1
|
Niu B, Zhao M, Gao X, Xu J, Yu L. TMT-based quantitative proteomics analysis of neuroprotective effects of Forsythoside A on the MPTP-induced Parkinson's disease mouse model. Exp Neurol 2024; 373:114642. [PMID: 38056584 DOI: 10.1016/j.expneurol.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCβ4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.
Collapse
Affiliation(s)
- Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xiu'an Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou 510515, China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Tamnanloo F, Ochoa-Sanchez R, Oliveira MM, Lima C, Lépine M, Dubois K, Bosoi C, Tremblay M, Sleno L, Rose CF. Multiple ammonia-induced episodes of hepatic encephalopathy provoke neuronal cell loss in bile-duct ligated rats. JHEP Rep 2023; 5:100904. [PMID: 37942225 PMCID: PMC10628859 DOI: 10.1016/j.jhepr.2023.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Background & Aims Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1β) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.
Collapse
Affiliation(s)
- Farzaneh Tamnanloo
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | | | | | - Carina Lima
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Maggy Lépine
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | | | | | | | - Lekha Sleno
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Christopher F. Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| |
Collapse
|
3
|
Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. A protein-coding gene expression atlas from the brain of pregnant and non-pregnant goats. Front Genet 2023; 14:1114749. [PMID: 37519888 PMCID: PMC10382233 DOI: 10.3389/fgene.2023.1114749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background: The brain is an extraordinarily complex organ with multiple anatomical structures involved in highly specialized functions related with behavior and physiological homeostasis. Our goal was to build an atlas of protein-coding gene expression in the goat brain by sequencing the transcriptomes of 12 brain regions in seven female Murciano-Granadina goats, from which three of them were 1-month pregnant. Results: Between 14,889 (cerebellar hemisphere) and 15,592 (pineal gland) protein-coding genes were expressed in goat brain regions, and most of them displayed ubiquitous or broad patterns of expression across tissues. Principal component analysis and hierarchical clustering based on the patterns of mRNA expression revealed that samples from certain brain regions tend to group according to their position in the anterior-posterior axis of the neural tube, i.e., hindbrain (pons and medulla oblongata), midbrain (rostral colliculus) and forebrain (frontal neocortex, olfactory bulb, hypothalamus, and hippocampus). Exceptions to this observation were cerebellum and glandular tissues (pineal gland and hypophysis), which showed highly divergent mRNA expression profiles. Differential expression analysis between pregnant and non-pregnant goats revealed moderate changes of mRNA expression in the frontal neocortex, hippocampus, adenohypophysis and pons, and very dramatic changes in the olfactory bulb. Many genes showing differential expression in this organ are related to olfactory function and behavior in humans. Conclusion: With the exception of cerebellum and glandular tissues, there is a relationship between the cellular origin of sampled regions along the anterior-posterior axis of the neural tube and their mRNA expression patterns in the goat adult brain. Gestation induces substantial changes in the mRNA expression of the olfactory bulb, a finding consistent with the key role of this anatomical structure on the development of maternal behavior.
Collapse
Affiliation(s)
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Sex-Dependent Effect of Chronic Piromelatine Treatment on Prenatal Stress-Induced Memory Deficits in Rats. Int J Mol Sci 2023; 24:ijms24021271. [PMID: 36674787 PMCID: PMC9864968 DOI: 10.3390/ijms24021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prenatal stress impairs cognitive function in rats, while Piromelatine treatment corrects memory decline in male rats with chronic mild stress. In the present study, we aimed to evaluate the effect of chronic treatment with the melatonin analogue Piromelatine on the associative and spatial hippocampus-dependent memory of male and female offspring with a history of prenatal stress (PNS). We report that male and female young adult offspring with PNS treated with a vehicle had reduced memory responses in an object recognition test (ORT). However, the cognitive performance in the radial arm maze test (RAM) was worsened only in the male offspring. The 32-day treatment with Piromelatine (20 mg/kg, i.p.) of male and female offspring with PNS attenuated the impaired responses in the ORT task. Furthermore, the melatonin analogue corrected the disturbed spatial memory in the male offspring. While the ratio of phosphorylated and nonphosphorylated adenosine monophosphate response element binding protein (pCREB/CREB) was reduced in the two sexes with PNS and treated with a vehicle, the melatonin analogue elevated the ratio of these signaling molecules in the hippocampus of the male rats only. Our results suggest that Piromelatine exerts a beneficial effect on PNS-induced spatial memory impairment in a sex-dependent manner that might be mediated via the pCREB/CREB pathway.
Collapse
|
5
|
Brunetti S, Micheletti S, Palmieri I, Valente EM, Fazzi E. Benign Hereditary Chorea as a Manifestation of HPCA Mutation. Mov Disord Clin Pract 2023; 10:130-134. [PMID: 36704070 PMCID: PMC9847279 DOI: 10.1002/mdc3.13572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/28/2022] [Indexed: 01/29/2023] Open
Affiliation(s)
- Sara Brunetti
- Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | - Serena Micheletti
- Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | - Ilaria Palmieri
- Neurogenetics Research CenterIRCCS Mondino FoundationPaviaItaly
| | - Enza Maria Valente
- Neurogenetics Research CenterIRCCS Mondino FoundationPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Elisa Fazzi
- Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
6
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
7
|
Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105385. [PMID: 34897972 PMCID: PMC8858573 DOI: 10.1002/smll.202105385] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 05/23/2023]
Abstract
Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via β-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN β-glucan to dectin-1. Subsequently endocytosed β-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN β-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.
Collapse
Affiliation(s)
- Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Qiaohong M Liu
- Peak Neuromonitoring Associates-Kentucky, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| |
Collapse
|
8
|
Siegert S, Schmidt WM, Pletschko T, Bittner RE, Gobara S, Freilinger M. Specific Cognitive Changes due to Hippocalcin Alterations? A Novel Familial Homozygous Hippocalcin Variant Associated with Inherited Dystonia and Altered Cognition. Neuropediatrics 2021; 52:377-382. [PMID: 33511595 DOI: 10.1055/s-0040-1722686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Recent research suggested an hippocalcin (HPCA)-related form of DYT2-like autosomal recessive dystonia. Two reports highlight a broad spectrum of the clinical phenotype. Here, we describe a novel HPCA gene variant in a pediatric patient and two affected relatives. METHODS Whole exome sequencing was applied after a thorough clinical and neurological examination of the index patient and her family members. Results of neuropsychological testing were analyzed. RESULTS Whole exome sequencing revealed a novel homozygous missense variant in the HPCA gene [c.182C>T p.(Ala61Val)] in our pediatric patient and the two affected family members. Clinically, the cases presented with dystonia, dysarthria, and jerky movements. We observed a particular cognitive profile with executive dysfunctions in our patient, which corresponds to the cognitive deficits that have been observed in the patients previously described. CONCLUSION We present a novel genetic variant of the HPCA gene associated with autosomal recessive dystonia in a child with childhood-onset dystonia supporting its clinical features. Furthermore, we propose specific HPCA-related cognitive changes in homozygous carriers, underlining the importance of undertaking a systematic assessment of cognition in HPCA-related dystonia.
