1
|
Cornil CA, Balthazart J. Contribution of birds to the study of sexual differentiation of brain and behavior. Horm Behav 2023; 155:105410. [PMID: 37567061 PMCID: PMC10543621 DOI: 10.1016/j.yhbeh.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Behavioral neuroendocrinology has largely relied on mammalian models to understand the relationship between hormones and behavior, even if this discipline has historically used a larger diversity of species than other fields. Recent advances revealed the potential of avian models in elucidating the neuroendocrine bases of behavior. This paper provides a review focused mainly on the contributions of our laboratory to the study of sexual differentiation in Japanese quail and songbirds. Quail studies have firmly established the role of embryonic estrogens in the sexual differentiation of male copulatory behavior. While most sexually differentiated features identified in brain structure and physiology result from the different endocrine milieu of adults, a few characteristics are organized by embryonic estrogens. Among them, a sex difference was identified in the number and morphology of microglia which is not associated with sex differences in the concentration/expression of neuroinflammatory molecules. The behavioral role of microglia and neuroinflammatory processes requires further investigations. Sexual differentiation of singing in zebra finches is not mediated by the same endocrine mechanisms as male copulatory behavior and "direct" genetic effect, i.e., not mediated by gonadal steroids have been identified. Epigenetic contributions have also been considered. Finally sex differences in specific aspects of singing behavior have been identified in canaries after treatment of adults with exogenous testosterone suggesting that these aspects of song are differentiated during ontogeny. Integration of quail and songbirds as alternative models has thus expanded understanding of the interplay between hormones and behavior in the control of sexual differentiation.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium.
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
2
|
Dos Santos EB, Ball GF, Logue DM, Cornil CA, Balthazart J. Sex differences in song syntax and syllable diversity in testosterone-induced songs of adult male and female canaries. Biol Sex Differ 2023; 14:49. [PMID: 37528473 PMCID: PMC10394978 DOI: 10.1186/s13293-023-00533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is, however, not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. METHODS Songs were recorded from three groups of castrated male and three groups of photoregressed female canaries that had received Silastic™ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. RESULTS Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable-type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes, however, produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). CONCLUSIONS Under the influence of T, canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses to identify the many dimensions of a behavior that can differ between males and females.
Collapse
Affiliation(s)
- Ednei B Dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Gregory F Ball
- Program in Neuroscience and Cognitive Science; Department of Psychology, University of Maryland, College Park, MD, USA
| | - David M Logue
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium.
| |
Collapse
|
3
|
Dos Santos EB, Ball GF, Logue DM, Cornil CA, Balthazart J. Testosterone treatment reveals marked sex differences in song diversity and syllable syntax in adult canaries. RESEARCH SQUARE 2023:rs.3.rs-2755085. [PMID: 37090598 PMCID: PMC10120784 DOI: 10.21203/rs.3.rs-2755085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background. Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is however not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. Methods. Songs were recorded from 3 groups of castrated male and 3 groups of photoregressed female canaries that had received Silasticâ"¢ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. Results. Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes however produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). Conclusions. Under the influence of T canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses in order to identify the many dimensions of a behavior that can differ between males and females.
Collapse
|
4
|
Dos Santos EB, Ball GF, Cornil CA, Balthazart J. Treatment with androgens plus estrogens cannot reverse sex differences in song and the song control nuclei in adult canaries. Horm Behav 2022; 143:105197. [PMID: 35597055 DOI: 10.1016/j.yhbeh.2022.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Adult treatments with testosterone (T) do not activate singing behavior nor promote growth of song control nuclei to the same extent in male and female canaries (Serinus canaria). Because T acts in part via aromatization into an estrogen and brain aromatase activity is lower in females than in males in many vertebrates, we hypothesized that this enzymatic difference might explain the sex differences seen even after exposure to the same amount of T. Three groups of castrated males and 3 groups of photoregressed females (i.e., with quiescent ovaries following exposure to short days) received either 2 empty 10 mm silastic implants, one empty implant and one implant filled with T or one implant filled with T plus one with estradiol (E2). Songs were recorded for 3 h each week for 6 weeks before brains were collected and song control nuclei volumes were measured in Nissl-stained sections. Multiple measures of song were still different in males and females following treatment with T. Co-administration of E2 did not improve these measures and even tended to inhibit some measures such as song rate and song duration. The volume of forebrain song control nuclei (HVC, RA, Area X) and the rate of neurogenesis in HVC was increased by the two steroid treatments, but remained significantly smaller in females than in males irrespective of the endocrine condition. These sex differences are thus not caused by a lower aromatization of the steroid; sex differences in canaries are probably organized either by early steroid action or by sex-specific gene regulation directly in the brain.
