ling Oral Liquid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8216714. [PMID: 31118971 PMCID: PMC6500647 DOI: 10.1155/2019/8216714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The present report systematically reviewed the basic research of Shen Zhi Ling oral liquid (Tiao Xin preparation) treatment on Alzheimer's disease (AD). METHODS CNKI, Wanfang, and VIP were searched, and the literature was selected according to inclusion and exclusion criteria. Data were extracted, and descriptive analysis was used. RESULTS Twenty-four articles were included, all of which were published as "Tiao Xin preparation." There were seven types of AD models involved. The mechanism of action of Shen Zhi Ling oral liquid in the treatment of AD primarily included suppression of Aβ deposition and tau hyperphosphorylation, regulation of multiple neurotransmitters, improvement in energy metabolism, and promotion of the expression of autophagy-related and learning-memory-associated proteins. CONCLUSIONS AD is a complex disease caused by multiple factors. Shen Zhi Ling oral liquid exhibited multiple and multitarget effects and great potential for treating AD. The continuous development of molecular biology and related disciplines will further elucidate the mechanism of Shen Zhi Ling oral liquid intervention in AD.
Collapse
Affiliation(s)
- Yahan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Chunxiang Liu
- Evidence-Based Medicine Center, Tianjin University of Chinese Medicine, Beihua South Road, Jinghai District, Tianjin 301617, China
| | - Hui Wang
- Evidence-Based Medicine Center, Tianjin University of Chinese Medicine, Beihua South Road, Jinghai District, Tianjin 301617, China
| | - Yin Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
- Center for Evidence-Based and Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Wanli District, Nanchang, Jiangxi 330000, China
| |
Collapse
|
7
|
Jeon SG, Song EJ, Lee D, Park J, Nam Y, Kim JI, Moon M. Traditional Oriental Medicines and Alzheimer's Disease. Aging Dis 2019; 10:307-328. [PMID: 31435482 PMCID: PMC6667206 DOI: 10.14336/ad.2018.0328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical trials of AD drugs with single targets, such as β-amyloid and tau, have failed, the development of multi-target drugs that ameliorate many of the symptoms of AD is needed. Thus, recent studies have investigated the effects and underlying mechanisms of herbal formulae consisting of various herb combinations used to treat AD. This review discusses the results of clinical and nonclinical studies of the therapeutic efficacy in AD and underlying mechanisms of the herbal formulae of traditional Oriental medicines and bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Seong Gak Jeon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun Ji Song
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dongje Lee
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junyong Park
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- 2Center for Organic Devices and Advanced Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Jin-Il Kim
- 3Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
8
|
Hiraki Y, Araki R, Fujiwara H, Ago Y, Tanaka T, Toume K, Matsumoto K, Yabe T. Kamiuntanto increases prefrontal extracellular serotonin levels and ameliorates depression-like behaviors in mice. J Pharmacol Sci 2019; 139:72-76. [DOI: 10.1016/j.jphs.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 01/20/2023] Open
|
9
|
Gong YS, Hu K, Yang LQ, Guo J, Gao YQ, Song FL, Hou FL, Liang CY. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. Free Radic Biol Med 2017; 108:163-173. [PMID: 28342849 DOI: 10.1016/j.freeradbiomed.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
The effects of chronic EtOH consumption, associated or not with thiamine deficiency (TD), on cognitive impairment, oxidative damage, and β-amyloid (Aβ) peptide accumulation in the brain were investigated in male C57BL/6 mice. We established an alcoholic mouse model by feeding an EtOH liquid diet, a TD mouse model by feeding a thiamine-depleted liquid diet, and an EtOH treatment associated with TD mouse model by feeding a thiamine-depleted EtOH liquid diet for 7 weeks. The learning and memory functions of the mice were detected through the Y-maze test. Biochemical parameters were measured using corresponding commercial kits. The Aβ expression in the hippocampus was observed by immunohistochemical staining. Several results were obtained. First, EtOH significantly reduced cognitive function by significantly decreasing the Glu content in the hippocampus; increasing the AChE activity in the cortex; and reducing the thiamine level, and superoxide dismutase (SOD), glutathione peroxidase (GPx), and choline acetyltransferase (ChAT) activities in both the hippocampus and cortex. The treatment also increased the levels of malondialdehyde (MDA), protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), and nitric oxide (NO) and the activities of total nitric oxide synthase (tNOS), inducible nitric oxide synthase (iNOS), and monoamine oxidase B (MAO-B). Furthermore, EtOH enhanced the expression levels of Aβ1-42 and Aβ1-40 in the hippocampus. Second, TD induced the same dysfunctions caused by EtOH in the biochemical parameters, except for learning ability, 8-OHdG content, and GPx, tNOS, and AChE activities in the cortex. Third, the modification of MDA, protein carbonyl and NO levels, and GPx, iNOS, ChAT, and MAO-B activities in the brain induced by chronic EtOH treatment associated with TD was greater than that induced by EtOH or TD alone. The synergistic effects of EtOH and TD on Aβ1-40 and Glu release, as well as on SOD activity, depended on their actions on the hippocampus or cortex. These findings suggest that chronic EtOH consumption can induce TD, cognitive impairment, Aβ accumulation, oxidative stress injury, and neurotransmitter metabolic abnormalities. Furthermore, the association of chronic EtOH consumption with TD causes dramatic brain dysfunctions with a severe effect on the brain.
