1
|
Aberg KC, Kramer EE, Schwartz S. Neurocomputational correlates of learned irrelevance in humans. Neuroimage 2020; 213:116719. [PMID: 32156624 DOI: 10.1016/j.neuroimage.2020.116719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 01/12/2023] Open
Abstract
Inappropriate behaviors may result from acquiring maladaptive associations between irrelevant information in the environment and important events, such as reward or punishment. Pre-exposure effects are believed to prevent the expression of irrelevant associations. For example, learned irrelevance delays the expression of associations between conditioned (CS) and unconditioned (US) stimuli following their uncorrelated presentation. The neuronal substrates of pre-exposure effects in humans are largely unknown because these effects rapidly attenuate when using traditional pre-exposure paradigms. The latter are therefore incompatible with neuroimaging approaches that require many trial repetitions. Moreover, large methodological differences between animal and human research on pre-exposure effects challenge the presumption of shared neurocognitive substrates, and question the prevalent use of pre-exposure effects in animals to model symptoms of human mental disorders. To overcome these limitations, we combined a novel learned irrelevance task with model-based fMRI. We report the results of a model that describes learned irrelevance as a dynamic process, which evolves across trials and integrates the weighting between two state-action values pertaining to 'CS-no US' associations (acquired during pre-exposure) and 'CS-US' associations (acquired during subsequent conditioning). This relative weighting correlated i) positively with the learned irrelevance effect observed in the behavioral task, ii) positively with activity in the entorhinal cortex, and iii) negatively with activity in the nucleus accumbens (NAcc). Furthermore, the model updates the relative weighting of the two state-action values via two separate prediction error (PE) signals that allow the dynamic accumulation of evidence for the CS to predict the 'US' or a 'no US' outcome. One PE signal, designed to increase the relative weight of 'CS-US' associations following 'US' outcomes, correlated with activity in the NAcc, while another PE signal, designed to increase the relative weight of 'CS-no US' associations following 'no US' outcomes, correlated with activity in the basolateral amygdala. By extending previous animal observations to humans, the present study provides a novel approach to foster translational research on pre-exposure effects.
Collapse
Affiliation(s)
| | - Emily Elizabeth Kramer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Molero-Chamizo A. Excitotoxic lesion of the posterior part of the dorsal striatum does not affect the typically dopaminergic phenomenon of latent inhibition in conditioned taste aversion. Neurosci Res 2015; 91:8-12. [DOI: 10.1016/j.neures.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
|
3
|
Meyer F, Louilot A. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 2014; 8:118. [PMID: 24778609 PMCID: PMC3985036 DOI: 10.3389/fnbeh.2014.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
The psychic disintegration characteristic of schizophrenia is thought to result from a defective connectivity, of neurodevelopmental origin, between several integrative brain regions. The parahippocampal region and the prefrontal cortex are described as the main regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction is also generally well accepted in this disorder. In the present review, we have integrated behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or the prefrontal cortex. The data discussed suggest a subtle and transient functional blockade during early development of the aforementioned brain regions is sufficient to induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood. In summary, these results support the view that our conceptual and methodological approach, based on functional disconnections, is valid for modeling some aspects of the pathophysiology of schizophrenia from a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Francisca Meyer
- 1Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alain Louilot
- 2INSERM U 1114, Faculty of Medicine, FMTS, University of Strasbourg Strasbourg, France
| |
Collapse
|
4
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
5
|
Schicknick H, Reichenbach N, Smalla KH, Scheich H, Gundelfinger ED, Tischmeyer W. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex. Eur J Neurosci 2012; 35:763-74. [DOI: 10.1111/j.1460-9568.2012.07994.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Gustafson NJ, Daw ND. Grid cells, place cells, and geodesic generalization for spatial reinforcement learning. PLoS Comput Biol 2011; 7:e1002235. [PMID: 22046115 PMCID: PMC3203050 DOI: 10.1371/journal.pcbi.1002235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