Collapse
Affiliation(s)
- Ednei Barros Dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
5
|
Chiver I, Ball GF, Lallemand F, Vandries LM, Plumier JP, Cornil CA, Balthazart J. Photoperiodic control of singing behavior and reproductive physiology in male Fife fancy canaries. Horm Behav 2022; 143:105194. [PMID: 35561543 DOI: 10.1016/j.yhbeh.2022.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Temperate-zone birds display marked seasonal changes in reproductive behaviors and the underlying hormonal and neural mechanisms. These changes were extensively studied in canaries (Serinus canaria) but differ between strains. Fife fancy male canaries change their reproductive physiology in response to variations in day length but it remains unclear whether they become photorefractory (PR) when exposed to long days and what the consequences are for gonadal activity, singing behavior and the associated neural plasticity. Photosensitive (PS) male birds that had become reproductively competent (high song output, large testes) after being maintained on short days (SD, 8 L:16D) for 6 months were divided into two groups: control birds remained on SD (SD-PS group) and experimental birds were switched to long days (16 L:8D) and progressively developed photorefractoriness (LD-PR group). During the following 12 weeks, singing behavior (quantitatively analyzed for 3 × 2 hours every week) and gonadal size (repeatedly measured by CT X-ray scans) remained similar in both groups but there was an increase in plasma testosterone and trill numbers in the LD-PR group. Day length was then decreased back to 8 L:16D for LD-PR birds, which immediately induced a cessation of song, a decrease in plasma testosterone concentration, in the volume of song control nuclei (HVC, RA and Area X), in HVC neurogenesis and in aromatase expression in the medial preoptic area. These data demonstrate that Fife fancy canaries readily respond to changes in photoperiod and display a pattern of photorefractoriness following exposure to long days that is associated with marked changes in brain and behavior.
Collapse
Affiliation(s)
- Ioana Chiver
- GIGA Neurosciences, University of Liege, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
6
|
Villavicencio CP, Windley H, D'Amelio PB, Gahr M, Goymann W, Quispe R. Neuroendocrine patterns underlying seasonal song and year-round territoriality in male black redstarts. Front Zool 2021; 18:8. [PMID: 33627161 PMCID: PMC7905601 DOI: 10.1186/s12983-021-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The connection between testosterone and territoriality in free-living songbirds has been well studied in a reproductive context, but less so outside the breeding season. To assess the effects of seasonal androgenic action on territorial behavior, we analyzed vocal and non-vocal territorial behavior in response to simulated territorial intrusions (STIs) during three life-cycle stages in free-living male black redstarts: breeding, molt and nonbreeding. Concurrently, we measured changes in circulating testosterone levels, as well as the mRNA expression of androgen and estrogen receptors and aromatase in the preoptic, hypothalamic and song control brain areas that are associated with social and vocal behaviors. RESULTS Territorial behavior and estrogen receptor expression in hypothalamic areas did not differ between stages. But plasma testosterone was higher during breeding than during the other stages, similar to androgen receptor and aromatase expression in the preoptic area. The expression of androgen receptors in the song control nucleus HVC was lower during molt when birds do not sing or sing rarely, but similar between the breeding and the nonbreeding stage. Nevertheless, some song spectral features and the song repertoire differed between breeding and nonbreeding. Territorial behavior and song rate correlated with the expression of steroid receptors in hypothalamic areas, and in the song control nucleus lMAN. CONCLUSIONS Our results demonstrate seasonal modulation of song, circulating testosterone levels, and brain sensitivity to androgens, but a year-round persistency of territorial behavior and estrogen receptor expression in all life-cycle stages. This suggests that seasonal variations in circulating testosterone concentrations and brain sensitivity to androgens is widely uncoupled from territorial behavior and song activity but might still affect song pattern. Our study contributes to the understanding of the complex comparative neuroendocrinology of song birds in the wild.