Collapse
Affiliation(s)
- Yu-Shi Gong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lu-Qi Yang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yong-Qing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Feng-Lin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fang-Li Hou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Cui-Yi Liang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
10
|
Sreenivasmurthy SG, Liu JY, Song JX, Yang CB, Malampati S, Wang ZY, Huang YY, Li M. Neurogenic Traditional Chinese Medicine as a Promising Strategy for the Treatment of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18020272. [PMID: 28134846 PMCID: PMC5343808 DOI: 10.3390/ijms18020272] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Hippocampal neurogenesis plays a critical role in the formation of new neurons during learning and memory development. Attenuation of neurogenesis in the brain is one of the primary causes of dementia in Alzheimer’s disease (AD), and, conversely, modulating the process of hippocampal neurogenesis benefit patients with AD. Traditional Chinese medicine (TCM), particularly herbal medicine, has been in use for thousands of years in Asia and many regions of the world for the treatment of cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the role of neurotrophic factors, signal transducing factors, epigenetic modulators and neurotransmitters in neurogenesis, and we also discuss the functions of several Chinese herbs and their active molecules in activating multiple pathways involved in neurogenesis. TCM herbs target pathways such as Notch, Wnt, Sonic Hedgehog and receptor tyrosine kinase pathway, leading to activation of a signaling cascade that ultimately enhances the transcription of several important genes necessary for neurogenesis. Given these pathway activating effects, the use of TCM herbs could be an effective therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Sravan Gopalkrishnashetty Sreenivasmurthy
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jing-Yi Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chuan-Bin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Sandeep Malampati
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Zi-Ying Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
11
|
Iizuka S, Kawakami Z, Imamura S, Yamaguchi T, Sekiguchi K, Kanno H, Ueki T, Kase Y, Ikarashi Y. Electron-microscopic examination of effects of yokukansan, a traditional Japanese medicine, on degeneration of cerebral cells in thiamine-deficient rats. Neuropathology 2016; 30:524-36. [PMID: 20337951 DOI: 10.1111/j.1440-1789.2010.01101.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously demonstrated that yokukansan ameliorated not only learning disturbance but also behavioral and psychological symptoms of dementia-like behaviors (anxiety, aggressiveness) and neurological symptoms (opisthotonus) induced in rats by dietary thiamine deficiency (TD). In the present study, the effects of yokukansan on degeneration of cerebral cells were further examined electron-microscopically during pre-symptomatic and symptomatic stages in TD rats. In the pre-symptomatic TD stage, which appeared as increase in aggressive behaviors on the 21st and 28th days of TD diet-feeding, severe edematous degeneration of astrocytes was detected by electron microscopy, although the changes were not observed by light microscopy. In the symptomatic TD stage (the 34th day) characterized by development of neurological symptoms, severe sponge-like degeneration and multiple hemorrhages in the parenchyma were obvious by light microscopy. The electron-microscopic examination showed degeneration in neurons, oligodendroglias, and myelin sheaths in addition to astrocytes. TD rats, which exhibited multiple hemorrhages light microscopically, showed severe edematous changes and hypertrophy of the foot processes of astrocytes surrounding blood vessels. Administration of yokukansan ameliorated not only the TD-induced aggressive behavior and neurological symptoms but also degeneration of the cerebral cells. These results suggest that the inhibitory effect of yokukansan on degeneration in various brain cells might be closely related to the amelioration of aggression and neurological symptoms in TD rats.
Collapse
Affiliation(s)
- Seiichi Iizuka
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Zenji Kawakami
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Sachiko Imamura
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Takuji Yamaguchi
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Kyoji Sekiguchi
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Hitomi Kanno
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Toshiyuki Ueki
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yoshio Kase
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yasushi Ikarashi
- TSUMURA Research Laboratories, TSUMURA & CO., Ami-machi, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
12
|
Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 2014; 267:102-13. [PMID: 24607345 DOI: 10.1016/j.neuroscience.2014.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 01/26/2023]
Abstract
Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight.