Reinforcement learning (RL) provides an influential characterization of the brain's mechanisms for learning to make advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables efficient learning. We consider this problem through the lens of spatial navigation, examining how two of the brain's location representations--hippocampal place cells and entorhinal grid cells--are adapted to serve as basis functions for approximating value over space for RL. Although much previous work has focused on these systems' roles in combining upstream sensory cues to track location, revisiting these representations with a focus on how they support this downstream decision function offers complementary insights into their characteristics. Rather than localization, the key problem in learning is generalization between past and present situations, which may not match perfectly. Accordingly, although neural populations collectively offer a precise representation of position, our simulations of navigational tasks verify the suggestion that RL gains efficiency from the more diffuse tuning of individual neurons, which allows learning about rewards to generalize over longer distances given fewer training experiences. However, work on generalization in RL suggests the underlying representation should respect the environment's layout. In particular, although it is often assumed that neurons track location in Euclidean coordinates (that a place cell's activity declines "as the crow flies" away from its peak), the relevant metric for value is geodesic: the distance along a path, around any obstacles. We formalize this intuition and present simulations showing how Euclidean, but not geodesic, representations can interfere with RL by generalizing inappropriately across barriers. Our proposal that place and grid responses should be modulated by geodesic distances suggests novel predictions about how obstacles should affect spatial firing fields, which provides a new viewpoint on data concerning both spatial codes.
Collapse
Affiliation(s)
- Nicholas J Gustafson
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | |
Collapse
|
7
|
Chess AC, Raymond BE, Gardner-Morse IG, Stefani MR, Green JT. Set shifting in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 2011; 125:372-82. [PMID: 21500882 PMCID: PMC3109168 DOI: 10.1037/a0023571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two experiments compared spontaneously hypertensive rats (SHRs; a rodent model of attention-deficit/hyperactivity disorder) and Wistar rats (a normoactive control strain), on the acquisition of a set-shifting strategy. In Experiment 1, SHRs and Wistar rats were equivalent in trials to criterion to learn a brightness or a texture discrimination but SHRs were faster than Wistar rats in shifting to the opposite discrimination when there was 1 or 2 days between the initial discrimination and the shift. In Experiment 2, SHRs and Wistar rats were equivalent in shifting when the shift between discriminations occurred immediately after a criterion had been met in the first discrimination. The results are discussed in terms of a failure of SHRs to store or retrieve an initial discrimination and/or latent inhibition over a delay, leading to faster acquisition of a set-shift. This failure in storage or retrieval may be the result of a hypoactive dopamine system in the prefrontal cortex and nucleus accumbens shell as well as abnormalities in entorhinal cortex in SHRs.
Collapse
Affiliation(s)
- Amy C. Chess
- Department of Psychology, Champlain College, Burlington, Vermont 05402
| | | | | | - Mark R. Stefani
- Department of Psychology, Middlebury College, Middlebury, Vermont 05753
| | - John T. Green
- Department of Psychology, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
8
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
9
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
10
|
Differential role of muscarinic transmission within the entorhinal cortex and basolateral amygdala in the processing of irrelevant stimuli. Neuropsychopharmacology 2010; 35:1073-82. [PMID: 20072122 PMCID: PMC3055402 DOI: 10.1038/npp.2009.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholinergic projections to the entorhinal cortex (EC) and basolateral amygdala (BLA) mediate distinct cognitive processes through muscarinic acetylcholine receptors (mAChRs). In this study, we sought to further differentiate the role of muscarinic transmission in these regions in cognition, using the latent inhibition (LI) phenomenon. LI is a cross-species phenomenon manifested as poorer conditioning to a stimulus experienced as irrelevant during an earlier stage of repeated non-reinforced pre-exposure to that stimulus, and is considered to index the ability to ignore, or to in-attend to, irrelevant stimuli. Given our recent findings that systemic administration of the mAChR antagonist scopolamine can produce two contrasting LI abnormalities in rats, ie, abolish LI under conditions yielding LI in non-treated controls, or produce abnormally persistent LI under conditions preventing its expression in non-treated controls, we tested whether mAChR blockade in the EC and BLA would induce LI abolition and persistence, respectively. We found that intra-EC scopolamine infusion (1, 10 mug per hemisphere) abolished LI when infused in pre-exposure or both pre-exposure and conditioning, but not in conditioning alone, whereas intra-BLA scopolamine infusion led to persistent LI when infused in conditioning or both stages, but not in pre-exposure alone. Although cholinergic innervation of the EC and BLA has long been implicated in attention to novel stimuli and in processing of motivationally significant stimuli, respectively, our results provide evidence that EC mAChRs also have a role in the development of inattention to stimuli, whereas BLA mAChRs have a role in re-attending to previously irrelevant stimuli that became motivationally relevant.
