1
|
Olsson Y, Lidö H, Ademar K, Cadeddu D, Ericson M, Söderpalm B. The GlyT1-inhibitor Org 24598 facilitates the alcohol deprivation abolishing and dopamine elevating effects of bupropion + varenicline in rats. J Neural Transm (Vienna) 2024; 131:95-106. [PMID: 37773223 PMCID: PMC10769923 DOI: 10.1007/s00702-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Alcohol Use Disorder (AUD) is a relapsing brain disorder that involves perturbations of brain dopamine (DA) systems, and combined treatment with varenicline + bupropion produces additive effects on accumbal DA output and abolishes the alcohol deprivation effect (ADE) in rats. Also, direct and indirect glycine receptor (GlyR) agonists raise basal DA, attenuate alcohol-induced DA release in the nucleus Accumbens (nAc) and reduce alcohol consumption in rats. This study in rats examines whether the GlyT1-inhibitor Org 24598, an indirect GlyR agonist, enhances the ADE-reducing and DA elevating action of the combined administration of varenicline + bupropion in lower doses than previously applied. Effects on voluntary alcohol consumption, the ADE and extracellular levels of glycine and DA in nAc were examined following treatment with Org 24598 6 and 9 mg/kg i.p., bupropion 3.75 mg/kg i.p. and varenicline 1.5 mg/kg s.c., in monotherapy or combined, using a two-bottle, free-choice alcohol consumption paradigm with an ADE paradigm, and in vivo microdialysis in male Wistar rats. Notably, all treatment regimens appeared to abolish the ADE but only the effect produced by the triple combination (Org24598 + varenicline + bupropion) was significant compared to vehicle. Hence, addition of Org 24598 may enhance the ADE-reducing action of varenicline + bupropion and appears to allow for a dose reduction of bupropion. Treatment with Org 24598 raised accumbal glycine levels but did not significantly alter DA output in monotherapy. Varenicline + bupropion produced a substantial elevation in accumbal DA output that was slightly enhanced following addition of Org 24598. Conceivably, the blockade of the ADE is achieved by the triple combination enhancing accumbal DA transmission in complementary ways, thereby alleviating a hypothesized hypodopaminergia and negative reinforcement to drink. Ultimately, combining an indirect or direct GlyR agonist with varenicline + bupropion may constitute a new pharmacological treatment principle for AUD, although further refinement in dosing and evaluation of other glycinergic compounds are warranted.
Collapse
Affiliation(s)
- Yasmin Olsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden.
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Helga Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Davide Cadeddu
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Wang J, Ding Z, Xu W, He L, Huang J, Zhang C, Guo Q, Zou W. Botulinum toxin type A counteracts neuropathic pain by countering the increase of GlyT2 expression in the spinal cord of CCI rats. Brain Res 2022; 1796:148095. [PMID: 36165874 DOI: 10.1016/j.brainres.2022.148095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022]
Abstract
Botulinum toxin type A (BoNT/A) is a potent toxin, acts by cleaving synaptosome-associated-protein-25 (SNAP-25) to regulate the release of the neural transmitter and shows analgesic effect in neuropathic pain. However, the mechanisms of BoNT/A actions involved in nociceptions remain unclear. Glycine transporter 2 (GlyT2) is an isoform of glycine transporters, which plays an important role in the regulation of glycinergic neurotransmission. Inhibition of GlyTs could decrease pain sensation in neuropathic pain, the role of GlyT2 in the analgesic effect of BoNT/A has not been studied yet. In our present study, we demonstrated that the protein levels of GlyT2 and SNAP-25 were upregulated in the spinal cord after the development of chronic constriction injury (CCI)-induced neuropathic pain. Intraplantar application of BoNT/A (20 U/kg) attenuated mechanical allodynia induced by CCI and downregulated GlyT2 expression in the spinal cord. The application of BoNT/A s also decreased the expression of GlyT2 in pheochromocytoma (PC12) cells. Moreover, intrathecal application of lentivirus-mediated GlyT2 reversed the antinociceptive effect of BoNT/A in CCI rats. These findings indicate that GlyT2 contributes to the antinociceptive effect of BoNT/A and suggest a novel mechanism underlying BoNT/A's antinociception action.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, The First Hospital of Changsha, Changsha, Hunan 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
4
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
5
|
Bai F, Ma Y, Guo H, Li Y, Xu F, Zhang M, Dong H, Deng J, Xiong L. Spinal Cord Glycine Transporter 2 Mediates Bilateral ST35 Acupoints Sensitization in Rats with Knee Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7493286. [PMID: 30881475 PMCID: PMC6383421 DOI: 10.1155/2019/7493286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/16/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
