1
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
3
|
Hanani M, Verkhratsky A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochem Res 2021; 46:2525-2537. [PMID: 33523395 DOI: 10.1007/s11064-021-03255-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain
| |
Collapse
|
4
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Floyd RV, Mobasheri A, Wray S. Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus. Physiol Rep 2018; 5. [PMID: 29208689 PMCID: PMC5727280 DOI: 10.14814/phy2.13527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
Developmental and tissue‐specific differences in isoforms allow Na+, K+‐ATPase function to be tightly regulated, as they control sensitivity to ions and inhibitors. Uterine contraction relies on the activity of the Na+, K+ATPase, which creates ionic gradients that drive excitation‐contraction coupling. It is unknown whether Na+, K+ATPase isoforms are regulated throughout pregnancy or whether they have a direct role in modulating uterine contractility. We hypothesized that gestation‐dependent differential expression of isoforms would affect contractile responses to Na+, K+ATPase α subunit inhibition with ouabain. Our aims were therefore: (1) to determine the gestation‐dependent expression of mRNA transcripts, protein abundance and tissue distribution of Na+, K+ATPase isoforms in myometrium; (2) to investigate the functional effects of differential isoform expression via ouabain sensitivity; and (3) if changes in contractile responses can be explained by changes in intracellular [Ca2+]. Changes in abundance and distribution of the Na+, K+ATPase α, β and FXYD1 and 2 isoforms, were studied in rat uterus from nonpregnant, and early, mid‐, and term gestation. All α, β subunit isoforms (1,2,3) and FXYD1 were detected but FXYD2 was absent. The α1 and β1 isoforms were unchanged throughout pregnancy, whereas α2 and α3 significant decreased at term while β2 and FXYD1 significantly increased from mid‐term onwards. These changes in expression correlated with increased functional sensitivity to ouabain, and parallel changes in intracellular Ca2+, measured with Indo‐1. In conclusion, gestation induces specific regulatory changes in expression of Na+, K+ATPase isoforms in the uterus which influence contractility and may be related to the physiological requirements for successful pregnancy and delivery.
Collapse
Affiliation(s)
- Rachel V Floyd
- The Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Susan Wray
- The Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Rotoli D, Cejas MM, Maeso MDC, Pérez-Rodríguez ND, Morales M, Ávila J, Mobasheri A, Martín-Vasallo P. The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles. Int J Mol Sci 2017; 18:ijms18112369. [PMID: 29117147 PMCID: PMC5713338 DOI: 10.3390/ijms18112369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Recent studies point out that gliomas exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma. Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating cellular dynamics, particularly during cancer progression. The aim of this study was to determine the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms, β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples. Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM, although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly, differences in isoforms expression have been observed between primary and secondary GBM: in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms expression in GBM could be related to a different ionic handling, to a different relationship between astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β subunits as adaptor proteins and transcription factors.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini, 5-80131 Naples, Italy.
| | - Mariana-Mayela Cejas
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - María-Del-Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Natalia-Dolores Pérez-Rodríguez
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
- Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
7
|
Tu NH, Katano T, Matsumura S, Funatsu N, Pham VM, Fujisawa JI, Ito S. Na + /K + -ATPase coupled to endothelin receptor type B stimulates peripheral nerve regeneration via lactate signalling. Eur J Neurosci 2017; 46:2096-2107. [PMID: 28700113 DOI: 10.1111/ejn.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022]
Abstract
We have recently demonstrated that endothelin (ET) is functionally coupled to Nax , a Na+ concentration-sensitive Na+ channel for lactate release via ET receptor type B (ETB R) and is involved in peripheral nerve regeneration in a sciatic nerve transection-regeneration mouse model. Nax is known to interact directly with Na+ /K+ -ATPase, leading to lactate production in the brain. To investigate the role of Na+ /K+ -ATPase in peripheral nerve regeneration, in this study, we applied ouabain, a Na+ /K+ -ATPase inhibitor, to the cut site for 4 weeks with an osmotic pump. While functional recovery and nerve reinnervation to the toe started at 5 weeks after axotomy and were completed by 7 weeks, ouabain delayed them by 2 weeks. The delay by ouabain was improved by lactate, and its effect was blocked by α-cyano-4-hydroxy-cinnamic acid (CIN), a broad monocarboxylate transporter (MCT) inhibitor. In primary cultures of dorsal root ganglia, neurite outgrowth of neurons and lactate release into the culture medium was inhibited by ouabain. Conversely, lactate enhanced the neurite outgrowth, which was blocked by CIN, but not by AR-C155858, a MCT1/2-selective inhibitor. ET-1 and ET-3 increased neurite outgrowth of neurons, which was attenuated by an ETB R antagonist, ouabain and 2 protein kinase C inhibitors. Taken together with the finding that ETB R was expressed in Schwann cells, these results demonstrate that ET enhanced neurite outgrowth of neurons mediated by Na+ /K+ -ATPase via ETB R in Schwann cells. This study suggests that Na+ /K+ -ATPase coupled to the ET-ETB R system plays a critical role in peripheral nerve regeneration via lactate signalling.