Collapse
|
13
|
Michel HE, Tadros MG, Abdel-Naim AB, Khalifa AE. Prepulse inhibition (PPI) disrupting effects of Glycyrrhiza glabra extract in mice: A possible role of monoamines. Neurosci Lett 2013; 544:110-4. [DOI: 10.1016/j.neulet.2013.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
|
14
|
Oh HK, Park SJ, Bae SG, Kim MJ, Jang JH, Ahn YJ, Woo H, Kwon G, Ryu JH. Kami-ondam-tang, a traditional herbal prescription, attenuates the prepulse inhibition deficits and cognitive impairments induced by MK-801 in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:600-607. [PMID: 23376282 DOI: 10.1016/j.jep.2013.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kami-ondam-tang (KODT) has been used to treat neuropsychiatric disorders, including neurosis and insomnia, in traditional herbal medicine. However, the mechanisms of this drug have not been well characterized in the treatment of schizophrenia-like behaviors. AIM OF THE STUDY We investigated whether schizophrenia-like behaviors induced by MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, could be attenuated by KODT. MATERIALS AND METHODS Acute systemic administration of MK-801 was used to establish an animal model of schizophrenia. The effects of KODT on the MK-801-induced prepulse inhibition (PPI) deficits, hyperlocomotion, social withdrawal, and cognitive impairment were assessed. We also examined the changes in the expression levels of Akt and extracellular signal-regulated kinase (ERK) after the administration of KODT with MK-801 in the cortical and hippocampal tissues. RESULTS The acoustic startle response test showed that the acoustic startle enhancement and PPI deficits induced by MK-801 were attenuated by KODT. Moreover, KODT ameliorated social and objective recognition impairments that were induced by MK-801 in the social novelty preference test and the novel object recognition test. In addition, the upregulation of phosphorylated Akt or phosphorylated ERK expression induced by MK-801 was blocked by KODT in the cortex. However, MK-801-induced hyperlocomotion was not affected by KODT in the open field test. CONCLUSION These findings suggest that KODT attenuates MK-801-induced PPI disruption, social interaction deficits, and cognitive impairments, possibly, by regulating of cortical Akt and ERK signaling.
Collapse
Affiliation(s)
- Hee Kyong Oh
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hong JG, Kim DH, Park SJ, Kim JM, Cai M, Liu X, Lee CH, Ryu JH. The memory-enhancing effects of Kami-ondam-tang in mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:251-256. [PMID: 21619923 DOI: 10.1016/j.jep.2011.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/23/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kami-ondam-tang (KOT), a traditional Chinese medicine, has been used to treat mental and neuropsychiatric disorders, including dementia. This study aimed to investigate the effects of KOT on cognition and the mechanisms underlying these effects in mice. MATERIALS AND METHODS Using the passive avoidance task, we investigated the effect of sub-chronic administration of KOT on the cognition of mice. We also examined the expressions of protein kinase B (Akt), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and doublecortin (DCX) in the hippocampal CA1 and dentate gyrus regions using immunohistochemistry and western blotting. RESULTS The administration of KOT (50mg/kg/day, p.o.) for 14 days significantly increased step-through latency in the passive avoidance task compared with vehicle-treated controls. Furthermore, KOT administration (50mg/kg/day, p.o.) significantly increased the expressions of phosphorylated Akt, phosphorylated CREB and BDNF in the hippocampal CA1 and dentate gyrus. In addition, KOT administration resulted in a significant increase in the number of DCX-immunopositive cells in the dentate gyrus. CONCLUSIONS These results suggest that KOT enhances cognitive performance through the upregulation of Akt-CREB-BDNF signaling and neurogenesis.