Collapse
Affiliation(s)
- Sandy Siegert
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Medical University of Vienna, Austria
| | - Thomas Pletschko
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Reginald E Bittner
- Neuromuscular Research Department, Medical University of Vienna, Austria
| | - Sonja Gobara
- Ambulatorium Sonnenschein, Sozialpädiatrisches Zentrum, St. Pölten, Austria
| | - Michael Freilinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| |
Collapse
|
9
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Williams JB, Cao Q, Yan Z. Transcriptomic analysis of human brains with Alzheimer's disease reveals the altered expression of synaptic genes linked to cognitive deficits. Brain Commun 2021; 3:fcab123. [PMID: 34423299 PMCID: PMC8374979 DOI: 10.1093/braincomms/fcab123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder associated with memory loss and impaired executive function. The molecular underpinnings causing cognitive deficits in Alzheimer's disease are loosely understood. Here, we performed cross-study large-scale transcriptomic analyses of postmortem prefrontal cortex derived from Alzheimer's disease patients to reveal the role of aberrant gene expression in this disease. We identified that one of the most prominent changes in prefrontal cortex of Alzheimer's disease humans was the downregulation of genes in excitatory and inhibitory neurons that are associated with synaptic functions, particularly the SNARE-binding complex, which is essential for vesicle docking and neurotransmitter release. Comparing genomic data of Alzheimer's disease with proteomic data of cognitive trajectory, we found that many of the lost synaptic genes in Alzheimer's disease encode hub proteins whose increased abundance is required for cognitive stability. This study has revealed potential molecular targets for therapeutic intervention of cognitive decline associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Jamal B Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
11
|
Sheremet YE, Olifirov B, Okhrimenko A, Cherkas V, Bagatskaya O, Belan P. Hippocalcin Distribution between the Cytosol and Plasma Membrane of Living Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ng E, Georgiou J, Avila A, Trought K, Mun HS, Hodgson M, Servinis P, Roder JC, Collingridge GL, Wong AHC. Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behav Brain Res 2019; 381:112420. [PMID: 31821787 DOI: 10.1016/j.bbr.2019.112420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
Neuronal calcium sensor-1 or Frequenin is a calcium sensor widely expressed in the nervous system, with roles in neurotransmission, neurite outgrowth, synaptic plasticity, learning, and motivated behaviours. Neuronal calcium sensor-1 has been implicated in neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and bipolar disorder. However, the role of neuronal calcium sensor-1 in behavioural phenotypes and brain changes relevant to autism spectrum disorder have not been evaluated. We show that neuronal calcium sensor-1 deletion in the mouse leads to a mild deficit in social approach and impaired displaced object recognition without affecting social interactions, behavioural flexibility, spatial reference memory, anxiety-like behaviour, or sensorimotor gating. Morphologically, neuronal calcium sensor-1 deletion leads to increased dendritic arbour complexity in the frontal cortex. At the level of hippocampal synaptic plasticity, neuronal calcium sensor-1 deletion leads to a reduction in long-term potentiation in the dentate gyrus, but not area Cornu Ammonis 1. Metabotropic glutamate receptor-induced long-term depression was unaffected in both dentate and Cornu Ammonis 1. These studies identify roles for neuronal calcium sensor-1 in specific subregions of the brain including a phenotype relevant to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Enoch Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ariel Avila
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Basic Science Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, 4090541, Chile
| | - Kathleen Trought
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Meggie Hodgson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Panayiotis Servinis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Albert H C Wong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
13
|
Perturbed Ca2+-dependent signaling of DYT2 hippocalcin mutant as mechanism of autosomal recessive dystonia. Neurobiol Dis 2019; 132:104529. [DOI: 10.1016/j.nbd.2019.104529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
|
14
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Atasu B, Hanagasi H, Bilgic B, Pak M, Erginel-Unaltuna N, Hauser AK, Guven G, Simón-Sánchez J, Heutink P, Gasser T, Lohmann E. HPCA confirmed as a genetic cause of DYT2-like dystonia phenotype. Mov Disord 2018; 33:1354-1358. [PMID: 30145809 DOI: 10.1002/mds.27442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND HPCA (hippocalcin) is one of the underlying genetic causes of autosomal-recessively inherited forms of dystonia. Here, we describe two consanguineous Turkish DYT-HPCA families carrying the novel HPCA mutations. METHODS After detailed clinical and neurological examination, whole-exome sequencing was performed. RESULTS Whole-exome sequencing analysis revealed two homozygous novel truncating mutations (p.W103* and p.P10PfsTer80) in the HPCA gene in two unrelated Turkish dystonia families presenting with complex dystonia. CONCLUSIONS After identification of HPCA as a genetic cause of DYT-HPCA-like dystonia by Charlesworth et al, this is the second report in the scientific literature that describes dystonia families harboring HPCA mutations. Our findings confirm that HPCA leads to recessively inherited dystonia. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Meltem Pak
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Erginel-Unaltuna
- Aziz Sancar Institute for Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Ann-Kathrin Hauser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gamze Guven
- Aziz Sancar Institute for Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Javier Simón-Sánchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice. Brain Behav Immun 2017. [PMID: 28624534 PMCID: PMC5650935 DOI: 10.1016/j.bbi.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo.
Collapse
|
18
|
Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. Biophysical and functional characterization of hippocalcin mutants responsible for human dystonia. Hum Mol Genet 2017; 26:2426-2435. [PMID: 28398555 PMCID: PMC5886089 DOI: 10.1093/hmg/ddx133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a neurological movement disorder that forces the body into twisting, repetitive movements or sometimes painful abnormal postures. With the advent of next-generation sequencing technologies, the homozygous mutations T71N and A190T in the neuronal calcium sensor (NCS) hippocalcin were identified as the genetic cause of primary isolated dystonia (DYT2 dystonia). However, the effect of these mutations on the physiological role of hippocalcin has not yet been elucidated. Using a multidisciplinary approach, we demonstrated that hippocalcin oligomerises in a calcium-dependent manner and binds to voltage-gated calcium channels. Mutations T71N and A190T in hippocalcin did not affect stability, calcium-binding affinity or translocation to cellular membranes (Ca2+/myristoyl switch). We obtained the first crystal structure of hippocalcin and alignment with other NCS proteins showed significant variability in the orientation of the C-terminal part of the molecule, the region expected to be important for target binding. We demonstrated that the disease-causing mutations did not affect the structure of the protein, however both mutants showed a defect in oligomerisation. In addition, we observed an increased calcium influx in KCl-depolarised cells expressing mutated hippocalcin, mostly driven by N-type voltage-gated calcium channels. Our data demonstrate that the dystonia-causing mutations strongly affect hippocalcin cellular functions which suggest a central role for perturbed calcium signalling in DYT2 dystonia.