The concept of "acupoint sensitization" refers to the functional status of acupoint switches from silent to active under pathological conditions. In clinic, acupoint sensitization provides important guidance for acupoints selection in different diseases. However, the mechanism behind this phenomenon remains unclear. We generated a model of knee osteoarthritis (KOA) by intra-articular injection of monosodium iodoacetate (MIA) into the left knee of rats. The paw withdrawal mechanical threshold (PWMT) and the total number of mast cells as well as mast cell degranulation rate (MCDR) of acupoint tissue were used to test whether the acupoints were sensitized. The results showed that KOA resulted in a reduced mechanical threshold and elevated total number of mast cell as well as mast cell degranulation rate at bilateral ST35 (Dubi) but not GB37 (Guangming) or nonacupoint area. The acupoint sensitization was accompanied by upregulation of glycine transporter 2 (GlyT2) and reduction of extracellular glycine levels in the bilateral dorsal horns of the spinal cord at L3-5. Selective inhibition of GlyT2 or intrathecal administration of glycine attenuated ST35 acupoint sensitization. The sensitization of bilateral ST35 was blocked after intraspinal GlyT2 short hairpin (sh) RNA (GlyT2-shRNA) microinjection to specifically downregulate GlyT2 expression in the left side (ipsilateral) L3-5 spinal cord dorsal horn before MIA injection. Moreover, electroacupuncture (EA) stimulation at ST35 ameliorated articular pathological lesions and improved KOA-related pain behaviors. GlyT2-shRNA injection reversed EA-induced pain relief but not EA-induced reduction of joint lesions. Overall, this study demonstrated that spinal GlyT2, especially elevated GlyT2 expression in the ipsilateral dorsal horn of the spinal cord, is a crucial mediator of ST35 acupoint sensitization in KOA rats.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yongyuan Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yuheng Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ming Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
6
|
Zafra F, Ibáñez I, Bartolomé-Martín D, Piniella D, Arribas-Blázquez M, Giménez C. Glycine Transporters and Its Coupling with NMDA Receptors. ADVANCES IN NEUROBIOLOGY 2018; 16:55-83. [PMID: 28828606 DOI: 10.1007/978-3-319-55769-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2. While GlyT2 and Asc-1 are neuronal proteins, GlyT1 and SNAT5 are mainly astrocytic, although neuronal forms of GlyT1 also exist. GlyT1 has attracted considerable interest from the medical community and the pharmaceutical industry since compelling evidence indicates a clear association with the functioning of NMDARs, whose activity is decreased in various psychiatric illnesses. By controlling extracellular glycine, transporter inhibitors might potentiate the activity of NMDARs without activating excitotoxic processes. Physiologically, GlyT1 is a central actor in the cross talk between glutamatergic, glycinergic, dopaminergic, and probably other neurotransmitter systems. Many of these relationships begin to be unraveled by studies performed in recent years using genetic and pharmacological models. These studies are also clarifying the interactions between glycine, glycine transporters, and other co-agonists of the glycine site of NMDARs like D-serine. These findings are also relevant to understand the pathophysiology of devastating diseases like schizophrenia, depression, anxiety, epilepsy, stroke, and chronic pain.
Collapse
Affiliation(s)
- Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Armbruster A, Neumann E, Kötter V, Hermanns H, Werdehausen R, Eulenburg V. The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain. Front Mol Neurosci 2018; 10:438. [PMID: 29375301 PMCID: PMC5767717 DOI: 10.3389/fnmol.2017.00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition. Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC. Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid. Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anja Armbruster
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elena Neumann
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Valentin Kötter
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Academic Medical Center, Amsterdam, Netherlands
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies. Neuronal Signal 2016; 1:NS20160009. [PMID: 32714574 PMCID: PMC7377260 DOI: 10.1042/ns20160009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.
Collapse
|
9
|
Omori Y, Nakajima M, Nishimura K, Takahashi E, Arai T, Akahira M, Suzuki T, Kainoh M. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain. J Pharmacol Sci 2015; 127:377-81. [PMID: 25837937 DOI: 10.1016/j.jphs.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 11/15/2022] Open
Abstract
This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2) in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.