Collapse
Affiliation(s)
- Camila P Villavicencio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany. .,Department of Ecological Science, Institute of Ecology and Biodiversity, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | - Harriet Windley
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany
| | - Pietro B D'Amelio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany
| | - René Quispe
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany.,Department of Marine Biology, Faculty of Ocean Sciences, Universidad Catolica del Norte (UCN), Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
7
|
Sex differences and similarities in the neural circuit regulating song and other reproductive behaviors in songbirds. Neurosci Biobehav Rev 2020; 118:258-269. [PMID: 32735803 DOI: 10.1016/j.neubiorev.2020.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
In the 1970s, Nottebohm and Arnold reported marked male-biased sex differences in the volume of three song control nuclei in songbirds. Subsequently a series of studies on several songbird species suggested that there is a positive correlation between the degree to which there is a sex difference in the volume of these song control nuclei and in song behavior. This correlation has been questioned in recent years. Furthermore, it has become clear that the song circuit is fully integrated into a more comprehensive neural circuit that regulates multiple courtship and reproductive behaviors including song. Sex differences in songbirds should be evaluated in the context of the full complement of behaviors produced by both sexes in relation to reproduction and based on the entire circuit in order to understand the functional significance of variation between males and females in brain and behavior. Variation in brain and behavior exhibited among living songbird species provides an excellent opportunity to understand the functional significance of sex differences related to social behaviors.
Collapse
|
8
|
DeLeon S, Webster MS, DeVoogd TJ, Dhondt AA. Developmental polychlorinated biphenyl exposure influences adult zebra finch reproductive behaviour. PLoS One 2020; 15:e0230283. [PMID: 32191759 PMCID: PMC7082000 DOI: 10.1371/journal.pone.0230283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are worldwide chemical pollutants that have been linked to disrupted reproduction and altered sexual behaviour in many organisms. However, the effect of developmental PCB-exposure on adult passerine reproductive behaviour remains unknown. A commercial PCB mixture (Aroclor 1242) or an estrogenic congener (PCB 52) were administered in sublethal amounts to nestling zebra finches (Taeniopygia guttata) in the laboratory to identify effects of developmental PCB-exposure on adult zebra finch reproductive parameters. Results indicate that although traditional measures of reproductive success are not altered by this PCB dosage, PCBs do alter sexual behaviours such as male song and nesting behaviour. Males treated with PCB 52 in the nest sang significantly fewer syllables than control males, while females treated with Aroclor 1242 in the nest showed the strongest song preferences. PCB treatment also caused an increase in the number of nesting attempts and abandoned nests in the Aroclor 1242 treatment relative to the PCB 52 treatment, and offspring with control fathers fledged significantly earlier than those with fathers treated with Aroclor 1242. Behavioural differences between males seem to best explain these reproductive effects, most notably aggression. These findings suggest that sublethal PCB-exposure during development can significantly alter key reproductive characteristics of adult zebra finches, likely reducing fitness in the wild.
Collapse
Affiliation(s)
- Sara DeLeon
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Michael S. Webster
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, New York, United States of America
| | - Timothy J. DeVoogd
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - André A. Dhondt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Testosterone or Estradiol When Implanted in the Medial Preoptic Nucleus Trigger Short Low-Amplitude Songs in Female Canaries. eNeuro 2019; 6:ENEURO.0502-18.2019. [PMID: 31068363 PMCID: PMC6506820 DOI: 10.1523/eneuro.0502-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022] Open
Abstract
In male songbirds, the motivation to sing is largely regulated by testosterone (T) action in the medial preoptic area, whereas T acts on song control nuclei to modulate aspects of song quality. Stereotaxic implantation of T in the medial preoptic nucleus (POM) of castrated male canaries activates a high rate of singing activity, albeit with a longer latency than after systemic T treatment. Systemic T also increases the occurrence of male-like song in female canaries. We hypothesized that this effect is also mediated by T action in the POM. Females were stereotaxically implanted with either T or with 17β-estradiol (E2) targeted at the POM and their singing activity was recorded daily during 2 h for 28 d until brains were collected for histological analyses. Following identification of implant localizations, three groups of subjects were constituted that had either T or E2 implanted in the POM or had an implant that had missed the POM (Out). T and E2 in POM significantly increased the number of songs produced and the percentage of time spent singing as compared with the Out group. The songs produced were in general of a short duration and of poor quality. This effect was not associated with an increase in HVC volume as observed in males, but T in POM enhanced neurogenesis in HVC, as reflected by an increased density of doublecortin-immunoreactive (DCX-ir) multipolar neurons. These data indicate that, in female canaries, T acting in the POM plays a significant role in hormone-induced increases in the motivation to sing.