Collapse
Affiliation(s)
- Jin Gyu Hong
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, #1 Hoeki-dong, Dongdaemoon-Ku, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hills JI, Golub MS, Bettendorff L, Keen CL. The effect of thiamin tetrahydrofurfuryl disulfide on behavior of juvenile DBA/2J mice. Neurotoxicol Teratol 2011; 34:242-52. [PMID: 21816221 DOI: 10.1016/j.ntt.2011.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/26/2011] [Accepted: 07/19/2011] [Indexed: 01/19/2023]
Abstract
Due to genetic defects or illness some individuals require higher amounts of thiamin than are typically provided by the diet. Lipid-soluble thiamin precursors can achieve high blood levels of thiamin and result in increased concentrations in the central nervous system. High intakes of thiamin have been reported as beneficial in children with autism and attention deficit/hyperactivity disorder. The current study examined the effect of thiamin tetrahydrofurfuryl disulfide (TTFD), a lipophilic precursor, on behavior in the juvenile male DBA/2J mouse. Mice given by oral gavage deionized water or deionized water providing 100 mg or 340 mg TTFD/kg body weight daily for 17 d, starting at postnatal day 18, were tested for effects on operant learning, social interaction, general activity level, and prepulse inhibition of acoustic startle, as well as effects on growth and select organ weights. Results indicate lower activity and altered social interaction at both treatment levels and decreased acoustic startle at the 100 mg/kg level. Compared to controls, percent weight gain was lower in the TTFD-treatment groups, but percent body length increase was not affected by TTFD treatment. TTFD treatment did not influence percent organ weights as percentage of body weights. TTFD treatment resulted in increased whole brain thiamin concentrations. These results support the concept that lipophilic thiamin precursors provided during early development can affect a number of behavioral parameters. In clinical trials with children with behavior disorders, attention should be given to preventing possible adverse gastrointestinal irritant effects associated with TTFD therapy.
Collapse
Affiliation(s)
- Judith I Hills
- Department of Nutrition, University of CA, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
17
|
Fujiwara H, Takayama S, Iwasaki K, Tabuchi M, Yamaguchi T, Sekiguchi K, Ikarashi Y, Kudo Y, Kase Y, Arai H, Yaegashi N. Yokukansan, a traditional Japanese medicine, ameliorates memory disturbance and abnormal social interaction with anti-aggregation effect of cerebral amyloid β proteins in amyloid precursor protein transgenic mice. Neuroscience 2011; 180:305-13. [PMID: 21303686 DOI: 10.1016/j.neuroscience.2011.01.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The deposition of amyloid β protein (Aβ) is a consistent pathological hallmark of Alzheimer's disease (AD) brains. Therefore, inhibition of Aβ aggregation in the brain is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. An in vitro study demonstrated that yokukansan (YKS), a traditional Japanese medicine, inhibited Aβ aggregation in a concentration-dependent manner. An in vivo study demonstrated that YKS and Uncaria hook (UH), a constituent of YKS, prevented the accumulation of cerebral Aβ. YKS also improved the memory disturbance and abnormal social interaction such as increased aggressive behavior and decreased social behavior in amyloid precursor protein transgenic mice. These results suggest that YKS is likely to be a potent and novel therapeutic agent to prevent and/or treat AD, and that this may be attributed to UH.
Collapse
Affiliation(s)
- H Fujiwara
- Department of Traditional Asian Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vigil FAB, Oliveira-Silva IDF, Ferreira LF, Pereira SRC, Ribeiro AM. Spatial memory deficits and thalamic serotonergic metabolite change in thiamine deficient rats. Behav Brain Res 2010; 210:140-2. [PMID: 20153779 DOI: 10.1016/j.bbr.2010.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/07/2010] [Indexed: 11/17/2022]
Abstract
The purposes of the present study were to verify the effects of a severe thiamine deficiency episode on spatial cognitive aspects and thalamic serotonergic parameters. The animals were submitted to a severe thiamine deficiency treatment that was interrupted after the onset of the last neurological signs. The results obtained confirm previous findings about TD deficiency effects on cognitive function and, further show that this vitamin increases the thalamic serotonine metabolite, 5-hidroxyindolacetic acid (5-HIAA), level. In addition, the present data shed light on the importance of this metabolite in spatial cognitive function.
Collapse
Affiliation(s)
- Fabio Antônio Borges Vigil
- Departamento de Bioquímica e Imunologia, Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | | | | | | | | |
Collapse
|
19
|
Kogure T, Tatsumi T, Oku Y. Four cases of dysthymic disorder and general malaise successfully treated with traditional herbal (kampo) medicines: kamiuntanto. INTEGRATIVE MEDICINE INSIGHTS 2010; 5:1-6. [PMID: 21614161 PMCID: PMC3095185 DOI: 10.4137/imi.s4586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traditional herbal (Kampo) medicines have been used since ancient times to treat patients with mental disorders. In the present report, we describe four patients with dysthymia successfully treated with Kampo medicines: Kamiuntanto (KUT). These four patients fulfilled the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for dysthymic disorder with easy fatigability and sleeplessness, but did not fulfill the criteria for major depressive disorder. Treatment with KUT relieved depressive status, fatigue and sleeplessness in these patients. As a result, their QOL (quality of life) was considerably improved. KUT may be useful as an additional or alternative treatment for dysthymia, especially in the field of primary health care.