Collapse
Affiliation(s)
- Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69?7ZB, UK and
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69?7ZB, UK
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| |
Collapse
|
19
|
Zhuang X, Chen Z, He C, Wang L, Zhou R, Yan D, Ge B. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol 2017; 14:237-244. [PMID: 27796284 PMCID: PMC5360883 DOI: 10.1038/cmi.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
To successfully infect host cells and evade the host immune response, a type III secretion system (T3SS) is commonly used by enteric bacterial pathogens such as enteropathogenic Escherichia coli (EPEC). Recent findings have revealed that various effectors are injected into host cells through the T3SS and exert an inhibitory effect on inflammatory signaling pathways, subverting the immune responses to these pathogens. Here we review recent studies aimed at addressing the modulation of several important inflammatory signaling pathways modulated by EPEC effector proteins, such as the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which provides insight into the unfinished work in this unexplored field and helps to identify novel positions in inflammatory signaling networks for EPEC effectors.Cellular & Molecular Immunology advance online publication, 31 October 2016; doi:10.1038/cmi.2016.52.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zijuan Chen
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lin Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ruixue Zhou
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dapeng Yan
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baoxue Ge
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
20
|
Britten RA, Jewell JS, Davis LK, Miller VD, Hadley MM, Semmes OJ, Lonart G, Dutta SM. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiat Res 2017; 187:287-297. [PMID: 28156212 DOI: 10.1667/rr14067.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Collapse
Affiliation(s)
- Richard A Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Leslie K Davis
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D Miller
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.,d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - György Lonart
- d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita M Dutta
- c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
21
|
Park SY, Yoon SN, Kang MJ, Lee Y, Jung SJ, Han JS. Hippocalcin Promotes Neuronal Differentiation and Inhibits Astrocytic Differentiation in Neural Stem Cells. Stem Cell Reports 2016; 8:95-111. [PMID: 28017654 PMCID: PMC5233403 DOI: 10.1016/j.stemcr.2016.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022] Open
Abstract
Hippocalcin (HPCA) is a calcium-binding protein that is restricted to nervous tissue and contributes to neuronal activity. Here we report that, in addition to inducing neurogenesis, HPCA inhibits astrocytic differentiation of neural stem cells. It promotes neurogenesis by regulating protein kinase Cα (PKCα) activation by translocating to the membrane and binding to phosphoinositide-dependent protein kinase 1 (PDK1), which induces PKCα phosphorylation. We also found that phospholipase D1 (PLD1) is implicated in the HPCA-mediated neurogenesis pathway; this enzyme promotes dephosphorylation of signal transducer and activator of transcription 3 (STAT3[Y705]), which is necessary for astrocytic differentiation. Moreover, we found that the SH2-domain-containing tyrosine phosphatase 1 (SHP-1) acts upstream of STAT3. Importantly, this SHP-1-dependent STAT3-inhibitory mechanism is closely involved in neurogenesis and suppression of gliogenesis by HPCA. Taken together, these observations suggest that HPCA promotes neuronal differentiation through activation of the PKCα/PLD1 cascade followed by activation of SHP-1, which dephosphorylates STAT3(Y705), leading to inhibition of astrocytic differentiation. Hippocalcin is required for neuronal differentiation in neural stem cells PKCα/PLD1 activation is required for hippocalcin-mediated neuronal differentiation Blocking of STAT3(Y705) activity by hippocalcin decreases astrocytic differentiation Hippocalcin promotes neurogenesis by inhibiting gliogenesis in neural stem cells
Collapse
Affiliation(s)
- Shin-Young Park
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Nyo Yoon
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Min-Jeong Kang
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - YunYoung Lee
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Joong-Soo Han
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Kim KS, Duignan KM, Hawryluk JM, Soh H, Tzingounis AV. The Voltage Activation of Cortical KCNQ Channels Depends on Global PIP2 Levels. Biophys J 2016; 110:1089-98. [PMID: 26958886 DOI: 10.1016/j.bpj.2016.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
The slow afterhyperpolarization (sAHP) is a calcium-activated potassium conductance with critical roles in multiple physiological processes. Pharmacological and genetic data suggest that KCNQ channels partly mediate the sAHP. However, these channels are not typically open within the observed voltage range of the sAHP. Recent work has shown that the sAHP is gated by increased PIP2 levels, which are generated downstream of calcium binding by neuronal calcium sensors such as hippocalcin. Here, we examined whether changes in PIP2 levels could shift the voltage-activation range of KCNQ channels. In HEK293T cells, expression of the PIP5 kinase PIPKIγ90, which increases global PIP2 levels, shifted the KCNQ voltage activation to within the operating range of the sAHP. Further, the sensitivity of this effect on KCNQ3 channels appeared to be higher than that on KCNQ2. Therefore, we predict that KCNQ3 plays an essential role in maintaining the sAHP under low PIP2 conditions. In support of this notion, we find that sAHP inhibition by muscarinic receptors that increase phosphoinositide turnover in neurons is enhanced in Kcnq3-knockout mice. Likewise, the presence of KCNQ3 is essential for maintaining the sAHP when hippocalcin is ablated, a condition that likely impairs PIP2 generation. Together, our results establish the relationship between PIP2 and the voltage dependence of cortical KCNQ channels (KCNQ2/3, KCNQ3/5, and KCNQ5), and suggest a possible mechanism for the involvement of KCNQ channels in the sAHP.