Collapse
Affiliation(s)
- Nguyen H Tu
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Nobuo Funatsu
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Vuong Minh Pham
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| |
Collapse
|
8
|
Moldovan M, Alvarez S, Rosberg MR, Krarup C. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice. Eur J Neurosci 2015; 43:388-403. [DOI: 10.1111/ejn.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mihai Moldovan
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Susana Alvarez
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Mette R. Rosberg
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Christian Krarup
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| |
Collapse
|
9
|
Worman HJ, Schirmer EC. Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr Opin Cell Biol 2015; 34:101-12. [PMID: 26115475 PMCID: PMC4522394 DOI: 10.1016/j.ceb.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
Human 'laminopathy' diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as 'specialized' in each cell type is important to understand the tissue-specific pathology of NE-linked diseases.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr ARW, Florens L, Schirmer EC. The nuclear envelope proteome differs notably between tissues. Nucleus 2012; 3:552-64. [PMID: 22990521 PMCID: PMC3515538 DOI: 10.4161/nucl.22257] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues.
Collapse
Affiliation(s)
- Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons. PLoS One 2012; 7:e29852. [PMID: 22253804 PMCID: PMC3258241 DOI: 10.1371/journal.pone.0029852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/05/2011] [Indexed: 01/03/2023] Open
Abstract
Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.
Collapse
|
12
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
13
|
Girard C, Eychenne B, Schweizer-Groyer G, Cadepond F. Mineralocorticoid and glucocorticoid receptors in sciatic nerve function and regeneration. J Steroid Biochem Mol Biol 2010; 122:149-58. [PMID: 20678573 DOI: 10.1016/j.jsbmb.2010.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/21/2010] [Accepted: 07/24/2010] [Indexed: 12/20/2022]
Abstract
The contribution of the two corticosteroid (mineralocorticoid and glucocorticoid) receptor (MR and GR) pathways to the function and regeneration of the sciatic nerve was investigated. We found that the corticosterone-inactivating enzyme 11β-hydroxysteroid dehydrogenase type 2 (HSD2) was up-regulated 7 days after lesion in freeze-injured nerve. The maintenance of a low intracellular level of corticosterone by HSD2 activity in the regenerating nerve is concordant with the improvement of nervous function in injured animals (as measured by walking ability) after treatment by the GR antagonist mifepristone and with the reduction in GR participation in accumulation of the mRNA for numerous endogenous genes (from the renin-angiotensin system and other classical mineralocorticoid-responsive genes), in the same animals. Furthermore, using the MR antagonist spironolactone, we demonstrated that MR plays an active role in the function of the intact sciatic nerve: MR is required for walking ability and participates in the control of the accumulation of the mRNA for several endogenous genes. However, after injury, changes in gene expression cannot be fully explained by changes in MR/GR activity, due to an HSD2 effect, and other signalling pathway(s) induced by the lesion likely combine with the effect of the corticosteroid receptors.
