1
|
Sunkaria A, Bhardwaj S. Sleep Disturbance and Alzheimer's Disease: The Glial Connection. Neurochem Res 2022; 47:1799-1815. [PMID: 35303225 DOI: 10.1007/s11064-022-03578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
2
|
Cespuglio R, Amrouni D, Raymond EF, Bouteille B, Buguet A. Cerebral inducible nitric oxide synthase protein expression in microglia, astrocytes and neurons in Trypanosoma brucei brucei-infected rats. PLoS One 2019; 14:e0215070. [PMID: 30995270 PMCID: PMC6469759 DOI: 10.1371/journal.pone.0215070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
To study the anatomo-biochemical substrates of brain inflammatory processes, Wistar male rats were infected with Trypanosoma brucei brucei. With this reproducible animal model of human African trypanosomiasis, brain cells (astrocytes, microglial cells, neurons) expressing the inducible nitric oxide synthase (iNOS) enzyme were revealed. Immunohistochemistry was achieved for each control and infected animal through eight coronal brain sections taken along the caudorostral axis of the brain (brainstem, cerebellum, diencephalon and telencephalon). Specific markers of astrocytes (anti-glial fibrillary acidic protein), microglial cells (anti-integrin alpha M) or neurons (anti-Neuronal Nuclei) were employed. The iNOS staining was present in neurons, astrocytes and microglial cells, but not in oligodendrocytes. Stained astrocytes and microglial cells resided mainly near the third cavity in the rostral part of brainstem (periaqueductal gray), diencephalon (thalamus and hypothalamus) and basal telencephalon. Stained neurons were scarce in basal telencephalon, contrasting with numerous iNOS-positive neuroglial cells. Contrarily, in dorsal telencephalon (neocortex and hippocampus), iNOS-positive neurons were plentiful, contrasting with the marked paucity of labelled neuroglial (astrocytes and microglial) cells. The dual distribution between iNOS-labelled neuroglial cells and iNOS-labelled neurons is a feature that has never been described before. Functionalities attached to such a divergent distribution are discussed.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
- Sechenov 1st Moscow State Medical University, Laboratory of Psychiatric Neurobiology, Moscow, Russia
| | - Donia Amrouni
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
| | - Elizabeth F. Raymond
- Faculty of Medicine, team EA 4171, Claude-Bernard Lyon-1 University, Lyon, France
| | - Bernard Bouteille
- Department of Parasitology, Dupuytren University Hospital, Limoges, France
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, Villeurbanne, France
| |
Collapse
|
3
|
Li M, Kang R, Jia S, Shi J, Liu G, Zhang J. Sedative and hypnotic activity of N(6)-(3-methoxyl-4-hydroxybenzyl) adenine riboside (B2), an adenosine analog. Pharmacol Biochem Behav 2013; 117:151-6. [PMID: 24361595 DOI: 10.1016/j.pbb.2013.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 11/26/2022]
Abstract
N(6)-(3-methoxyl-4-hydroxybenzyl) adenine riboside (B2) is an N(6)-substitued adenosine analog. Previous studies have shown that B2 binds to the adenosine A1 and A2A receptors with moderate affinity and produces protective effects on serum deprivation-induced cell damage. However, central nervous system effects of B2 have not been studied. We aimed to investigate the sedative and hypnotic effects and the mechanism of action of B2 in mice. Our behavioral studies showed that oral administration of B2 decreased spontaneous locomotor activity and potentiated the hypnotic effect of pentobarbital in mice. Sleep architecture analyses revealed that B2 decreased wakefulness and increased non-rapid eye movement (NREM) sleep in both normal mice and mice with caffeine-induced insomnia. Using immunohistochemistry, we showed that B2 increased c-Fos expression, a cellular marker for neuronal activity, in the ventrolateral preoptic (VLPO) area, a sleep center in the anterior hypothalamus. Altogether, these results indicate that oral administration of B2 produces sedative and hypnotic effects. Furthermore, the activation of VLPO neurons may be involved in the central depressant effects of B2.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Department of Clinical Pharmacology, Beijing Hospital of the Ministry of Health, Beijing 100730, PR China
| | - Ruixia Kang
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shaobo Jia
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiangong Shi
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - GengTao Liu
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - JianJun Zhang
- State Key Laboratory Of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
4
|
Zhang Y, Li M, Kang RX, Shi JG, Liu GT, Zhang JJ. NHBA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice. Pharmacol Biochem Behav 2012; 102:450-7. [PMID: 22683621 DOI: 10.1016/j.pbb.2012.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/24/2012] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
Abstract