Collapse
|
11
|
Coutureau E, Di Scala G. Entorhinal cortex and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:753-61. [PMID: 19376185 DOI: 10.1016/j.pnpbp.2009.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Understanding the function of the entorhinal cortex (EC) has been an important subject over the years, not least because of its cortical intermediary to and from the hippocampus proper, and because of electrophysiological advances which have started to reveal the physiology in behaving animals. Clearly, a lot more needs to be done but is clear to date that EC is not merely a throughput station providing all hippocampal subfields with sensory information, but that processing within EC contributes significantly to attention, conditioning, event and spatial cognition possibly by compressing representations that overlap in time. These are transmitted to the hippocampus, where they are differentiated again and returned to EC. Preliminary evidence for such a role, but also their possible pitfalls are summarised.
Collapse
Affiliation(s)
- Etienne Coutureau
- Centre de Neurosciences Intégratives et Cognitives, UMR 5228 CNRS, Universités de Bordeaux 1 & 2, Avenue des Facultés, 33405 Talence, France
| | | |
Collapse
|
12
|
Meyer F, Peterschmitt Y, Louilot A. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats. Eur J Neurosci 2009; 29:2035-48. [DOI: 10.1111/j.1460-9568.2009.06755.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Peterschmitt Y, Meyer F, Louilot A. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition. Neuroscience 2008; 154:898-910. [PMID: 18486351 DOI: 10.1016/j.neuroscience.2008.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 02/29/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
14
|
Peterschmitt Y, Meyer F, Louilot A. Neonatal functional blockade of the entorhinal cortex results in disruption of accumbal dopaminergic responses observed in latent inhibition paradigm in adult rats. Eur J Neurosci 2007; 25:2504-13. [PMID: 17445246 DOI: 10.1111/j.1460-9568.2007.05503.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latent inhibition (LI) has been found to be disrupted in non-treated patients with schizophrenia. Dopaminergic (DAergic) dysfunctioning is generally acknowledged to occur in schizophrenia. Various abnormalities in the entorhinal cortex (ENT) have been described in patients with schizophrenia. Numerous data also suggest that schizophrenia has a neurodevelopmental origin. The present study was designed to test the hypothesis that reversible inactivation of the ENT during neonatal development results in disrupted DA responses characteristic of LI in adult rats. Tetrodotoxin (TTX) was microinjected locally in the left ENT at postnatal day 8 (PND8). DA variations were recorded in the dorsomedial shell and core parts of the nucleus accumbens (Nacc) using in vivo voltammetry in freely-moving grown-up rats in a LI paradigm. In the first session the animals were pre-exposed (PE) to the conditional stimulus (banana odour) alone. In the second they were aversively conditioned to banana odour. In the third (test) session the following results were obtained in PE animals subjected to temporary inactivation of the ENT at PND8: (1) aversive behaviour was observed in TTX-PE conditioned animals; (2) DA variations in the dorsomedial shell and core parts of the Nacc were similar in TTX-PE and non-pre-exposed conditioned rats. These findings strongly suggest that neonatal disconnection of the ENT disrupts LI in adult animals. They may further our understanding of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | | | | |
Collapse
|
15
|
Lewis MC, Gould TJ. Signal transduction mechanisms within the entorhinal cortex that support latent inhibition of cued fear conditioning. Neurobiol Learn Mem 2007; 88:359-68. [PMID: 17560814 DOI: 10.1016/j.nlm.2007.