Collapse
Affiliation(s)
- Kwang S Kim
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Kevin M Duignan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Joanna M Hawryluk
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | | |
Collapse
|
23
|
Kang MJ, Park SY, Han JS. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells. Front Mol Neurosci 2016; 9:110. [PMID: 27840601 PMCID: PMC5083843 DOI: 10.3389/fnmol.2016.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Hippocalcin (Hpca) is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs). When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), and brain-derived neurotrophic factor (BDNF), together with the proneural basic helix loop helix (bHLH) transcription factors NeuroD and neurogenin 1 (Ngn1), increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP), an astrocyte marker, and in branch outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, NeuroD, and Ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727), and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201), suggesting that STAT3 (Ser727) activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and branch outgrowth in HNPCs.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University Seoul, South Korea
| | - Shin-Young Park
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University Seoul, South Korea
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang UniversitySeoul, South Korea; Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang UniversitySeoul, South Korea
| |
Collapse
|
24
|
Xiao J, Vemula SR, Xue Y, Khan MM, Kuruvilla KP, Marquez-Lona EM, Cobb MR, LeDoux MS. Motor phenotypes and molecular networks associated with germline deficiency of Ciz1. Exp Neurol 2016; 283:110-20. [PMID: 27163549 DOI: 10.1016/j.expneurol.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
A missense mutation in CIZ1 (c.790A>G, p.S264G) was linked to autosomal dominant cervical dystonia in a large multiplex Caucasian pedigree (OMIM614860, DYT23). CIZ1 is a p21((Cip1/Waf1)) -interacting zinc finger protein, widely expressed in neural and extra-neural tissues, and plays a role in DNA synthesis at the G1/S cell-cycle checkpoint. The role of CIZ1 in the nervous system and relative contributions of gain- or loss- of function to the pathogenesis of CIZ1-associated dystonia remain indefinite. Using relative quantitative reverse transcriptase-PCR, cerebellum showed the highest expression levels of Ciz1 in adult mouse brain, over two fold higher than liver, and higher than striatum, midbrain and cerebral cortex. Overall, neural expression of Ciz1 increased with postnatal age. A Ciz1 gene-trap knock-out (KO) mouse model (Ciz1(-/-)) was generated to examine the functional role(s) of CIZ1 in the sensorimotor nervous system and contributions of CIZ1 to cell-cycle control in the mammalian brain. Ciz1 transcripts were absent in Ciz1(-/-) mice and reduced by approximately 50% in Ciz1(+/-) mice. Ciz1(-/-) mice were fertile but smaller than wild-type (WT) littermates. Ciz1(-/-) mice did not manifest dystonia, but exhibited mild motoric abnormalities on balance, open-field activity, and gait. To determine the effects of germline KO of Ciz1 on whole-genome gene expression in adult brain, total RNA from mouse cerebellum was harvested from 6 10-month old Ciz1(-/-) mice and 6 age- and gender- matched WT littermates for whole-genome gene expression analysis. Based on whole-genome gene-expression analyses, genes involved in cellular movement, cell development, cellular growth, cellular morphology and cell-to-cell signaling and interaction were up-regulated in Ciz1(-/-) mice. The top up-regulated pathways were metabolic and cytokine-cytokine receptor interactions. Down-regulated genes were involved in cell cycle, cellular development, cell death and survival, gene expression and cell morphology. Down-regulated networks included those related to metabolism, focal adhesion, neuroactive ligand-receptor interaction, and MAPK signaling. Based on pathway analyses, transcription factor 7-like 2 (TCF7L2), a member of the Wnt/β-catenin signaling pathway, was a major hub for down-regulated genes, whereas NF-κB was a major hub for up-regulated genes. In aggregate, these data suggest that CIZ1 may be involved in the post-mitotic differentiation of neurons in response to external signals and changes in gene expression may compensate, in part, for CIZ1 deficiency in our Ciz1(-/-) mouse model. Although CIZ1 deficiency was associated with mild motor abnormalities, germline loss of Ciz1 was not associated with dystonia on the C57BL/6J background.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Satya R Vemula
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad M Khan
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Korah P Kuruvilla
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Esther M Marquez-Lona
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison R Cobb
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Krishnan A, Viviano J, Morozov Y, Venkataraman V. Single-column purification of the tag-free, recombinant form of the neuronal calcium sensor protein, hippocalcin expressed in Escherichia coli. Protein Expr Purif 2016; 123:35-41. [PMID: 27001424 DOI: 10.1016/j.pep.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 01/24/2023]
Abstract
Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability.
Collapse
Affiliation(s)
- Anuradha Krishnan
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Jeffrey Viviano
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Yaroslav Morozov
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA; School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
26
|
Viviano J, Krishnan A, Wu H, Venkataraman V. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins. Anal Biochem 2015; 494:93-100. [PMID: 26617128 DOI: 10.1016/j.ab.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/21/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.
Collapse
Affiliation(s)
- Jeffrey Viviano
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Anuradha Krishnan
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA; School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
27
|
Erro R, Klein C. DYT2 revealed: Hippocalcin mutations cause autosomal-recessive isolated dystonia. Mov Disord 2015; 30:1725. [DOI: 10.1002/mds.26280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders; University College London (UCL) Institute of Neurology; London United Kingdom
- Dipartimento di Scienze Neurologiche e del Movimento; Università di Verona; Verona Italy
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck; Lübeck Germany
| |
Collapse
|
28
|
Wolf C, Mohr H, Diekhof EK, Vieker H, Goya-Maldonado R, Trost S, Krämer B, Keil M, Binder EB, Gruber O. CREB1 Genotype Modulates Adaptive Reward-Based Decisions in Humans. Cereb Cortex 2015; 26:2970-81. [PMID: 26045569 DOI: 10.1093/cercor/bhv104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclic AMP response element-binding protein (CREB) contributes to adaptation of mesocorticolimbic networks by modulating activity-regulated transcription and plasticity in neurons. Activity or expression changes of CREB in the nucleus accumbens (NAc) and orbital frontal cortex (OFC) interact with behavioral changes during reward-motivated learning. However, these findings from animal models have not been evaluated in humans. We tested whether CREB1 genotypes affect reward-motivated decisions and related brain activation, using BOLD fMRI in 224 young and healthy participants. More specifically, participants needed to adapt their decision to either pursue or resist immediate rewards to optimize the reward outcome. We found significant CREB1 genotype effects on choices to pursue increases of the reward outcome and on BOLD signal in the NAc, OFC, insula cortex, cingulate gyrus, hippocampus, amygdala, and precuneus during these decisions in comparison with those decisions avoiding total reward loss. Our results suggest that CREB1 genotype effects in these regions could contribute to individual differences in reward- and associative memory-based decision-making.
Collapse
Affiliation(s)
- Claudia Wolf
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany Laboratory of Behavioral Neuroscience, National Institute of Aging, Baltimore, MD 21224-6825, USA
| | - Holger Mohr
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany Department of General Psychology, Technical University Dresden, Dresden 01069, Germany
| | - Esther K Diekhof
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany Grindel Biocenter and Zoological Museum, Institute for Humanbiology, University Hamburg, Hamburg 20146, Germany
| | - Henning Vieker
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Roberto Goya-Maldonado
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany
| | - Sarah Trost
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany
| | - Bernd Krämer
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany
| | - Maria Keil
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany
| | | | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen 37075, Germany
| |
Collapse
|
29
|
Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet 2015; 96:657-65. [PMID: 25799108 PMCID: PMC4385177 DOI: 10.1016/j.ajhg.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as “DYT2 dystonia,” have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether “DYT2 dystonia” is a genetically homogeneous condition or not.