Collapse
Affiliation(s)
- Christelle Girard
- Unité Mixte de Recherche 788, Inserm and Université Paris-Sud 11, 94276 Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
14
|
Rigoard P, Buffenoir K, Fares M, Chaillou M, Da Costa L, Boildieu N, Seguin F, Huze C, Schaeffer L, Lapierre F, Maixent JM. [Toward a metabolic approach of the central pattern generator concept in a spinal rat model]. Neurochirurgie 2009; 55 Suppl 1:S124-34. [PMID: 19230942 DOI: 10.1016/j.neuchi.2008.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
It has been shown that the onset of a central nervous system lesion in the rat results in morphological modifications of the peripheral nerves and the underlying neuromuscular junctions, without suggesting a functional correlation between recuperation of motor functions and sublesional metabolic activity. Using double lesion localization (T2 and T6) in a spinal rat model has nevertheless pointed out the functional importance of the T2-T6 metameric interval in the reinnervation phenomena observed, raising the problem of spinal generation in locomotor movements. Motivated by electrophysiological data that have given support to the concept of an anatomic substrate for these intramedullary rhythm generators, we attempted to establish a relation between the functional recuperation possible after a central nervous system lesion and modifications within the metabolism of the underlying neuromuscular system. We notably focused on Na/K-ATPase, whose crucial role in neuromuscular transmission has been evidenced. This paper proposes to demonstrate the involvement in the mechanisms of metabolic regulation after trans-synaptic denervation, i.e., a central nervous system lesion. Our study includes the Na/K-ATPase activity analysis on the sublesional peripheral nerve and the combined analysis of the expression of different RNA messengers within the corresponding muscle groups. We have also investigated the spatiotemporal organization of the compensating processes of the nerves underlying the lesion using magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La Milétrie, 2, rue de la Milétrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rigoard P, Bauche S, Buffenoir K, Da Costa L, Boildieu N, Seguin F, Koenig J, Lapierre F, Maixent JM. [Pathophysiological, molecular and metabolic changes at the neuromuscular junction and the peripheral nerve after central nervous system lesions in humans]. Neurochirurgie 2009; 55 Suppl 1:S135-47. [PMID: 19232650 DOI: 10.1016/j.neuchi.2008.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
From the elaborate information processing that takes place in the brain to the contraction of skeletal muscles, the neurotransmission pathways involve, at least in part, (1) in tissue, Na+, K+-ATPase electrogenesis making action potential (AP) propagation possible and (2) in the cell, the synthesis, maturation, and renewal of an amazing number of molecules concentrated at the neuromuscular junction (NMJ). Our aim is to clarify CNS and peripheral nerve system (PNS) interactions by determining whether the partial motor recovery sometimes observed after a lesion of the first motoneuron is related to (1) changes in active transportation of the ions in peripheral nerve and/or muscle and (2) morphological and/or molecular changes at the NMJ, illustrating a dysfunction. Peripheral nerve surgery is proposed to some spastic patients who have recovered partially after CNS lesions to improve their gait. During these surgical procedures, the nerve and muscle samples that are usually resected can be collected and analyzed. Here, we report on eight patients who showed strictly similar motor recovery 2 years after massive CNS lesions and who underwent a selective tibial neurotomy for a spastic equinus foot. In these eight spastic patients, we performed a pathophysiological, molecular, and metabolic study of their neuromuscular junctions and peripheral nerves to characterize the dysfunction of the neuromuscular transmission after a permanent CNS injury.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La-Milètrie, 2, rue de La-Milètrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Batrakou DG, Kerr ARW, Schirmer EC. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J Proteomics 2008; 72:56-70. [PMID: 18852071 DOI: 10.1016/j.jprot.2008.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/26/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022]
Abstract
Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
17
|
The alpha1 isoform of the Na+/K+ ATPase is up-regulated in dedifferentiated progenitor cells that mediate lens and retina regeneration in adult newts. Exp Eye Res 2008; 88:314-22. [PMID: 18755185 DOI: 10.1016/j.exer.2008.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/10/2008] [Accepted: 07/23/2008] [Indexed: 11/21/2022]
Abstract
Adult newts are able to regenerate their retina and lens after injury or complete removal through transdifferentiation of the pigmented epithelial tissues of the eye. This process needs to be tightly controlled, and several different mechanisms are likely to be recruited for this function. The Na(+)/K(+) ATPase is a transmembrane protein that establishes electrochemical gradients through the transport of Na(+) and K(+) and has been implicated in the modulation of key cellular processes such as cell division, migration and adhesion. Even though it is expressed in all cells, its isoform composition varies with cell type and is tightly controlled during development and regeneration. In the present study we characterize the expression pattern of Na(+)/K(+) ATPase alpha1 in the adult newt eye and during the process of lens and retina regeneration. We show that this isoform is up-regulated in undifferentiated cells during transdifferentiation. Such change in composition could be one of the mechanisms that newt cells utilize to modulate this process.
Collapse
|
18
|
Abstract
Peripheral nerves are essential connections between the central nervous system and muscles, autonomic structures and sensory organs. Their injury is one of the major causes for severe and longstanding impairment in limb function. Acute peripheral nerve lesion has an important inflammatory component and is considered as ischemia-reperfusion (IR) injury. Surgical repair has been the standard of care in peripheral nerve lesion. It has reached optimal technical development but the end results still remain unpredictable and complete functional recovery is rare. Nevertheless, nerve repair is not primarily a mechanical problem and microsurgery is not the only key to success. Lately, there have been efforts to develop alternatives to nerve graft. Work has been carried out in basal lamina scaffolds, biologic and non-biologic structures in combination with neurotrophic factors and/or Schwann cells, tissues, immunosuppressive agents, growth factors, cell transplantation, principles of artificial sensory function, gene technology, gangliosides, implantation of microchips, hormones, electromagnetic fields and hyperbaric oxygenation (HBO). HBO appears to be a beneficial adjunctive treatment for surgical repair in the acute peripheral nerve lesion, when used at lower pressures and in a timely fashion (<6 hours).