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/17/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Latent inhibition is a phenomenon by which pre-exposure to a conditioned-stimulus (CS), prior to subsequent pairings of that same CS with an unconditioned-stimulus (US), results in decreased conditioned responding to the CS. Previous work in our laboratory has suggested that the entorhinal cortex is critically involved in the establishment of latent inhibition of cued fear conditioning. Furthermore, utilizing systemic pharmacology, we have demonstrated a role for of NMDA receptors, protein kinase A (PKA), and mitogen activated protein kinase (MAPK, also known as ERK) in latent inhibition of cued fear conditioning, but until now, where these cell signaling cascades are critically activated during latent inhibition of cued fear was unknown. Here, we use direct drug infusion to demonstrate that cell signaling via NMDA receptors, the cAMP/PKA pathway, and the MAPK pathway within the entorhinal cortex are critically involved in latent inhibition of cued fear conditioning. In the present study, CS pre-exposed mice received 20 CS pre-exposures 24h prior to two pairings of the same CS with a 0.53 mA foot shock US, while control animals receive no pre-exposure to the CS. The NMDA antagonist APV (0.25 or 2.5 microg/side), the cAMP inhibitor Rp-cAMP (1.8 or 18.0 microg/side), or the MAPK inhibitor U0126 (0.1 or 1.0 microg/side) were directly infused into the entorhinal cortex prior to pre-exposure. All three drugs produced dose-dependent disruptions in latent inhibition of cued fear conditioning. Importantly, none of the drugs had any effect on cued fear conditioning when administered on training day, suggesting that the effects of each of the drugs were specific to CS pre-exposure. These results are discussed in relation to the potential mechanisms of plasticity that support latent inhibition of cued fear conditioning.
Collapse
Affiliation(s)
- Michael C Lewis
- Psychology Department/Neuroscience Program, Weiss Hall, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| | | |
Collapse
|
16
|
Barak S, Weiner I. Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology 2007; 32:989-99. [PMID: 16971898 DOI: 10.1038/sj.npp.1301208] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fact that muscarinic antagonists may evoke a psychotic state ('antimuscarinic psychosis'), along with findings of cholinergic alterations in schizophrenia, have kindled an interest in the involvement of the cholinergic system in this disorder. Latent inhibition (LI) is a cross-species phenomenon manifested as a poorer conditioning of a stimulus seen when the stage of conditioning is preceded by a stage of repeated nonreinforced pre-exposure to that stimulus, and is considered to index the capacity to ignore irrelevant stimuli. Amphetamine-induced LI disruption and its reversal by antipsychotic drugs (APDs) is a well-established model of positive symptoms of schizophrenia. Here, we tested whether the muscarinic antagonist scopolamine would disrupt LI and whether such disruption would be reversed by APDs and by the acetylcholinesterase inhibitor physostigmine. The results showed that scopolamine at doses of 0.15 and 0.5 mg/kg disrupted LI, and that this effect was due to the action of the drug in the pre-exposure stage, suggesting a role of muscarinic transmission in attentional processes underlying LI. Both the typical and the atypical APDs, haloperidol and clozapine, reversed scopolamine-induced LI disruption when given in conditioning or in both stages, but not in pre-exposure, indicating that the mechanism of antipsychotic action in this model is independent of the mechanism of action of the propsychotic drug. Scopolamine-induced LI disruption was reversed by physostigmine (0.05 and 0.15 mg/kg), which was ineffective in reversing amphetamine-induced LI disruption, pointing to distinct mechanisms underlying LI disruption by these two propsychotic drugs. The latter was further supported by the finding that unlike amphetamine, the LI-disrupting doses of scopolamine did not affect activity levels. We propose scopolamine-induced LI disruption as a model of cholinergic-related positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Segev Barak
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
17
|