Collapse
|
30
|
Park SY, Gomes C, Oh SD, Soh J. Cadmium up-regulates transcription of the steroidogenic acute regulatory protein (StAR) gene through phosphorylated CREB rather than SF-1 in K28 cells. J Toxicol Sci 2015; 40:151-61. [DOI: 10.2131/jts.40.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Soo-Yun Park
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Korea
| | - Cynthia Gomes
- University of South Carolina, Department of Biology, USA
| | - Sung-Dug Oh
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Korea
| | - Jaemog Soh
- Hormone Research Center and School of Biological Sciences and Technology, Chonnam National University, Korea
| |
Collapse
|
31
|
Föcking M, Opstelten R, Prickaerts J, Steinbusch HWM, Dunn MJ, van den Hove DLA, Cotter DR. Proteomic investigation of the hippocampus in prenatally stressed mice implicates changes in membrane trafficking, cytoskeletal, and metabolic function. Dev Neurosci 2014; 36:432-42. [PMID: 25138076 DOI: 10.1159/000365327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress influences the development of the fetal brain and so contributes to the risk of the development of psychiatric disorders in later life. The hippocampus is particularly sensitive to prenatal stress, and robust abnormalities have been described in the hippocampus in schizophrenia and depression. The aim of this study was to determine whether prenatal stress is associated with distinct patterns of differential protein expression in the hippocampus using a validated mouse model. We therefore performed a comparative proteomic study assessing female hippocampal samples from 8 prenatally stressed mice and 8 control mice. Differential protein expression was assessed using 2-dimensional difference in gel electrophoresis and subsequent mass spectrometry. The observed changes in a selected group of differentially expressed proteins were confirmed by Western blotting. In comparison to controls, 47 protein spots (38 individual proteins) were found to be differentially expressed in the hippocampus of prenatally stressed mice. Functional grouping of these proteins revealed that prenatal stress influenced the expression of proteins involved in brain development, cytoskeletal composition, stress response, and energy metabolism. Western blotting was utilized to validate the changes in calretinin, hippocalcin, profilin-1 and the signal-transducing adaptor molecule STAM1. Septin-5 could not be validated via Western blotting due to methodological issues. Closer investigation of the validated proteins also pointed to an interesting role for membrane trafficking deficits mediated by prenatal stress. Our findings demonstrate that prenatal stress leads to altered hippocampal protein expression, implicating numerous molecular pathways that may provide new targets for psychotropic drug development.
Collapse
Affiliation(s)
- Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
32
|
Anesthetic sevoflurane reduces levels of hippocalcin and postsynaptic density protein 95. Mol Neurobiol 2014; 51:853-63. [PMID: 24870966 DOI: 10.1007/s12035-014-8746-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022]
Abstract
Sevoflurane, the commonly used inhalation anesthetic in children, has been shown to enhance cytosolic calcium levels and induce cognitive impairment in young mice. However, the downstream consequences of the sevoflurane-induced elevation in cytosolic calcium levels and the upstream mechanisms of the sevoflurane-induced cognitive impairment remain largely to be determined. Hippocalcin is one of the neuronal calcium sensor proteins, and also binds to postsynaptic density protein 95 (PSD-95). We therefore set out to determine the effects of sevoflurane on the levels of hippocalcin and PSD-95 in vitro and in vivo. Hippocampus neurons from mice and 6-day-old mice were treated with 4.1% sevoflurane for 6 h or 3% sevoflurane 2 h daily for 3 days, respectively. We then measured the levels of hippocalcin and PSD-95, and assessed whether BAPTA, an intracellular calcium chelator, and memantine, a partial antagonist of the NMDA receptor, could inhibit the sevoflurane's effects. We found that sevoflurane decreased the levels of hippocalcin and PSD-95 in the neurons; and decreased the levels of hippocalcin and PSD-95 in the hippocampus of mice immediately after the anesthesia, but only the PSD-95 levels three weeks after the anesthesia. BAPTA inhibited the sevoflurane's effects in the neurons. Memantine attenuated the sevoflurane-induced reductions in the levels of hippocalcin and PSD-95, as well as the sevoflurane-induced cognitive impairment in mice. These data suggested that sevoflurane decreased the levels of hippocalcin and PSD-95, which could serve as one of bridge mechanisms between the sevoflurane-induced elevation of cytosolic calcium levels and the sevoflurane-induced cognitive impairment.
Collapse
|
33
|
Sun D, McGinn M, Hankins JE, Mays KM, Rolfe A, Colello RJ. Aging- and injury-related differential apoptotic response in the dentate gyrus of the hippocampus in rats following brain trauma. Front Aging Neurosci 2013; 5:95. [PMID: 24385964 PMCID: PMC3866524 DOI: 10.3389/fnagi.2013.00095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022] Open
Abstract
The elderly are among the most vulnerable to traumatic brain injury (TBI) with poor functional outcomes and impaired cognitive recovery. Of the pathological changes that occur following TBI, apoptosis is an important contributor to the secondary insults and subsequent morbidity associated with TBI. The current study investigated age-related differences in the apoptotic response to injury, which may represent a mechanistic underpinning of the heightened vulnerability of the aged brain to TBI. This study compared the degree of TBI-induced apoptotic response and changes of several apoptosis-related proteins in the hippocampal dentate gyrus (DG) of juvenile and aged animals following injury. Juvenile (p28) and aged rats (24 months) were subjected to a moderate fluid percussive injury or sham injury and sacrificed at 2 days post-injury. One group of rats in both ages was sacrificed and brain sections were processed for TUNEL and immunofluorescent labeling to assess the level of apoptosis and to identify cell types which undergo apoptosis. Another group of animals was subjected to proteomic analysis, whereby proteins from the ipsilateral DG were extracted and subjected to 2D-gel electrophoresis and mass spectrometry analysis. Histological studies revealed age- and injury-related differences in the number of TUNEL-labeled cells in the DG. In sham animals, juveniles displayed a higher number of TUNEL+ apoptotic cells located primarily in the subgranular zone of the DG as compared to the aged brain. These apoptotic cells expressed the early neuronal marker PSA-NCAM, suggestive of newly generated immature neurons. In contrast, aged rats had a significantly higher number of TUNEL+ cells following TBI than injured juveniles, which were NeuN-positive mature neurons located predominantly in the granule cell layer. Fluorescent triple labeling revealed that microglial cells were closely associated to the apoptotic cells. In concert with these cellular changes, proteomic studies revealed both age-associated and injury-induced changes in the expression levels of three apoptotic-related proteins: hippocalcin, leucine-rich acidic nuclear protein and heat shock protein 27. Taken together, this study revealed distinct apoptotic responses following TBI in the juvenile and aged brain which may contribute to the differential cognitive recovery observed.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Melissa McGinn
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Jeanette E Hankins
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Katherine M Mays
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Andrew Rolfe
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Raymond J Colello
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
34
|
Van den Hove DLA, Kenis G, Brass A, Opstelten R, Rutten BPF, Bruschettini M, Blanco CE, Lesch KP, Steinbusch HWM, Prickaerts J. Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex. Eur Neuropsychopharmacol 2013. [PMID: 23199416 DOI: 10.1016/j.euroneuro.2012.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse life events during pregnancy may impact upon the developing fetus, predisposing prenatally stressed offspring to the development of psychopathology. In the present study, we examined the effects of prenatal restraint stress (PS) on anxiety- and depression-related behavior in both male and female adult Sprague-Dawley rats. In addition, gene expression profiles within the hippocampus and frontal cortex (FC) were examined in order to gain more insight into the molecular mechanisms that mediate the behavioral effects of PS exposure. PS significantly increased anxiety-related behavior in male, but not female offspring. Likewise, depression-related behavior was increased in male PS rats only. Further, male PS offspring showed increased basal plasma corticosterone levels in adulthood, whereas both PS males and females had lower stress-induced corticosterone levels when compared to controls. Microarray-based profiling of the hippocampus and FC showed distinct sex-dependent changes in gene expression after PS. Biological processes and/or signal transduction cascades affected by PS included glutamatergic and GABAergic neurotransmission, mitogen-activated protein kinase (MAPK) signaling, neurotrophic factor signaling, phosphodiesterase (PDE)/ cyclic nucleotide signaling, glycogen synthase kinase 3 (GSK3) signaling, and insulin signaling. Further, the data indicated that epigenetic regulation is affected differentially in male and female PS offspring. These sex-specific alterations may, at least in part, explain the behavioral differences observed between both sexes, i.e. relative vulnerability versus resilience to PS in male versus female rats, respectively. These data reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors.