Collapse
Affiliation(s)
- E Cuauhtemoc Sanchez
- Hyperbaric Medicine Department, Hospital Angeles del Pedregal, Mexico, DF, Mexico.
| |
Collapse
|
19
|
Alberti S, Gregório EA, Spadella CT, Cojocel C. Localization and irregular distribution of Na,K-ATPase in myelin sheath from rat sciatic nerve. Tissue Cell 2007; 39:195-201. [PMID: 17507069 DOI: 10.1016/j.tice.2007.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 03/25/2007] [Accepted: 03/29/2007] [Indexed: 11/17/2022]
Abstract
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na(+) and K(+) gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CM 100 electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity.
Collapse
Affiliation(s)
- Sandra Alberti
- Department of Surgery, Medical School, São Paulo State University, Botucatu, São Paulo, Brazil.
| | | | | | | |
Collapse
|
20
|
Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. ACTA ACUST UNITED AC 2007; 53:287-311. [PMID: 17079020 DOI: 10.1016/j.brainresrev.2006.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| | | |
Collapse
|
21
|
Groyer G, Eychenne B, Girard C, Rajkowski K, Schumacher M, Cadepond F. Expression and functional state of the corticosteroid receptors and 11 beta-hydroxysteroid dehydrogenase type 2 in Schwann cells. Endocrinology 2006; 147:4339-50. [PMID: 16763064 DOI: 10.1210/en.2005-1625] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To investigate the role of steroid receptors in mediating the reported effects of steroids on Schwann cell (SC) myelination and growth, we determined mRNA contents and transcriptional activities of the corticosteroid (glucocorticosteroid and mineralocorticosteroid) receptors (GR and MR) and sex steroid (progesterone, androgen, and estrogen alpha and beta) receptors in rat SC cultured under proliferative (in the presence of insulin and forskolin, which induces a high intracellular cAMP content) and quiescent conditions. We found no or very low expression and activity of the sex steroid receptors, as shown by mRNA concentrations determined with real-time PCR and transcriptional activities using transient expression of reporter plasmids in SC. These data and binding studies in SC lines demonstrated that the levels of the sex steroid receptors were the limiting factors. GR was clearly expressed (approximately 8000 sequences/ng total RNA) and functional. No significant modification in GR mRNA levels was observed, but an increase in transcriptional efficiency was recorded in proliferating cells compared with quiescent cells. MR was also significantly expressed at the mRNA level (approximately 450 sequences/ng total RNA) under the two culture conditions. No MR transcriptional activity was observed in SC, but a low specific binding of aldosterone was detected in SC lines. 11 beta-Hydroxysteroid-dehydrogenase type 2 (HSD2), an enzyme that inactivates glucocorticoids, was strongly expressed and active in quiescent SC, although in proliferating cells, HSD2 exhibited a strong decrease in activity and mRNA concentration. These data support a physiological role for HSD2 regulation of glucocorticosteroid concentrations in nerve SC.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism
- Animals
- Cell Division
- Cells, Cultured
- Colforsin/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Reporter/genetics
- Glucocorticoids/pharmacology
- Gonadal Steroid Hormones/metabolism
- Insulin/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Schwann Cells/chemistry
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Ghislaine Groyer
- Unité Mixte de Recherche 788, Institut National de la Santé et de la Recherche Médicale and University Paris-Sud 11, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
22
|
Schirmer EC, Gerace L. The nuclear membrane proteome: extending the envelope. Trends Biochem Sci 2005; 30:551-8. [PMID: 16125387 DOI: 10.1016/j.tibs.2005.08.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/29/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The marriage of proteomics with cell biology has produced extensive inventories of the proteins that inhabit several subcellular organelles. Recent proteomic analysis has identified many new putative transmembrane proteins in the nuclear envelope, and transcriptome profiling suggests that the nuclear-membrane proteome exhibits some significant variations among different tissues. Cell-type-specific differences in the composition of protein sub-complexes of the nuclear envelope, particularly those containing the disease-associated protein lamin A, could yield distinctive functions and, thus, explain the tissue specificity of a diverse group of nuclear-envelope-linked disorders in humans. Considered together, these recent results suggest an unexpected functional complexity at the nuclear envelope.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|