The rhizomes of Gastrodia elata have been used for the treatment of insomnia in oriental countries. N⁶-(4-hydroxybenzyl) adenine riboside (NHBA) was originally isolated from G. elata. For the first time we report a detailed study on the effects and mechanisms of NHBA on its sedative and hypnotic activity. Adenosine, an endogenous sleep factor, regulates sleep-wake cycle via interacting with adenosine A₁/A(2A) receptors. Using radioligand binding studies and cAMP accumulation assays, our results show that NHBA may be a functional ligand for the adenosine A₁ and A(2A) receptors. NHBA significantly decreases spontaneous locomotor activity and potentiates the hypnotic effect of sodium pentobarbital in mice. Sleep architecture analyses reveal that NHBA significantly decreases wakefulness time and increases NREM sleep times. However, NHBA does not affect the amount of REM sleep. Pretreatment with the adenosine A₁ receptor antagonist DPCPX or the A(2A) receptor antagonist SCH 58261 significantly reverses the increase in sleeping time induced by NHBA in sodium pentobarbital treated mice. Immunohistochemical studies show that NHBA increases c-Fos expression in GABAergic neurons of the ventrolateral preoptic area (VLPO), which suggests that NHBA activates the sleep center in the anterior hypothalamus. Altogether, these results indicate that NHBA produces significant sedative and hypnotic effects. Such effects might be mediated by the activation of adenosine A₁/A(2A) receptors and stimulation of the sleep center VLPO.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
5
|
Cespuglio R, Amrouni D, Meiller A, Buguet A, Gautier-Sauvigné S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med Rev 2012; 16:265-79. [PMID: 22406306 DOI: 10.1016/j.smrv.2012.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) production involves four different NO-synthases (NOSs) that are either constitutive (neuronal, nNOS; endothelial, eNOS; mitochondrial, mNOS) or inducible (iNOS) in nature. Three main processes regulate NO/NOSs output, i.e., the L-arginine/arginase substrate-competing system, the L-citrulline/arginosuccinate-recycling system and the asymmetric dimethyl-/monomethyl-L-arginine-inhibiting system. In adult animals, nNOS exhibits a dense innervation intermingled with pontine sleep structures. It is well established that the NO/nNOS production makes a key contribution to daily homeostatic sleep (slow-wave sleep, SWS; rapid eye movement sleep, REM sleep). In the basal hypothalamus, the NO/nNOS production further contributes to the REM sleep rebound that takes place after a sleep deprivation (SD). This production may also contribute to the sleep rebound that is associated with an immobilization stress (IS). In adult animals, throughout the SD time-course, an additional NO/iNOS production takes place in neurons. Such production mediates a transitory SD-related SWS rebound. A transitory NO/iNOS production is also part of the immune system. Such a production contributes to the SWS increase that accompanies inflammatory events and is ensured by microglial cells and astrocytes. Finally, with aging, the iNOS expression becomes permanent and the corresponding NO/iNOS production is important to ensure an adequate maintenance of REM sleep and, to a lesser extent, SWS. Despite such maintenance, aged animals, however, are not able to elicit a sleep rebound to deal with the challenge of SD or IS. Sleep regulatory processes in adult animals thus become impaired with age. Reduced iNOS expression during aging may contribute to accelerated senescence, as observed in senescence-accelerated mice (SAMP-8 mice).
Collapse
Affiliation(s)
- Raymond Cespuglio
- University of Lyon, Faculty of Medicine, Neurosciences Research Center of Lyon, 8 Avenue Rockefeller, F-69373 Lyon, France.
| | | | | | | | | |
Collapse
|
6
|
Gu C, Qu H, Han L, Song X, Zhao L, Lu W. The effect of raw soybean on oxidative status of digestive organs in mice. Int J Mol Sci 2011; 12:8836-45. [PMID: 22272106 PMCID: PMC3257103 DOI: 10.3390/ijms12128836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/10/2011] [Accepted: 11/21/2011] [Indexed: 11/16/2022] Open
Abstract
The present study was undertaken to specify the effect of raw soybean on oxidative status of digestive organs in mice. For this purpose, thirty male (C57BL/6J) mice were randomly divided into three groups and fed on different diets as follows: Group 1 was fed on control diet, Group 2 was fed on raw soybean diet and Group 3 was fed on raw soybean diet supplemented with 30 mg/kg cysteamine. After two weeks of feeding, duodenum, liver and pancreas samples were collected to measure oxidative and antioxidative parameters. The results show that ingestion of raw soybean markedly increased contents of superoxide anion and malondialdehyde (MDA) and activity of inducible nitric oxide synthase (iNOS), decreased activity of superoxide dismutase (SOD), T-AOC and content of reduced glutathione (GSH) in digestive organs of mice (P < 0.05). In the group fed with raw soybean diet supplemented with cysteamine, oxidative stress was mitigated. However, oxidative parameter levels were still higher than those of control diet-fed group. The present study indicates that ingestion of raw soybean could result in an imbalance between oxidant and antioxidant, and thus induce oxidative stress in digestive organs of mice.