Collapse
Affiliation(s)
- D L A Van den Hove
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim KS, Kobayashi M, Takamatsu K, Tzingounis AV. Hippocalcin and KCNQ channels contribute to the kinetics of the slow afterhyperpolarization. Biophys J 2012; 103:2446-54. [PMID: 23260046 DOI: 10.1016/j.bpj.2012.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 12/29/2022] Open
Abstract
The calcium-activated slow afterhyperpolarization (sAHP) is a potassium conductance implicated in many physiological functions of the brain including memory, aging, and epilepsy. In large part, the sAHP's importance stems from its exceedingly long-lasting time-course, which integrates action potential-induced calcium signals and allows the sAHP to control neuronal excitability and prevent runaway firing. Despite its role in neuronal physiology, the molecular mechanisms that give rise to its unique kinetics are, to our knowledge, still unknown. Recently, we identified KCNQ channels as a candidate potassium channel family that can contribute to the sAHP. Here, we test whether KCNQ channels shape the sAHP rise and decay kinetics in wild-type mice and mice lacking Hippocalcin, the putative sAHP calcium sensor. Application of retigabine to speed KCNQ channel activation accelerated the rise of the CA3 pyramidal neuron sAHP current in both wild-type and Hippocalcin knockout mice, indicating that the gating of KCNQ channels limits the sAHP activation. Interestingly, we found that the decay of the sAHP was prolonged in Hippocalcin knockout mice, and that the decay was sensitive to retigabine modulation, unlike in wild-type mice. Together, our results demonstrate that sAHP activation in CA3 pyramidal neurons is critically dependent on KCNQ channel kinetics whereas the identity of the sAHP calcium sensor determines whether KCNQ channel kinetics also limit the sAHP decay.
Collapse
Affiliation(s)
- Kwang S Kim
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
36
|
Kobayashi M, Hamanoue M, Masaki T, Furuta Y, Takamatsu K. Hippocalcin mediates calcium-dependent translocation of brain-type creatine kinase (BB-CK) in hippocampal neurons. Biochem Biophys Res Commun 2012; 429:142-7. [PMID: 23142228 DOI: 10.1016/j.bbrc.2012.10.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 02/03/2023]
Abstract
Hippocalcin (Hpca) is a Ca(2+)-binding protein that is expressed in neurons and contributes to neuronal plasticity. We purified a 48 kDa Hpca-associated protein from rat brain and identified it to be the creatine kinase B (CKB) subunit, which constitutes brain-type creatine kinase (BB-CK). Hpca specifically bound to CKB in a Ca(2+)-dependent manner, but not to the muscle-type creatine kinase M subunit. The N-terminal region of Hpca was required for binding to CKB. Hpca mediated Ca(2+)-dependent partial translocation of CKB (approximately 10-15% of total creatine kinase activity) to membranes. N-myristoylation of Hpca was critical for membrane translocation, but not for binding to CKB. In cultured hippocampal neurons, ionomycin treatment led to colocalization of Hpca and CKB adjacent to the plasma membrane. These results indicate that Hpca associates with BB-CK and that together they translocate to membrane compartments in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Masaaki Kobayashi
- Department of Physiology, Toho University School of Medicine, Ohmori-nishi 5-21-16, Ohta-ku, Tokyo 143-8540, Japan
| | | | | | | | | |
Collapse
|
37
|
Lim YA, Giese M, Shepherd C, Halliday G, Kobayashi M, Takamatsu K, Staufenbiel M, Eckert A, Götz J. Role of hippocalcin in mediating Aβ toxicity. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1247-57. [PMID: 22542901 DOI: 10.1016/j.bbadis.2012.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/04/2012] [Accepted: 04/12/2012] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and amyloid-β (Aβ) plaques and tau-containing tangles are its histopathological hallmark lesions. These do not occur at random; rather, the neurodegenerative process is stereotyped in that it is initiated in the entorhinal cortex and hippocampal formation. Interestingly, it is the latter brain area where the calcium-sensing enzyme hippocalcin is highly expressed. Because calcium deregulation is a well-established pathomechanism in AD, we aimed to address the putative role of hippocalcin in human AD brain and transgenic mouse models. We found that hippocalcin levels are increased in human AD brain and in Aβ plaque-forming APP23 transgenic mice compared to controls. To determine the role of hippocalcin in Aβ toxicity, we treated primary cultures derived from hippocalcin knockout (HC KO) mice with Aβ and found them to be more susceptible to Aβ toxicity than controls. Likewise, treatment with either thapsigargin or ionomycin, both known to deregulate intracellular calcium levels, caused an increased toxicity in hippocampal neurons from HC KO mice compared to wild-type. We found further that mitochondrial complex I activity increased from 3 to 6months in hippocampal mitochondria from wild-type and HC KO mice, but that the latter exhibited a significantly stronger aging phenotype than wild-type. Aβ treatment induced significant toxicity on hippocampal mitochondria from HC KO mice already at 3months of age, while wild-type mitochondria were spared. Our data suggest that hippocalcin has a neuroprotective role in AD, presenting it as a putative biomarker.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW 2050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease-old wine in new bottles. Front Mol Neurosci 2012; 5:20. [PMID: 22375104 PMCID: PMC3284765 DOI: 10.3389/fnmol.2012.00020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
The neuronal Ca2+-sensor (NCS) proteins VILIP-1 and VILIP-3 have been implicated in the etiology of Alzheimer's disease (AD). Genome-wide association studies (GWAS) show association of genetic variants of VILIP-1 (VSNL1) and VILIP-3 (HPCAL1) with AD+P (+psychosis) and late onset AD (LOAD), respectively. In AD brains the expression of VILIP-1 and VILIP-3 protein and mRNA is down-regulated in cortical and limbic areas. In the hippocampus, for instance, reduced VILIP-1 mRNA levels correlate with the content of neurofibrillary tangles (NFT) and amyloid plaques, the pathological characteristics of AD, and with the mini mental state exam (MMSE), a test for cognitive impairment. More recently, VILIP-1 was evaluated as a cerebrospinal fluid (CSF) biomarker and a prognostic marker for cognitive decline in AD. In CSF increased VILIP-1 levels correlate with levels of Aβ, tau, ApoE4, and reduced MMSE scores. These findings tie in with previous results showing that VILIP-1 is involved in pathological mechanisms of altered Ca2+-homeostasis leading to neuronal loss. In PC12 cells, depending on co-expression with the neuroprotective Ca2+-buffer calbindin D28K, VILIP-1 enhanced tau phosphorylation and cell death. On the other hand, VILIP-1 affects processes, such as cyclic nucleotide signaling and dendritic growth, as well as nicotinergic modulation of neuronal network activity, both of which regulate synaptic plasticity and cognition. Similar to VILIP-1, its interaction partner α4β2 nicotinic acetylcholine receptor (nAChR) is severely reduced in AD, causing severe cognitive deficits. Comparatively little is known about VILIP-3, but its interaction with cytochrome b5, which is part of an antioxidative system impaired in AD, hint toward a role in neuroprotection. A current hypothesis is that the reduced expression of visinin-like protein (VSNLs) in AD is caused by selective vulnerability of subpopulations of neurons, leading to the death of these VILIP-1-expressing neurons, explaining its increased CSF levels. While the Ca2+-sensor appears to be a good biomarker for the detrimental effects of Aβ in AD, its early, possibly Aβ-induced, down-regulation of expression may additionally attenuate neuronal signal pathways regulating the functions of dendrites and neuroplasticity, and as a consequence, this may contribute to cognitive decline in early AD.