Collapse
|
10
|
Shevchouk OT, Ball GF, Cornil CA, Balthazart J. Rapid testosterone-induced growth of the medial preoptic nucleus in male canaries. Physiol Behav 2019; 204:20-26. [PMID: 30738033 DOI: 10.1016/j.physbeh.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/30/2023]
Abstract
Testosterone activates singing within days in castrated male songbirds but full song quality only develops after a few weeks. Lesions of the medial preoptic nucleus (POM) inhibit while stereotaxic testosterone implants into this nucleus increase singing rate suggesting that this site plays a key role in the regulation of singing motivation. Testosterone action in the song control system works in parallel to control song quality. Accordingly, systemic testosterone increases POM volume within 1-2 days in female canaries, while the increase in volume of song control nuclei takes at least 2 weeks. The current study tested whether testosterone action is associated with similar differences in latencies in males. Photosensitive castrated male canaries were implanted with testosterone-filled Silastic™ implants and control castrates received empty implants, while simultaneously the photoperiod was switched from short- to long-days. Brains were collected from all subjects two days later. Plasma testosterone was elevated in testosterone-treated but not in controls. HVC volumes were not affected, but testosterone significantly increased the POM volume as identified by the dense group of aromatase-immunoreactive neurons, the number and somal area of these neurons and the fractional area they cover in POM. Testosterone-treated females from a previous experiment had a smaller POM volume in similar conditions suggesting the existence of a stable sex difference potentially affecting singing behavior. Thus testosterone induces male POM growth and aromatase expression in this nucleus within two days without affecting HVC size, further supporting the notion that testosterone increases singing motivation via its action in POM.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
11
|
Alliende J, Giret N, Pidoux L, Del Negro C, Leblois A. Seasonal plasticity of song behavior relies on motor and syntactic variability induced by a basal ganglia-forebrain circuit. Neuroscience 2017; 359:49-68. [PMID: 28712792 DOI: 10.1016/j.neuroscience.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022]
Abstract
The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, seasonal plasticity of brain structure and behavior is often critical to survival or mating in seasonal climates. Songbirds provide striking examples of seasonal changes in neural circuits and vocal behavior and have emerged as a leading model for adult brain plasticity. While seasonal plasticity and the well-characterized process of juvenile song learning may share common neural mechanisms, the extent of their similarity remains unclear. Especially, it is unknown whether the basal ganglia (BG)-forebrain loop which implements song learning in juveniles by driving vocal exploration participates in seasonal plasticity. To address this issue, we performed bilateral lesions of the output structure of the song-related BG-forebrain circuit (the magnocellular nucleus of the anterior nidopallium) in canaries during the breeding season, when song is most stereotyped, and just after resuming singing in early fall, when canaries sing their most variable songs and may produce new syllable types. Lesions drastically reduced song acoustic variability, increased song and phrase duration, and decreased syntax variability in early fall, reverting at least partially seasonal changes observed between the breeding season and early fall. On the contrary, lesions did not affect singing behavior during the breeding season. Our results therefore indicate that the BG-forebrain pathway introduces acoustic and syntactic variability in song when canaries resume singing in early fall. We propose that BG-forebrain circuits actively participate in seasonal plasticity by injecting variability in behavior during non-breeding season. SIGNIFICANCE STATEMENT The study of seasonal plasticity in temperate songbirds has provided important insights into the mechanisms of structural and functional plasticity in the central nervous system. The precise function and mechanisms of seasonal song plasticity however remain poorly understood. We show here that a basal ganglia-forebrain circuit involved in the acquisition and maintenance of birdsong is actively inducing song variability outside the breeding season, when singing is most variable, while having little effect on the stereotyped singing during the breeding season. Our results suggest that seasonal plasticity reflects an active song-maintenance process akin to juvenile learning, and that basal ganglia-forebrain circuits can drive plasticity in a learned vocal behavior during the non-injury-induced degeneration and reconstruction of the neural circuit underlying its production.