Collapse
Affiliation(s)
- Yu Omori
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan.
| | - Mayumi Nakajima
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Kazumi Nishimura
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Eiki Takahashi
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Tadamasa Arai
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Masato Akahira
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Tomohiko Suzuki
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Mie Kainoh
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| |
Collapse
|
10
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
11
|
Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur Urol 2012; 62:704-12. [PMID: 22341128 DOI: 10.1016/j.eururo.2012.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/24/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Glycine is a major inhibitory neurotransmitter in the spinal cord, the concentration of which is regulated by two types of glycine transporters (GlyTs): GlyT1 and GlyT2. We hypothesized that the inhibition of GlyTs could ameliorate bladder overactivity and/or pain sensation in the lower urinary tract. OBJECTIVE Investigate the effects of GlyT inhibitors on bladder overactivity and pain behavior in rats. DESIGN, SETTING, AND PARTICIPANTS Cystometry was performed under urethane anesthesia in cyclophosphamide (CYP)-treated rats. In behavioral studies using conscious rats, nociceptive responses were induced by intravesical administration of resiniferatoxin (3μM). Selective GlyT1 or GlyT2 inhibitors were administered intrathecally to evaluate their effects. MEASUREMENTS Cystometric parameters, nociceptive behaviors (licking and freezing), and messenger RNA (mRNA) levels of GlyTs and glycine receptor (GlyR) subunits in the dorsal spinal cord (L6-S1) were measured. RESULTS AND LIMITATIONS During cystometry in CYP-treated rats, significant increases in intercontraction interval and micturition pressure threshold were elicited by ALX-1393, a selective GlyT2 inhibitor, but not by sarcosine, a GlyT1 inhibitor. These effects were completely reversed by strychnine, a GlyR antagonist. ALX-1393 also significantly suppressed nociceptive behaviors in a dose-dependent manner. In sham rats, GlyT2 mRNA was expressed at a much higher level (23-fold) in the dorsal spinal cord than GlyT1 mRNA. In CYP-treated rats, mRNA levels of GlyT2 and the GlyR α1 and β subunits were significantly reduced. CONCLUSIONS These results indicate that GlyT2 plays a major role in the clearance of extracellular glycine in the spinal cord and that GlyT2 inhibition leads to amelioration of CYP-induced bladder overactivity and pain behavior. GlyT2 may be a novel therapeutic target for the treatment of overactive bladder and/or bladder hypersensitive disorders such as bladder pain syndrome/interstitial cystitis.
Collapse
|
12
|
Differential effect of the benzophenanthridine alkaloids sanguinarine and chelerythrine on glycine transporters. Neurochem Int 2011; 58:641-7. [DOI: 10.1016/j.neuint.2011.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 11/30/2022]
|
13
|
Amino-terminal isoforms of the human glycine transporter GlyT1 exhibit similar pharmacology. Brain Res 2011; 1374:1-7. [DOI: 10.1016/j.brainres.2010.11.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/04/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022]
|
14
|
Abstract
NMDA receptors are glutamate-activated ion-channels involved in many essential brain functions including learning, memory, cognition, and behavior. Given this broad range of function it is not surprising that the initial attempts to correct NMDA receptor-mediated pathologies with en-mass receptor blockade were derailed by unacceptable side effects. Recent successes with milder or more targeted pharmaceuticals and increasing knowledge of how these receptors operate offer new incentives for rational development of effective NMDA receptor-targeted therapies. In this article we review evidence that l-alanine, a glycine-site partial agonist and pregnanolone sulfate, a use-dependent allosteric inhibitor, while attenuating NMDA receptor activity to similar levels elicit remarkably dissimilar functional outcomes. We suggest that detailed understanding of NMDA receptor activation mechanisms and of structural correlates of function will help better match modulator with function and neurological condition and may unleash the yet untapped potential of NMDA receptor pharmaceutics.