Seillier A, Dieu Y, Herbeaux K, Di Scala G, Will B, Majchrzak M. Evidence for a critical role of entorhinal cortex at pre-exposure for latent inhibition disruption in rats. Hippocampus 2007; 17:220-6. [PMID: 17203462 DOI: 10.1002/hipo.20260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Latent inhibition (LI), that is the decrease in conditioned response induced by the repeated nonreinforced pre-exposures to the to-be-conditioned stimulus, is disrupted by entorhinal cortex (EC) lesions. The mechanism involved in this disruption is unknown, and in particular the experimental stage (pre-exposure or conditioning) at which the integrity of EC is necessary has to be determined. The purpose of this study was to address this issue by using reversible inactivation of the EC by local micro-infusion of tetrodotoxin (TTX). TTX was infused either before the pre-exposure phase, before the conditioning phase, or before both phases. LI was unaffected in rats that received TTX before conditioning or before both pre-exposure and conditioning. In contrast, LI was disrupted in rats that received TTX before pre-exposure only. These results are discussed in the framework of LI models.
Collapse
Affiliation(s)
- A Seillier
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
18
|
Grissom N, Iyer V, Vining C, Bhatnagar S. The physical context of previous stress exposure modifies hypothalamic-pituitary-adrenal responses to a subsequent homotypic stress. Horm Behav 2007; 51:95-103. [PMID: 17054953 DOI: 10.1016/j.yhbeh.2006.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/29/2006] [Accepted: 08/29/2006] [Indexed: 11/21/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis becomes less responsive to some types of repeated stress over time, a process termed habituation. Many facets of the stressful stimulus can modify such HPA responses to stressors, such as predictability and controllability. However, the physical context in which the stressor occurred may also provide a discriminative stimulus that can affect the HPA response to that stressor. In the present study, we examined whether a change in the context in which stress exposure occurs can alter HPA responses to a subsequent [corrected] homotypic stressor. Three separate contexts were produced by manipulating odor cues. Rats housed in the 3 context rooms exhibited similar HPA responses to acute 30-min restraint or repeated (8th) 30-min restraint in their home environments. However, rats that were restrained for 30 min per day for 7 days in a room in one context and then restrained on day 8 in a novel context exhibited attenuated habituation compared to rats restrained on day 8 in the familiar context. These results provide evidence that repeated stress-induced HPA activity depends, in part, on the context in which the stress is experienced.
Collapse
Affiliation(s)
- Nicola Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
19
|
Pothuizen HHJ, Jongen-Rêlo AL, Feldon J, Yee BK. Latent inhibition of conditioned taste aversion is not disrupted, but can be enhanced, by selective nucleus accumbens shell lesions in rats. Neuroscience 2005; 137:1119-30. [PMID: 16343780 DOI: 10.1016/j.neuroscience.2005.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/07/2005] [Accepted: 10/14/2005] [Indexed: 11/29/2022]
Abstract
Latent inhibition is a form of negative priming in which repeated non-reinforced pre-exposures to a stimulus retard subsequent learning about the predictive significance of that stimulus. The nucleus accumbens shell and the anatomical projection it receives from the hippocampal formation have been attributed a pivotal role in the control or regulation of latent inhibition expression. A number of studies in rats have demonstrated the efficacy of selective shell lesions to disrupt latent inhibition in different associative learning paradigms, including conditioned active avoidance and conditioned emotional response. Here, we extended the test to the conditioned taste aversion paradigm, in which the effect of direct hippocampal damage on latent inhibition remains controversial. We demonstrated the expected effect of selective shell lesions on latent inhibition of conditioned emotional response and of conditioned active avoidance, before evaluating in a separate cohort of rats the effect of comparable selective lesions on latent inhibition of conditioned taste aversion: a null effect of the lesions was first obtained using parameters known to be sensitive to amphetamine treatment, then an enhancement of latent inhibition was revealed with a modified conditioned taste aversion procedure. Our results show that depending on the associative learning paradigm chosen, shell lesions can disrupt or enhance the expression of latent inhibition; and the pattern is reminiscent of that seen following hippocampal damage.