Collapse
Affiliation(s)
- Toshiaki Kogure
- Department of Integrated Japanese Oriental Medicine, School of Medicine, Gunma University, Japan
| | | | | |
Collapse
|
20
|
Carvalho PSM, Tillitt DE, Zajicek JL, Claunch RA, Honeyfield DC, Fitzsimons JD, Brown SB. Thiamine deficiency effects on the vision and foraging ability of lake trout fry. JOURNAL OF AQUATIC ANIMAL HEALTH 2009; 21:315-325. [PMID: 20218505 DOI: 10.1577/h08-025.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The exact causes of the historical recruitment failures of Great Lakes lake trout Salvelinus namaycush are unknown. Thiamine deficiency has been associated with neurological abnormalities in lake trout that lead to early mortality syndrome (EMS) in salmonine swim-up fry, and EMS-related mortality at the swim-up stage is a factor that contributes to the reproductive failure of lake trout populations in the Great Lakes. The potential for adverse effects of thiamine deficiency beyond the swim-up stage is unknown. We investigated the effects of low egg thiamine on behavioral functions in young, post-swim-up lake trout fry. The behavioral endpoints included visual acuity and prey capture rates in the same groups of lake trout fry from each family. Low-thiamine eggs were produced by feeding lake trout broodstock diets entailing thiaminase activity. The thiamine content of the spawned eggs ranged from 0.3 to 26.1 nmol/g. Both visual acuity and prey capture rates were affected by the thiamine content of the eggs. The visual acuity of lake trout was severely affected by low egg thiamine, mainly at thiamine concentrations below the threshold of 0.8 nmol/g but also at higher concentrations in field-collected eggs. Feeding was also reduced with low egg thiamine content. The reduction of prey capture rates was dramatic below 0.8 nmol/g and less dramatic, but still significant, in a portion of the families with egg thiamine concentrations of less than 5.0 nmol/g from both laboratory and field samples. Approximately one-third of the latter families had reduced feeding rates. Deficits in visual acuity may be part of the mechanism leading to decreased feeding rates in these fry. The effects of low egg thiamine on both of the behavioral endpoints studied increase the risk of low recruitment rates in Great Lakes lake trout populations.
Collapse
Affiliation(s)
- Paulo S M Carvalho
- Department of Zoology, Universidade Federal de Pernambuco, Avenida Profesor Moraes Rego S/N, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H. A traditional medicinal herbPaeonia suffruticosaand its active constituent 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteinsin vitroandin vivo. J Neurochem 2009; 109:1648-57. [DOI: 10.1111/j.1471-4159.2009.06069.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Roland JJ, Mark K, Vetreno RP, Savage LM. Increasing hippocampal acetylcholine levels enhance behavioral performance in an animal model of diencephalic amnesia. Brain Res 2008; 1234:116-27. [PMID: 18706897 PMCID: PMC2614338 DOI: 10.1016/j.brainres.2008.07.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/23/2008] [Accepted: 07/26/2008] [Indexed: 01/06/2023]
Abstract
Pyrithiamine-induced thiamine deficiency (PTD) was used to produce a rodent model of Wernicke-Korsakoff syndrome that results in acute neurological disturbances, thalamic lesions, and learning and memory impairments. There is also cholinergic septohippocampal dysfunction in the PTD model. Systemic (Experiment 1) and intrahippocampal (Experiment 2) injections of the acetylcholinesterase inhibitor physostigmine were administered to determine if increasing acetylcholine levels would eliminate the behavioral impairment produced by PTD. Prior to spontaneous alternation testing, rats received injections of either physostigmine (systemic=0.075 mg/kg; intrahippocampal=20, 40 ng/muL) or saline. In Experiment 2, intrahippocampal injections of physostigmine significantly enhanced alternation rates in the PTD-treated rats. In addition, although intrahippocampal infusions of 40 ng of physostigmine increased the available amount of ACh in both pair-fed (PF) and PTD rats, it did so to a greater extent in PF rats. The increase in ACh levels induced by the direct hippocampal application of physostigmine in the PTD model likely increased activation of the extended limbic system, which was dysfunctional, and therefore led to recovery of function on the spontaneous alternation task. In contrast, the lack of behavioral improvement by intrahippocampal physostigmine infusion in the PF rats, despite a greater rise in hippocampal ACh levels, supports the theory that there is an optimal range of cholinergic tone for optimal behavioral and hippocampal function.