Collapse
|
15
|
Whitehead KJ, Smith CGS, Delaney SA, Curnow SJ, Salmon M, Hughes JP, Chessell IP. Dynamic regulation of spinal pro-inflammatory cytokine release in the rat in vivo following peripheral nerve injury. Brain Behav Immun 2010; 24:569-76. [PMID: 20035858 DOI: 10.1016/j.bbi.2009.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/02/2023] Open
Abstract
Spinal release of cytokines may play a critical role in the maladapted nociceptive signaling underlying chronic pain states. In order to investigate this biology, we have developed a novel 'high flux' intrathecal microdialysis approach in combination with multiplex bead-based immunoassay technology to concurrently monitor the spinal release of interleukin (IL)-1beta, IL-6 and tumour necrosis factor (TNF)alpha in rats with unilateral sciatic nerve chronic constriction injury (CCI). Intrathecal microdialysis was performed under isoflurane/N(2)O anaesthesia in rats with confirmed mechanical hypersensitivity. In a first study, C-fiber strength electrical stimulation of the operated nerve in neuropathic rats was found to evoke a dramatic increase in IL-1beta efflux ( approximately 15-fold) that was significantly greater than that observed in the sham-operated group. Spinal IL-6 efflux was also responsive to primary afferent stimulation, whereas TNFalpha was not. In a second study, treatment with the glial inhibitor propentofylline for 7days normalized CCI-induced mechanical hypersensitivity. In the same animals, this treatment also significantly reduced intrathecal IL-1beta, IL-6 and TNFalpha and prevented afferent stimulation-evoked cytokine release of both IL-1beta and IL-6. These results provide support for glia as the source of the majority of intrathecal IL-1beta, IL-6 and TNFalpha that accompanies mechanical hypersensitivity in the CCI rat. Moreover, our studies demonstrate the ability of a neurone-glia signaling mechanism to dynamically modulate this release and support a role of spinal IL-1beta in the phasic transmission of abnormal pain signals.
Collapse
Affiliation(s)
- K J Whitehead
- Pain Signalling Group, Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nishikawa Y, Sasaki A, Kuraishi Y. Blockade of glycine transporter (GlyT) 2, but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain. J Pharmacol Sci 2010; 112:352-60. [PMID: 20173309 DOI: 10.1254/jphs.09351fp] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter in the spinal dorsal horn and its extracellular concentration is regulated by glial glycine transporter (GlyT) 1 and neuronal GlyT2. This study was conducted to elucidate the effects of intrathecal injections of GlyT1 and GlyT2 inhibitors on two distinct types of mechanical allodynia, dynamic and static allodynia, in mice with herpetic or postherpetic pain. The GlyT2 inhibitor ALX1393, but not the GlyT1 inhibitor sarcosine, suppressed dynamic and static allodynia at the herpetic and postherpetic stages. Intrathecal ALX1393 suppressed dynamic allodynia induced by intrathecal strychnine and N-methyl-D-aspartate (NMDA). Intrathecal sarcosine suppressed dynamic allodynia induced by intrathecal strychnine, but not NMDA. Expression level of GlyT1, but not GlyT2, mRNA in the lumbar dorsal horn was decreased at the herpetic and postherpetic stages. Glycine receptor alpha1-subunit mRNA was decreased in the lumbar dorsal horn at the herpetic, but not postherpetic stage, without alteration in alpha3-subunit mRNA. The results suggest that GlyT2 is a potential target for treatment of dynamic and static allodynia in patients with herpes zoster and postherpetic neuralgia. The lack of efficacy of GlyT1 inhibitor may be explained by activation of NMDA receptors and the down-regulation of GlyT1 in the lumbar dorsal horn.