Collapse
Affiliation(s)
- Karl H Braunewell
- Molecular and Cellular Neuroscience Laboratory, Department Biochemistry and Molecular Biology, Southern Research Institute, Birmingham AL, USA
| |
Collapse
|
39
|
Burgoyne RD, Haynes LP. Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 2012; 5:2. [PMID: 22269068 PMCID: PMC3271974 DOI: 10.1186/1756-6606-5-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/23/2012] [Indexed: 01/22/2023] Open
Abstract
Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca2+ concentration are detected by Ca2+-binding proteins that can interact with and regulate target proteins to modify their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in the nervous system. Here we review recent advances in the understanding of the physiological roles of the NCS proteins and the molecular basis for their specificity.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
40
|
Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 2011; 118:695-713. [PMID: 21722133 DOI: 10.1111/j.1471-4159.2011.07372.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, substantial progress has been made towards an understanding of the physiological function of EF-hand calcium sensor proteins of the Calmodulin (CaM) superfamily in neurons. This deeper appreciation is based on the identification of novel target interactions, structural studies and the discovery of novel signalling mechanisms in protein trafficking and synaptic plasticity, in which CaM-like sensor proteins appear to play a role. However, not all interactions are of plausible physiological relevance and in many cases it is not yet clear how the CaM signaling network relates to the proposed function of other EF-hand sensors. In this review, we will summarize these findings and address some of the open questions on the functional role of EF-hand calcium binding proteins in neurons.
Collapse
Affiliation(s)
- Marina Mikhaylova
- PG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
41
|
Chen L, Xing T, Wang M, Miao Y, Tang M, Chen J, Li G, Ruan DY. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats. Eur J Neurosci 2011; 33:266-75. [DOI: 10.1111/j.1460-9568.2010.07491.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Dovgan AV, Cherkas VP, Stepanyuk AR, Fitzgerald DJ, Haynes LP, Tepikin AV, Burgoyne RD, Belan PV. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons. Eur J Neurosci 2010; 32:347-58. [PMID: 20704590 PMCID: PMC3069492 DOI: 10.1111/j.1460-9568.2010.07303.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hippocalcin is a Ca2+-binding protein that belongs to a family of neuronal Ca2+sensors and is a key mediator of many cellular functions including synaptic plasticity and learning. However, the molecular mechanisms involved in hippocalcin signalling remain illusive. Here we studied whether glutamate receptor activation induced by locally applied or synaptically released glutamate can be decoded by hippocalcin translocation. Local AMPA receptor activation resulted in fast hippocalcin-YFP translocation to specific sites within a dendritic tree mainly due to AMPA receptor-dependent depolarization and following Ca2+influx via voltage-operated calcium channels. Short local NMDA receptor activation induced fast hippocalcin-YFP translocation in a dendritic shaft at the application site due to direct Ca2+influx via NMDA receptor channels. Intrinsic network bursting produced hippocalcin-YFP translocation to a set of dendritic spines when they were subjected to several successive synaptic vesicle releases during a given burst whereas no translocation to spines was observed in response to a single synaptic vesicle release and to back-propagating action potentials. The translocation to spines required Ca2+influx via synaptic NMDA receptors in which Mg2+ block is relieved by postsynaptic depolarization. This synaptic translocation was restricted to spine heads and even closely (within 1–2 μm) located spines on the same dendritic branch signalled independently. Thus, we conclude that hippocalcin may differentially decode various spatiotemporal patterns of glutamate receptor activation into site- and time-specific translocation to its targets. Hippocalcin also possesses an ability to produce local signalling at the single synaptic level providing a molecular mechanism for homosynaptic plasticity.
Collapse
Affiliation(s)
- A V Dovgan
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
43
|
van Nieuwenhuijzen PS, Kashem MA, Matsumoto I, Hunt GE, McGregor IS. A long hangover from party drugs: Residual proteomic changes in the hippocampus of rats 8 weeks after γ-hydroxybutyrate (GHB), 3,4-methylenedioxymethamphetamine (MDMA) or their combination. Neurochem Int 2010; 56:871-7. [DOI: 10.1016/j.neuint.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
44
|
VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 2010; 113:1577-88. [PMID: 20374424 DOI: 10.1111/j.1471-4159.2010.06719.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.