Collapse
Affiliation(s)
- Jessica J. Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Katherine Mark
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| |
Collapse
|
23
|
Higashi K, Rakugi H, Yu H, Moriguchi A, Shintani T, Ogihara T. Effect of kihito extract granules on cognitive function in patients with Alzheimer's-type dementia. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00407.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Romanenko AV, Shepelev SE. Effect of B1 hypovitaminosis on the efficacy of neuromuscular transmission in the murine diaphragm. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Nakagawasai O, Murata A, Arai Y, Ohba A, Wakui K, Mitazaki S, Niijima F, Tan-No K, Tadano T. Enhanced head-twitch response to 5-HT-related agonists in thiamine-deficient mice. J Neural Transm (Vienna) 2007; 114:1003-10. [PMID: 17372673 DOI: 10.1007/s00702-007-0655-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 02/04/2007] [Indexed: 11/30/2022]
Abstract
While many studies suggest an involvement of brain serotonergic systems in neuro-psychiatric disorders such as schizophrenia and depression, their role in Wernicke-Korsakoff syndrome (WKS) remains unclear. Since dietary thiamine deficiency (TD) in mice is considered as a putative model of WKS, it was used in the present study to investigate the function of serotonergic neurons in this disorder. After 20 days of TD feeding, the intensity of tryptophan hydroxylase immunofluorescence was found to be significantly decreased in the dorsal and medial raphe nuclei. In addition, the head-twitch response (HTR) elicited by the intracerebroventricular administration of the 5-HT(2A) agonist 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) was significantly increased in TD versus control mice, whereas the injection of ketanserin, a 5-HT(2A) receptor antagonist, prevented this enhancement. A single injection of thiamine HCl on the 19th day of TD feeding did not reduce the enhanced DOI-induced HTR. On the other hand, the administration of d-fenfluramine, a 5-HT releaser, did not enhance the HTR in TD mice. Together, our results indicate that TD causes a super-sensitivity of 5-HT(2A) receptors by reducing presynaptic 5-HT synthesis derived from degenerating neurons projecting from the raphe nucleus.
Collapse
Affiliation(s)
- O Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakagawasai O, Yamadera F, Iwasaki K, Asao T, Tan-No K, Niijima F, Arai H, Tadano T. Preventive effect of kami-untan-to on performance in the forced swimming test in thiamine-deficient mice: Relationship to functions of catecholaminergic neurons. Behav Brain Res 2007; 177:315-21. [PMID: 17207867 DOI: 10.1016/j.bbr.2006.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022]
Abstract
The kampo (Japanese herbal) medicine "kami-untan-to" (KUT) has been used for a long time in the treatment of neuropsychiatric disorders. We have recently reported that mice put on a thiamine-deficient (TD) diet exhibit a depressive behavior and impairment in avoidance learning after 20 days, and that this impairment was reversed by the chronic administration of KUT. In the present study, we investigated the effect of KUT on the depressive behavior observed in TD mice by using the forced swimming test. Our results show that oral administration of KUT from the 1st day of TD feeding prevented the increased duration of immobility in TD mice. Administration of KUT from the 10th day of TD feeding also had a beneficial effect on depressive behavior. To examine the relationship between the potential effects of KUT on monoaminergic neuronal functions and the depressive behavior observed in TD mice, we measured the immunohistochemical distribution of tyrosine hydroxylase (TH) in the brain using microphotometry. The fluorescence intensity of TH decreased in the limbic cortex and brainstem in TD mice compared with pair-fed mice as the control group, while KUT treatment protected against these decreases. These results suggest that KUT treatment may prevent a sign of depressive behavior, the animal immobility time, induced by TD feeding through a mechanism that involves the decrease of TH in some brain areas of TD mice.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Savage LM, Roland J, Klintsova A. Selective septohippocampal - but not forebrain amygdalar - cholinergic dysfunction in diencephalic amnesia. Brain Res 2007; 1139:210-9. [PMID: 17289001 PMCID: PMC1868479 DOI: 10.1016/j.brainres.2006.12.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 12/31/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate diencephalic-limbic interactions. In-vivo acetylcholine (ACh) efflux, a marker of memory-related activation, was measured in the hippocampus and the amygdala of PTD-treated and pair-fed (PF) control rats while they were tested on a spontaneous alternation task. During behavioral testing, all animals displayed increases in ACh efflux in both the hippocampus and amygdala. However, during spontaneous alternation testing ACh efflux in the hippocampus and the alternation scores were higher in PF rats relative to PTD-treated rats. In contrast, ACh efflux in the amygdala was not suppressed in PTD treated rats, relative to PF rats, prior to or during behavioral testing. In addition, unbiased stereological estimates of the number of choline acetyltransferase (ChAT) immunopositive neurons in the medial septal/diagonal band (MS/DB) and nucleus basalis of Meynert (NBM) also reveal a selective cholinergic dysfunction: In PTD-treated rats a significant loss of ChAT-immunopositive cells was found only in the MS/DB, but not in the NBM. Significantly, these results demonstrate that thiamine deficiency causes selective cholinergic dysfunction in the septo-hippocampal pathway.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