Collapse
Affiliation(s)
- Yukitoshi Nishikawa
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | |
Collapse
|
17
|
Haranishi Y, Hara K, Terada T, Nakamura S, Sata T. The antinociceptive effect of intrathecal administration of glycine transporter-2 inhibitor ALX1393 in a rat acute pain model. Anesth Analg 2010; 110:615-21. [PMID: 20081141 DOI: 10.1213/ane.0b013e3181c7ebbb] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glycinergic neurons in the spinal dorsal horn have been implicated in the inhibition of spinal pain processing in peripheral inflammation and chronic pain states. Neuronal isoform glycine transporter-2 (GlyT2) reuptakes presynaptically released glycine and regulates the glycinergic neurotransmission. In this study, we examined whether a selective GlyT2 inhibitor, ALX1393, elicits an antinociceptive effect in a rat acute pain model. METHODS Male Sprague-Dawley rats were implanted with a catheter intrathecally. The effects of intrathecal administration of ALX1393 (4, 20, or 40 microg) on thermal, mechanical, and chemical nociception were evaluated by tail flick, hot plate, paw pressure, and formalin tests. Furthermore, to explore whether ALX1393 affects motor function, a rotarod test was performed. RESULTS ALX1393 exhibited antinociceptive effects on the thermal and mechanical stimulations in a dose-dependent manner. The maximal effect of ALX1393 was observed at 15 min after administration, and a significant effect lasted for about 60 min. These antinociceptive effects were reversed completely by strychnine injected immediately after the administration of ALX1393. In the formalin test, ALX1393 inhibited pain behaviors in a dose-dependent manner, both in the early and late phases, although the influence was greater in the late phase. In contrast to antinociceptive action, ALX1393 did not affect motor function up to 40 microg. CONCLUSIONS This study demonstrates the antinociceptive action of ALX1393 on acute pain. These findings suggest that the inhibitory neurotransmitter transporters are promising targets for the treatment of acute pain and that the selective inhibitor of GlyT2 could be a novel therapeutic drug.
Collapse
Affiliation(s)
- Yasunori Haranishi
- Department of Anesthesiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
18
|
Eulenburg V, Gomeza J. Neurotransmitter transporters expressed in glial cells as regulators of synapse function. ACTA ACUST UNITED AC 2010; 63:103-12. [PMID: 20097227 DOI: 10.1016/j.brainresrev.2010.01.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/16/2022]
Abstract
Synaptic neurotransmission at high temporal and spatial resolutions requires efficient removal and/or inactivation of presynaptically released transmitter to prevent spatial spreading of transmitter by diffusion and allow for fast termination of the postsynaptic response. This action must be carefully regulated to result in the fine tuning of inhibitory and excitatory neurotransmission, necessary for the proper processing of information in the central nervous system. At many synapses, high-affinity neurotransmitter transporters are responsible for transmitter deactivation by removing it from the synaptic cleft. The most prevailing neurotransmitters, glutamate, which mediates excitatory neurotransmission, as well as GABA and glycine, which act as inhibitory neurotransmitters, use these uptake systems. Neurotransmitter transporters have been found in both neuronal and glial cells, thus suggesting high cooperativity between these cell types in the control of extracellular transmitter concentrations. The generation and analysis of animals carrying targeted disruptions of transporter genes together with the use of selective inhibitors have allowed examining the contribution of individual transporter subtypes to synaptic transmission. This revealed the predominant role of glial expressed transporters in maintaining low extrasynaptic neurotransmitter levels. Additionally, transport activity has been shown to be actively regulated on both transcriptional and post-translational levels, which has important implications for synapse function under physiological and pathophysiological conditions. The analysis of these mechanisms will enhance not only our understanding of synapse function but will reveal new therapeutic strategies for the treatment of human neurological diseases.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Neurochemistry, Max-Planck Institute for Brain Research, 60529 Frankfurt, Germany.
| | | |
Collapse
|
19
|
Balakrishnan V, Kuo SP, Roberts PD, Trussell LO. Slow glycinergic transmission mediated by transmitter pooling. Nat Neurosci 2009; 12:286-94. [PMID: 19198604 PMCID: PMC2664096 DOI: 10.1038/nn.2265] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/19/2008] [Indexed: 11/17/2022]
Abstract
Most fast-acting neurotransmitters are rapidly cleared from synaptic regions. This feature isolates synaptic sites, rendering the timecourse of synaptic responses independent of the number of active synapses. We describe a striking exception at glycinergic synapses on granule cells of the rat dorsal cochlear nucleus. The duration of IPSCs was dependent on the number of presynaptic axons that were stimulated and on the number of vesicles released from each axon. Increasing stimulus number or frequency, or blocking glycine uptake, slowed synaptic decays, while a low-affinity competitive antagonist of GlyRs accelerated IPSC decay. These effects could be explained by unique features of GlyRs when activated by pooling of glycine across synapses. Functionally, increasing the number of IPSPs markedly lengthened the period of spike inhibition following cessation of presynaptic stimulation. Thus, temporal properties of inhibition can be controlled by activity levels in multiple presynaptic cells or by adjusting release probability at individual synapses.