Collapse
Affiliation(s)
- Heather D VanGuilder
- Department of Pharmacology, Hershey Center for Applied Research, Penn State College of Medicine, University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
45
|
Burgoyne RD, Haynes LP. Neuronal calcium sensor proteins: emerging roles in membrane traffic and synaptic plasticity. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948784 PMCID: PMC2948346 DOI: 10.3410/b2-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ plays a crucial role in the regulation of neuronal function. Recent work has revealed important functions for two families of neuronally expressed Ca2+ sensor proteins. These include roles in membrane traffic and in alterations in synaptic plasticity underlying changes in behaviour.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool Crown Street, Liverpool, L69 3BX UK
| | | |
Collapse
|
46
|
Variation in the CBP gene involved in epigenetic control associates with cognitive function. Neurobiol Aging 2010; 32:549.e1-8. [PMID: 20096957 DOI: 10.1016/j.neurobiolaging.2009.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/21/2009] [Accepted: 12/27/2009] [Indexed: 11/22/2022]
Abstract
Research into the pathologic mechanisms of neurodegenerative diseases has revealed that CREB binding protein (CBP) plays an important role in cognitive dysfunction. Loss of one copy of this gene leads to a syndrome with severe cognitive dysfunction. We investigated the association between four common variants in the CBP gene and cognitive function in 5804 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Baseline associations between genetic variation and cognitive function were assessed with linear regression. Longitudinal associations were assessed with linear mixed models. All analyses were adjusted for sex, age, education, country, version of test, and pravastatin use. The intron 4CT and intron 3AC polymorphisms in the CBP gene were associated with better cognitive performance at baseline and during follow-up. Furthermore, the haplotype with the variant alleles of these two polymorphisms also showed a protective effect on cognitive function in all cognitive domains (all p<0.03). Genetic variation in the CBP gene is associated with better cognitive performance in an elderly population. Future research is necessary to investigate the effect of these polymorphisms on the expression of CBP levels and how these polymorphisms affect the gene expression mediated by CBP.
Collapse
|
47
|
Abstract
Glutamate and GABA (gamma-aminobutyric acid) are the predominant excitatory and inhibitory neurotransmitters in the mammalian CNS (central nervous system) respectively, and as such have undergone intense investigation. Given their predominance, it is no wonder that the reciprocal receptors for these neurotransmitters have attracted so much attention as potential targets for the promotion of health and the treatment of disease. Indeed, dysfunction of these receptors underlies a number of well-characterized neuropathological conditions such as anxiety, epilepsy and neurodegenerative diseases. Although intrinsically linked, the glutamatergic and GABAergic systems have, by and large, been investigated independently, with researchers falling into the 'excitatory' or 'inhibitory' camps. Around 70 delegates gathered at the University of St Andrews for this Biochemical Society Focused Meeting aimed at bringing excitation and inhibition together. With sessions on behaviour, receptor structure and function, receptor trafficking, activity-dependent changes in gene expression and excitation/inhibition in disease, the meeting was the ideal occasion for delegates from both backgrounds to interact. This issue of Biochemical Society Transactions contains papers written by those who gave oral presentations at the meeting. In this brief introductory review, I put into context and give a brief overview of these contributions.
Collapse
|
48
|
Abstract
Calcium entry plays a major role in the induction of several forms of synaptic plasticity in different areas of the central nervous system. The spatiotemporal aspects of these calcium signals can determine the type of synaptic plasticity induced, e.g. LTP (long-term potentiation) or LTD (long-term depression). A vast amount of research has been conducted to identify the molecular and cellular signalling pathways underlying LTP and LTD, but many components remain to be identified. Calcium sensor proteins are thought to play an essential role in regulating the initial part of synaptic plasticity signalling pathways. However, there is still a significant gap in knowledge, and it is only recently that evidence for the importance of members of the NCS (neuronal calcium sensor) protein family has started to emerge. The present minireview aims to bring together evidence supporting a role for NCS proteins in plasticity, focusing on emerging roles of NCS-1 and hippocalcin.
Collapse
|
49
|
Rudinskiy N, Kaneko YA, Beesen AA, Gokce O, Régulier E, Déglon N, Luthi-Carter R. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons. J Neurochem 2009; 111:460-72. [PMID: 19686238 DOI: 10.1111/j.1471-4159.2009.06344.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hippocalcin is a neuronal calcium sensor protein previously implicated in regulating neuronal viability and plasticity. Hippocalcin is the most highly expressed neuronal calcium sensor in the medium spiny striatal output neurons that degenerate selectively in Huntington's disease (HD). We have previously shown that decreased hippocalcin expression occurs in parallel with the onset of disease phenotype in mouse models of HD. Here we show by in situ hybridization histochemistry that hippocalcin RNA is also diminished by 63% in human HD brain. These findings lead us to hypothesize that diminished hippocalcin expression might contribute to striatal neurodegeneration in HD. We tested this hypothesis by assessing whether restoration of hippocalcin expression would decrease striatal neurodegeneration in cellular models of HD comprising primary striatal neurons exposed to mutant huntingtin, the mitochondrial toxin 3-nitropropionic acid or an excitotoxic concentration of glutamate. Counter to our hypothesis, hippocalcin expression did not improve the survival of striatal neurons under these conditions. Likewise, expression of hippocalcin together with interactor proteins including the neuronal apoptosis inhibitory protein did not increase the survival of striatal cells in cellular models of HD. These results indicate that diminished hippocalcin expression does not contribute to HD-related neurodegeneration.
Collapse
Affiliation(s)
- Nikita Rudinskiy
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Fu J, Zhang J, Jin F, Patchefsky J, Braunewell KH, Klein-Szanto AJ. Promoter regulation of the visinin-like subfamily of neuronal calcium sensor proteins by nuclear respiratory factor-1. J Biol Chem 2009; 284:27577-86. [PMID: 19674972 DOI: 10.1074/jbc.m109.049361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VILIP-1 (gene name VSNL1), a member of the neuronal Ca(2+) sensor protein family, acts as a tumor suppressor gene by inhibiting cell proliferation, adhesion, and invasiveness. VILIP-1 expression is down-regulated in several types of human cancer. In human non-small cell lung cancer, we found that down-regulation was due to epigenetic changes. Consequently, in this study we analyzed the VSNL1 promoter and its regulation. Serial truncation of the proximal 2-kb VSNL1 promoter (VP-1998) from its 5' terminus disclosed that the last 3' terminal 100-bp promoter fragment maintained similar promoter activity as compared with VP-1998 and therefore was referred to as VSNL1 minimal promoter. When the 5' terminal 50 bp were deleted from the minimal promoter, the activity was dramatically decreased, suggesting that the deleted 50 bp contained a potential cis-acting element crucial for promoter activity. Deletion and site-directed mutagenesis combined with in silico transcription factor binding analysis of VSNL1 promoter identified nuclear respiratory factor (NRF)-1/alpha-PAL as a major player in regulating VSNL1 minimal promoter activity. The function of NRF-1 was further confirmed using dominant-negative NRF-1 overexpression and NRF-1 small interfering RNA knockdown. Electrophoretic mobility shift assay and chromatin immunoprecipitation provided evidence for direct NRF-1 binding to the VSNL1 promoter. Methylation of the NRF-1-binding site was found to be able to regulate VSNL1 promoter activity. Our results further indicated that NRF-1 could be a regulatory factor for gene expression of the other visinin-like subfamily members including HPCAL4, HPCAL1, HPCA, and NCALD.
Collapse
Affiliation(s)
- Jian Fu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|