28
|
Roland JJ, Savage LM. Blunted hippocampal, but not striatal, acetylcholine efflux parallels learning impairment in diencephalic-lesioned rats. Neurobiol Learn Mem 2007; 87:123-32. [PMID: 16978888 PMCID: PMC1892161 DOI: 10.1016/j.nlm.2006.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/28/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate the dynamic role of hippocampal and striatal acetylcholine (ACh) efflux across acquisition of a nonmatching-to-position (NMTP) T-maze task. Changes in ACh efflux were measured in rats at different time points in the acquisition curve of the task (early=day 1, middle=day 5, and late=day 10). Overall, the control group had higher accuracy scores than the PTD group in the latter sessions of NMTP training. During the three microdialysis sampling points, all animals displayed significant increases in ACh efflux in both hippocampus and striatum, while performing the task. However, on day 10, the PTD group showed a significant behavioral impairment that paralleled their blunted hippocampal--but not striatal--ACh efflux during maze training. The results support selective diencephalic-hippocampal dysfunction in the PTD model. This diencephalic-hippocampal interaction appears to be critical for successful episodic and spatial learning/memory.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | | |
Collapse
|
29
|
Nakagawasai O, Yamadera F, Sato S, Taniguchi R, Hiraga H, Arai Y, Murakami H, Mawatari K, Niijima F, Tan-No K, Tadano T. Alterations in cognitive function in prepubertal mice with protein malnutrition: Relationship to changes in choline acetyltransferase. Behav Brain Res 2006; 167:111-7. [PMID: 16242790 DOI: 10.1016/j.bbr.2005.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 08/22/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
We have found that protein malnutrition (PM) causes a significant impairment of memory-related behavior on the 15th and 20th day after the start of PM (5% casein) feeding in prepubertal mice but not in postpubertal mice, as measured by a passive-avoidance task. This impairment was almost completely reversed by merely switching to a standard protein (20% casein) diet on the 10th day after the start of PM. However, the reversal was not observed when the switching to a standard protein regimen was done on the 15th day of the PM diet. Interestingly, the impairment of memory-related behavior on the 20th day was improved by the chronic administration of physostigmine (0.1 mg/kg/day x last 10 days, i.p.), a cholinesterase inhibitor. To correlate brain cholinergic neuron function with the memory-related behavior impairment induced by PM, microphotometry was used to determine the histological distribution of the imunofluorescence intensity for choline acetyltransferase (ChAT), a functional marker of presynapse in cholinergic neurons. The change in the intensity of fluorescence indicated that ChAT protein was decreased in the hippocampus (CA1, CA3 and dentate gyrus) on the 20th day after PM feeding in comparison with controls. These results suggest the possibility that the memory-related behavior deficits observed in prepubertal mice with PM are caused by a dysfunction of the cholinergic neurons in the hippocampus.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, Tomita N, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Ohizumi Y, Arai H. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's β-amyloid proteins. J Neurosci Res 2006; 84:427-33. [PMID: 16676329 DOI: 10.1002/jnr.20891] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Because the deposition of beta-amyloid protein (Abeta) is a consistent pathological hallmark of Alzheimer's disease (AD) brains, inhibition of Abeta generation, prevention of Abeta fibril formation, or destabilization of preformed Abeta fibrils would be attractive therapeutic strategies for the treatment of AD. We examined the effects of several medicinal herbs used in traditional Chinese medical formulae on the formation and destabilization of Abeta fibrils by using the thioflavin T binding assay, atomic force microscopic imaging, and electrophoresis. Our study demonstrates that several of these herbs have potent inhibitory effects on fibril formation of both Abeta(1-40) and Abeta(1-42) in concentration-dependent manners; in particular, Uncaria rhynchophylla inhibited Abeta aggregation most intensively. Significant destabilization of preformed Abeta(1-40) and Abeta(1-42) fibrils was also induced by Uncaria rhynchophylla as well as some other herb extracts. Three-dimensional HPLC analysis indicated that the water extract of this herb contains several different chemical compounds, including oxindole and indol alkaloids, which have been regarded as neuroprotective. Our results suggest that Uncaria rhynchophylla has remarkably inhibitory effects on the regulation of Abeta fibrils, and we conclude that this medicinal herb could have the potency to be a novel therapeutic agent to prevent and/or cure AD.