Collapse
Affiliation(s)
- Veeramuthu Balakrishnan
- Oregon Hearing Research Center, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
20
|
Gilfillan R, Kerr J, Walker G, Wishart G. Glycine Transporters and Their Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1007/7355_2009_030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
21
|
|
22
|
The phosphatidylinositol 3-kinase inhibitor LY 294002 inhibits GlyT1-mediated glycine uptake. Brain Res 2008; 1227:42-51. [DOI: 10.1016/j.brainres.2008.06.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/16/2008] [Accepted: 06/15/2008] [Indexed: 11/22/2022]
|
23
|
Morita K, Motoyama N, Kitayama T, Morioka N, Kifune K, Dohi T. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J Pharmacol Exp Ther 2008; 326:633-45. [PMID: 18448867 DOI: 10.1124/jpet.108.136267] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropathic pain is refractory against conventional analgesics, and thus novel medicaments are desired for the treatment. Glycinergic neurons are localized in specific brain regions, including the spinal cord, where they play an important role in the regulation of pain signal transduction. Glycine transporter (GlyT)1, present in glial cells, and GlyT2, located in neurons, play roles in modulating glycinergic neurotransmission by clearing synaptically released glycine or supplying glycine to the neurons and thus could modify pain signal transmission in the spinal cord. In this study, we demonstrated that i.v. or intrathecal administration of GlyT1 inhibitors, cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl methyl)amino methylcarboxylic acid (ORG25935) or sarcosine, and GlyT2 inhibitors, 4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)-methyl]benzamide (ORG25543) and (O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-L-serine) (ALX1393), or knockdown of spinal GlyTs by small interfering RNA of GlyTs mRNA produced a profound antiallodynia effect in a partial peripheral nerve ligation model and other neuropathic pain models in mice. The antiallodynia effect is mediated through spinal glycine receptor alpha3. These results established GlyTs as the target molecules for the development of medicaments for neuropathic pain. However, these manipulations to stimulate glycinergic neuronal activity were without effect during the 4 days after nerve injury, whereas manipulations to inhibit glycinergic neuronal activity protected against the development of allodynia in this phase. The results implied that the timing of medication with their inhibitors should be considered, because glycinergic control of pain was reversed in the critical period of 3 to 4 days after surgery. This may also provide important information for understanding the underlying molecular mechanisms of the development of neuropathic pain.
Collapse
Affiliation(s)
- Katsuya Morita
- Department of Pharmacology, Division of Integrated Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Nordin C, Gupta RC, Sjödin I. Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology 2008; 56:152-8. [PMID: 18259089 DOI: 10.1159/000115782] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 11/16/2007] [Indexed: 11/19/2022]
Abstract
Amino acids, such as valine, isoleucine and leucine compete with tyrosine and tryptophan for transport into the brain and might thus affect the central serotonin and catecholamine patterns. Furthermore, the excitatory amino acids glutamic acid, aspartic acid and glycine are known to act on the N-methyl-D-aspartate receptor, which is part of the reward system. Based on these facts, we have explored the role of cerebrospinal fluid (CSF) amino acids in pathological gambling. Concentrations of amino acids were determined in CSF obtained from one female and 11 pathological male gamblers and 11 healthy male controls. In an ANCOVA with best subset regression, pathological male gamblers had higher CSF levels of the excitatory glutamic and aspartic acids, as well as of phenylalanine, isoleucine, citrulline and glycine. A negative contribution of glycine in interaction with the neuraxis distance might mirror a reduced spinal supply or an altered elimination of glycine in pathological gamblers. A decreasing CSF gradient from the first (0-6 ml) to the third (13-18 ml) CSF fraction was found for glutamic acid, glycine, leucine, isoleucine, lysine, ornithine and glutamine in both pathological gamblers and healthy controls. A decreasing gradient was found, however, for aspartic acid and phenylalanine in pathological male gamblers. The altered pattern of CSF amino acids in pathological gamblers might exert an influence on central monoamines as well as on N-methyl-D-aspartate receptor function.