Collapse
Affiliation(s)
- Chunmei Gu
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Hongsheng Qu
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Lingling Han
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Xinxiu Song
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Linlin Zhao
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Wenfa Lu
- Institute of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
7
|
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25:767-76. [PMID: 21333736 DOI: 10.1016/j.bbi.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine and modafinil exert their wake-promoting effects by elevating monoaminergic tone. The severity of hypersomnolence that occurs subsequent to induced wakefulness differs between these two agents. Microglia detects and modulates CNS reactions to agents such as D-methamphetamine that induce cellular stress. We therefore hypothesized that changes in the sleep/wake cycle that occur subsequent to administration of D-methamphetamine are modulated by cerebral microglia. In CD11b-herpes thymidine kinase transgenic mice (CD11b-TK(mt-30)), activation of the inducible transgene by intracerebroventricular (icv) ganciclovir results in toxicity to CD11b-positive cells (i.e. microglia), thereby reducing cerebral microglial cell counts. CD11b-TK(mt-30)and wild type mice were subjected to chronic icv ganciclovir or vehicle administration with subcutaneous mini-osmotic pumps. D-methamphetamine (1 and 2 mg/kg), modafinil (30 and 100 mg/kg) and vehicle were administered intraperitoneally to these animals. In CD11b-TK(mt-30) mice, but not wild type, icv infusion of ganciclovir reduced the duration of wake produced by D-methamphetamine at 2 mg/kg by nearly 1h. Nitric oxide synthase (NOS) activity, studied ex vivo, and NOS expression were elevated in CD11b-positive cerebral microglia from wild type mice acutely exposed to d-methamphetamine. Additionally, CD11b-positive microglia, but not other cerebral cell populations, exhibited changes in sleep-regulatory cytokine expression in response to d-METH. Finally, CD11b-positive microglia exposed to d-methamphetamine in vitro exhibited increased NOS activity relative to pharmacologically-naïve cells. CD11b-positive microglia from the brains of neuronal NOS (nNOS)-knockout mice failed to exhibit this effect. We propose that the effects of D-METH on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, WWAMI Medical Education Program, Washington State University, Spokane, WA 99202, USA.
| | | | | |
Collapse
|
8
|
Amrouni D, Gautier-Sauvigné S, Meiller A, Vincendeau P, Bouteille B, Buguet A, Cespuglio R. Cerebral and peripheral changes occurring in nitric oxide (NO) synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells. PLoS One 2010; 5:e9211. [PMID: 20169057 PMCID: PMC2821905 DOI: 10.1371/journal.pone.0009211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/26/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of nitric oxide (NO) in the development of human African trypanosomiasis (HAT) using an animal model, was examined. The manner by which the trypanocidal activity of NO is impaired in the periphery and in the brain of rats infected with Trypanosoma brucei brucei (T. b. brucei) was analyzed through: (i) the changes occurring in NO concentration in both peripheral (blood) and cerebral compartments; (ii) the activity of nNOS and iNOS enzymes; (iii) identification of the brain cell types in which the NO-pathways are particularly active during the time-course of the infection. METHODOLOGY/PRINCIPAL FINDINGS NO concentration (direct measures by voltammetry) was determined in central (brain) and peripheral (blood) compartments in healthy and infected animals at various days post-infection: D5, D10, D16 and D22. Opposite changes were observed in the two compartments. NO production increased in the brain (hypothalamus) from D10 (+32%) to D16 (+71%), but decreased in the blood from D10 (-22%) to D16 (-46%) and D22 (-60%). In parallel with NO measures, cerebral iNOS activity increased and peaked significantly at D16 (up to +700%). However, nNOS activity did not vary. Immunohistochemical staining confirmed iNOS activation in several brain regions, particularly in the hypothalamus. In peritoneal macrophages, iNOS activity decreased from D10 (-83%) to D16 (-65%) and D22 (-74%) similarly to circulating NO. CONCLUSION/SIGNIFICANCE The NO changes observed in our rat model were dependent on iNOS activity in both peripheral and central compartments. In the periphery, the NO production decrease may reflect an arginase-mediated synthesis of polyamines necessary to trypanosome growth. In the brain, the increased NO concentration may result from an enhanced activity of iNOS present in neurons and glial cells. It may be regarded as a marker of deleterious inflammatory reactions.
Collapse
Affiliation(s)
- Donia Amrouni
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Sabine Gautier-Sauvigné
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Anne Meiller
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Philippe Vincendeau
- University of Bordeaux 2, EA 3677 Laboratory of Parasitology, Bordeaux, France
| | - Bernard Bouteille
- University of Limoges, EA 3174 Laboratory of Tropical and Compared Neuroepidemiology & IFR 145 GEIST, Faculty of Medicine, Limoges, France
| | - Alain Buguet
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Raymond Cespuglio
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| |
Collapse
|
9
|
Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain. BMC Neurosci 2006; 7:81. [PMID: 17184520 PMCID: PMC1766358 DOI: 10.1186/1471-2202-7-81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/21/2006] [Indexed: 12/02/2022] Open
Abstract
Background Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels derived from nNOS and iNOS at an early age constitute a major factor of risk for sleep and/or memory impairments in SAMP8.
Collapse
|