Collapse
Affiliation(s)
- Hironori Fujiwara
- Department of Geriatric and Complementary Medicine, Center for Asian Traditional Medicine Research, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iwasaki K, Seki T, Arai H, Sasaki H. Combinational Western and oriental medicine therapies for geriatric syndrome. Geriatr Gerontol Int 2005. [DOI: 10.1111/j.1447-0594.2005.00306.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Anekonda TS, Reddy PH. Can herbs provide a new generation of drugs for treating Alzheimer's disease? ACTA ACUST UNITED AC 2005; 50:361-76. [PMID: 16263176 DOI: 10.1016/j.brainresrev.2005.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/09/2005] [Accepted: 09/16/2005] [Indexed: 01/13/2023]
Abstract
The overall aim of this review is to discuss cellular mechanisms at work in the progression of AD and current therapeutic strategies for treating AD, with a focus on the potential efficacy of herbal treatments. Recent advances in molecular, cellular, and animal model studies have revealed that formation of the 4-kDa amyloid beta peptide is a key factor in the development and progression of AD. Several cellular changes have been identified that are related to amyloid beta plaques and neurofibrillary tangles found in the autopsied brains of AD patients and in AD animal models. Several therapeutic strategies have been developed to treat AD, including anti-inflammatory, anti-oxidant, and anti-amyloid approaches. Recently, herbal treatments have been tested in animal and cellular models of AD and in clinical trials with AD subjects. In AD animal models and cell models, herbal extracts appear to have fewer adverse effects than beneficial effects on A beta and cognitive functions. These extracts have multi-functional properties (pro-cholinergic, anti-oxidant, anti-amyloid, and anti-inflammatory), and their use in the treatment of AD patients looks promising. The chemical compositions of herbs and their potential for alleviating or reducing symptoms of AD or for affecting the disease mechanism need to be further studied.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
33
|
Nakagawasai O. Behavioral and neurochemical alterations following thiamine deficiency in rodents: relationship to functions of cholinergic neurons. YAKUGAKU ZASSHI 2005; 125:549-54. [PMID: 15997211 DOI: 10.1248/yakushi.125.549] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Memory deficits are induced during the late stage (20-25 days) of thiamine-deficient (TD) feeding. In this review, the role of cholinergic neurons on the memory deficit induced by TD feeding are summarized. Although memory deficit cannot be suppressed by an injection of thiamine once it appears, such impairment was found to be protected by early treatment with thiamine during TD feeding. Administration of muscarinic M(1) agonist McN-A-343 reversed the memory deficit observed in TD mice, although the muscarinic M(2) antagonist methoctramine did not. The "kampo" (traditional herbal) medicine, "kami-untan-to" (KUT), protected against the memory deficit observed in TD mice. Choline acetyltransferase (ChAT) fluorescence intensity, a marker of presynapse of cholinergic neurons, was decreased in the cortex and hippocampus at an early stage (14th day) of TD, and it was decreased in a wide range of brain areas at a late stage (25th day) of TD. Early KUT treatment inhibited the reduction of ChAT in the hippocampus of TD mice. These findings suggested that the memory deficit may be caused by a reduction in the cholinergic function at an early stage of TD, and that the activation of cholinergic neurons may play an important role in the improvement of TD-induced memory deficit.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan.
| |
Collapse
|
34
|
Oh MS, Huh Y, Bae H, Ahn DK, Park SK. The multi-herbal formula Guibi-tang enhances memory and increases cell proliferation in the rat hippocampus. Neurosci Lett 2005; 379:205-8. [PMID: 15843064 DOI: 10.1016/j.neulet.2004.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/25/2004] [Accepted: 12/28/2004] [Indexed: 11/19/2022]
Abstract
Guibi-tang (GBT) is a multi-herbal medicinal formula that has been used to treat amnesia in the traditional Korean medicine system for hundreds of years. In this study, we investigated the effects of GBT on learning and memory function in Wistar rats by using the foot shock passive avoidance test. In addition, cell proliferation was examined using 5-bromo-2-deoxyuridine (BrdU) uptake and immunostaining in the dentate gyrus of the rat hippocampus after oral administration of GBT. In the passive avoidance test, the retention time of the GBT-treated group was significantly longer (almost 2.5-fold) than that of the control group. The number of BrdU-immunoreactive cells in the dentate gyrus was significantly higher in the GBT-treated group (almost twofold) than in the control group. These results suggest that administration of GBT to rats not only improves learning and memory but also increases the proliferation of cells in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- Myung Sook Oh
- Department of Prescriptionology, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|