Collapse
Affiliation(s)
- Conny Nordin
- Psychiatry Section, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
25
|
Bachmann C. Interpretation of plasma amino acids in the follow-up of patients: the impact of compartmentation. J Inherit Metab Dis 2008; 31:7-20. [PMID: 18236169 DOI: 10.1007/s10545-007-0772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/17/2022]
Abstract
Results of plasma or urinary amino acids are used for suspicion, confirmation or exclusion of diagnosis, monitoring of treatment, prevention and prognosis in inborn errors of amino acid metabolism. The concentrations in plasma or whole blood do not necessarily reflect the relevant metabolite concentrations in organs such as the brain or in cell compartments; this is especially the case in disorders that are not solely expressed in liver and/or in those which also affect nonessential amino acids. Basic biochemical knowledge has added much to the understanding of zonation and compartmentation of expressed proteins and metabolites in organs, cells and cell organelles. In this paper, selected old and new biochemical findings in PKU, urea cycle disorders and nonketotic hyperglycinaemia are reviewed; the aim is to show that integrating the knowledge gained in the last decades on enzymes and transporters related to amino acid metabolism allows a more extensive interpretation of biochemical results obtained for diagnosis and follow-up of patients and may help to pose new questions and to avoid pitfalls. The analysis and interpretation of amino acid measurements in physiological fluids should not be restricted to a few amino acids but should encompass the whole quantitative profile and include other pathophysiological markers. This is important if the patient appears not to respond as expected to treatment and is needed when investigating new therapies. We suggest that amino acid imbalance in the relevant compartments caused by over-zealous or protocol-driven treatment that is not adjusted to the individual patient's needs may prolong catabolism and must be corrected.
Collapse
Affiliation(s)
- Claude Bachmann
- Clinical Chemistry, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Smith C, Bowery N, Whitehead K. GABA transporter type 1 (GAT-1) uptake inhibition reduces stimulated aspartate and glutamate release in the dorsal spinal cord in vivo via different GABAergic mechanisms. Neuropharmacology 2007; 53:975-81. [DOI: 10.1016/j.neuropharm.2007.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/19/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
27
|
Morita K, Motoyama N, Kitayama T, Morioka N, Dohi T. Antinociceptive effects of glycine transporter inhibitors in neuropathic pain models in mice. Nihon Yakurigaku Zasshi 2007; 130:458-63. [PMID: 18079595 DOI: 10.1254/fpj.130.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Richards DA, Silva MA, Devall AJ. Electrochemical detection of free 3-nitrotyrosine: Application to microdialysis studies. Anal Biochem 2006; 351:77-83. [PMID: 16457771 DOI: 10.1016/j.ab.2006.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/16/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
3-Nitrotyrosine (3-NT) is formed by the reaction of peroxynitrite with either free or protein-bound tyrosine residues and has been proposed as a biomarker of oxidative stress caused by reactive nitrogen species. This study describes the development of an HPLC electrochemical detection assay for free 3-NT capable of measuring this metabolite at the very low (nanomolar) levels encountered physiologically. We employed a dual-cell coulometric approach in which 3-NT is first reduced at an upstream cell to 3-aminotyrosine, which itself is then oxidized at the downstream cell. The method was shown to be linear over the range of 1-500 nM (r = 0.999), with a detection limit (signal/noise ratio of 3) of 0.5 nM (25 fmol on column). Ten consecutive injections of 2 and 20 nM 3-NT standards produced coefficients of variation of 5.88 and 1.87%, respectively. Validation of the identity of the 3-NT peak was confirmed by coelution with authentic standards and by the in vitro production of 3-NT by incubation of 3-morpholinylsydnoneimine (SIN-1, 100 microM), a molecule releasing nitric oxide and superoxide in solution at a pH of 7.0 or higher with tyrosine (10 microM). Using this method, 3-NT was detected in human liver microdialysate (levels up to 2.6 nM), although levels in rat spinal cord dialysate were below the limit of detection.