Collapse
Affiliation(s)
- H H J Pothuizen
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
20
|
Peterschmitt Y, Hoeltzel A, Louilot A. Striatal dopaminergic responses observed in latent inhibition are dependent on the hippocampal ventral subicular region. Eur J Neurosci 2005; 22:2059-68. [PMID: 16262643 DOI: 10.1111/j.1460-9568.2005.04366.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We showed recently that behavioural and striatal dopaminergic (DA) responses obtained in latent inhibition are crucially dependent on the parahippocampal region, the entorhinal cortex. In the present study, we investigated the influence exerted by the hippocampal ventral subicular region (SUB) on the DA responses in the anterior part of the dorsal striatum using in vivo voltammetry in freely moving rats and the same latent inhibition paradigm. To that end, the left SUB was temporarily blocked with tetrodotoxin (TTX) during pre-exposure to a new olfactory stimulus (banana odour). During the second session the animals were aversively conditioned to banana odour. With respect to the results obtained during the test session (third presentation of banana odour), similar changes in behaviour and DA levels were obtained in control and conditioned rats microinjected with the solvent, phosphate-buffered saline (PBS), in the SUB, consistently with a latent inhibition phenomenon. In contrast, after reversible inactivation of the SUB during the pre-exposure session, TTX-pre-exposed conditioned animals displayed aversive behaviour in the test session, and anterior striatal DA variations in these animals differed significantly from those obtained in pre-exposed rats injected locally with PBS. Striatal DA variations obtained in conditioned animals microinjected with TTX were also significantly different from those observed in conditioned non-pre-exposed animals. The present data suggest that, in parallel to the entorhinal cortex, the SUB regulates the latent inhibition-related behavioural and DA responses in the anterior part of the dorsal striatum. These data may provide new insight into the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | | | | |
Collapse
|
21
|
Gal G, Schiller D, Weiner I. Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: The neural site controlling the expression and disruption of the stimulus preexposure effect. Behav Brain Res 2005; 162:246-55. [PMID: 15970218 DOI: 10.1016/j.bbr.2005.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/18/2005] [Accepted: 03/24/2005] [Indexed: 11/21/2022]
Abstract
Latent inhibition (LI) is the proactive interference of repeated nonreinforced preexposure to a stimulus with subsequent performance on a learning task involving that stimulus. The present experiments investigated the role of the nucleus accumbens (NAC) in LI. LI was measured in a thirst motivated conditioned emotional response procedure with low or high number of conditioning trials, and in two-way active avoidance procedure with the stages of preexposure and conditioning taking place in the same or different contexts. Sham-lesioned rats showed LI with low but not high number of conditioning trials and if preexposure and conditioning took place in the same context but not if the context was changed between the stages. Lesion to the shell subregion of the NAC disrupted LI but LI was preserved in rats with a combined lesion to the NAC shell and core subregions. Moreover, rats with a combined shell-core lesion persisted in showing LI in spite of high number of conditioning trials and in spite of context change. These results show that the NAC is not essential for the acquisition of LI but rather plays a key role in regulating the expression of LI. Moreover, they suggest that the two subregions of the NAC contribute competitively and cooperatively to this process, selecting the response appropriate to the stimulus-no event or the stimulus-reinforcement association in conditioning.
Collapse
Affiliation(s)
- Gilad Gal
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | |
Collapse
|