Collapse
Affiliation(s)
- Douglas A Richards
- Department of Pharmacology, Division of Neuroscience, Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
29
|
Guo JD, Wang H, Zhang YQ, Zhao ZQ. Distinct effects of D-serine on spinal nociceptive responses in normal and carrageenan-injected rats. Biochem Biophys Res Commun 2006; 343:401-6. [PMID: 16546123 DOI: 10.1016/j.bbrc.2006.02.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/25/2006] [Indexed: 11/30/2022]
Abstract
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Institute of Neurobiology, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
30
|
Abstract
Glycine has multiple neurotransmitter functions in the central nervous system (CNS). In the spinal cord and brainstem of vertebrates, it serves as a major inhibitory neurotransmitter. In addition, it participates in excitatory neurotransmission by modulating the activity of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. The extracellular concentrations of glycine are regulated by Na+/Cl(-)-dependent glycine transporters (GlyTs), which are expressed in neurons and adjacent glial cells. Considerable progress has been made recently towards elucidating the in vivo roles of GlyTs in the CNS. The generation and analysis of animals carrying targeted disruptions of GlyT genes (GlyT knockout mice) have allowed investigators to examine the different contributions of individual GlyT subtypes to synaptic transmission. In addition, they have provided animal models for two hereditary human diseases, glycine encephalopathy and hyperekplexia. Selective GlyT inhibitors have been shown to modulate neurotransmission and might constitute promising therapeutic tools for the treatment of psychiatric and neurological disorders such as schizophrenia and pain. Therefore, pharmacological and genetic studies indicate that GlyTs are key regulators of both glycinergic inhibitory and glutamatergic excitatory neurotransmission. This chapter describes our present understanding of the functions of GlyTs and their involvement in the fine-tuning of neuronal communication.
Collapse
Affiliation(s)
- J Gomeza
- Department of Pharmacology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
López E, Lee-Rivera I, López-Colomé AM. Characteristics and Regulation of Glycine Transport in Bergmann Glia. Neurochem Res 2005; 30:1567-77. [PMID: 16362776 DOI: 10.1007/s11064-005-8835-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
In the vertebrate CNS, glycine acts as an inhibitory neurotransmitter and as the obligatory coagonist of glutamate at N-methyl-D-aspartate receptors. These roles depend on extracellular glycine levels, regulated by Na+/Cl--dependent transporters GLYT1, present mainly in glial cells, and GLYT2, predominantly neuronal. In Bergmann glia, GLYT1 mediates both, glycine uptake and efflux, which, in turn, influences excitatory neurotransmission at Purkinje cell synapses. The biochemical properties of GLYTs and their regulation by signaling pathways in these cells are largely unknown. We characterized Gly uptake in confluent primary cultures of Bergmann glia from chick cerebellum. Transport was found to be energy- and Na+-dependent, and was resolved into a high (Km=25 microM) and a low affinity (Km=1.1 mM) components identified as GLYT1 and transport System A, respectively. Results show that high affinity transport by GLYT1 is regulated by calcium from intracellular stores, calmodulin, and myosin light chain kinase through an actin cytoskeleton-mediated action.
Collapse
Affiliation(s)
- Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México(UNAM), Apdo. Postal 70-253, México, D.F., 04510, México
| | | | | |
Collapse
|
32
|
Eulenburg V, Armsen W, Betz H, Gomeza J. Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 2005; 30:325-33. [PMID: 15950877 DOI: 10.1016/j.tibs.2005.04.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/18/2005] [Accepted: 04/13/2005] [Indexed: 01/22/2023]
Abstract
Glycine has important neurotransmitter functions at inhibitory and excitatory synapses in the vertebrate central nervous system. The effective synaptic concentrations of glycine are regulated by glycine transporters (GlyTs), which mediate its reuptake into nerve terminals and adjacent glial cells. GlyTs are members of the Na(+)/Cl(-)-dependent transporter family, whose activities and subcellular distributions are regulated by phosphorylation and interactions with other proteins. The analysis of GlyT knockout mice has revealed distinct functions of individual GlyT subtypes in synaptic transmission and provided animal models for two hereditary human diseases, glycine encephalopathy and hyperekplexia. Selective GlyT inhibitors could be of therapeutic value in cognitive disorders, schizophrenia and pain.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | | | | | | |
Collapse
|
33
|
Aragón C, López-Corcuera B. Glycine transporters: crucial roles of pharmacological interest revealed by gene deletion. Trends Pharmacol Sci 2005; 26:283-6. [PMID: 15925702 DOI: 10.1016/j.tips.2005.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 03/11/2005] [Accepted: 04/20/2005] [Indexed: 11/18/2022]
Abstract
The functions of the high-affinity glycine transporters (GLYTs) in vivo have been revealed recently using gene-deletion studies. Results from studies of homozygous knockout mice have reinforced the idea that GLYTs might be specific clinical targets to modulate inhibitory glycine-mediated neurotransmission. In addition, molecular and behavioural analysis of heterozygous mice has confirmed the therapeutic potential of GLYT1 inhibitors in the treatment of several neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | | |
Collapse
|