Collapse
Affiliation(s)
- Jorge Alliende
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Nicolas Giret
- Paris-Saclay Institute of Neuroscience, UMR CNRS 9197, Paris Sud University, 91405 Orsay, France
| | - Ludivine Pidoux
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Catherine Del Negro
- Paris-Saclay Institute of Neuroscience, UMR CNRS 9197, Paris Sud University, 91405 Orsay, France
| | - Arthur Leblois
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
12
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|
13
|
Pleiotropic Control by Testosterone of a Learned Vocal Behavior and Its Underlying Neuroplasticity(1,2,3). eNeuro 2016; 3:eN-NWR-0145-15. [PMID: 26835510 PMCID: PMC4724066 DOI: 10.1523/eneuro.0145-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Steroid hormones coordinate multiple aspects of behavior and physiology. The same hormone often regulates different aspects of a single behavior and its underlying neuroplasticity. This pleiotropic regulation of behavior and physiology is not well understood. Here, we investigated the orchestration by testosterone (T) of birdsong and its neural substrate, the song control system. Male canaries were castrated and received stereotaxic implants filled with T in select brain areas. Implanting T solely in the medial preoptic nucleus (POM) increased the motivation to sing, but did not enhance aspects of song quality such as acoustic structure and stereotypy. In birds implanted with T solely in HVC (proper name), a key sensorimotor region of the song control system, little or no song was observed, similar to castrates that received no T implants of any sort. However, implanting T in HVC and POM simultaneously rescued all measures of song quality. Song amplitude, though, was still lower than what was observed in birds receiving peripheral T treatment. T in POM enhanced HVC volume bilaterally, likely due to activity-dependent changes resulting from an enhanced song rate. T directly in HVC, without increasing song rate, enhanced HVC volume on the ipsilateral side only. T in HVC enhanced the incorporation and recruitment of new neurons into this nucleus, while singing activity can independently influence the incorporation of new neurons into HVC. These results have broad implications for how steroid hormones integrate across different brain regions to coordinate complex social behaviors.
Collapse
|
14
|
Frankl-Vilches C, Kuhl H, Werber M, Klages S, Kerick M, Bakker A, de Oliveira EH, Reusch C, Capuano F, Vowinckel J, Leitner S, Ralser M, Timmermann B, Gahr M. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol 2015; 16:19. [PMID: 25631560 PMCID: PMC4373106 DOI: 10.1186/s13059-014-0578-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND While the song of all songbirds is controlled by the same neural circuit, the hormone dependence of singing behavior varies greatly between species. For this reason, songbirds are ideal organisms to study ultimate and proximate mechanisms of hormone-dependent behavior and neuronal plasticity. RESULTS We present the high quality assembly and annotation of a female 1.2-Gbp canary genome. Whole genome alignments between the canary and 13 genomes throughout the bird taxa show a much-conserved synteny, whereas at the single-base resolution there are considerable species differences. These differences impact small sequence motifs like transcription factor binding sites such as estrogen response elements and androgen response elements. To relate these species-specific response elements to the hormone-sensitivity of the canary singing behavior, we identify seasonal testosterone-sensitive transcriptomes of major song-related brain regions, HVC and RA, and find the seasonal gene networks related to neuronal differentiation only in the HVC. Testosterone-sensitive up-regulated gene networks of HVC of singing males concerned neuronal differentiation. Among the testosterone-regulated genes of canary HVC, 20% lack estrogen response elements and 4 to 8% lack androgen response elements in orthologous promoters in the zebra finch. CONCLUSIONS The canary genome sequence and complementary expression analysis reveal intra-regional evolutionary changes in a multi-regional neural circuit controlling seasonal singing behavior and identify gene evolution related to the hormone-sensitivity of this seasonal singing behavior. Such genes that are testosterone- and estrogen-sensitive specifically in the canary and that are involved in rewiring of neurons might be crucial for seasonal re-differentiation of HVC underlying seasonal song patterning.
Collapse
Affiliation(s)
- Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Heiner Kuhl
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Werber
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Antje Bakker
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Edivaldo Hc de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém, 66075-110, Brazil.
| | - Christina Reusch
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Stefan Leitner
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Physiology and Metabolism, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| |
Collapse
|
15
|
Pawlisch BA, Remage-Healey L. Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an 'interface' nucleus. Neuroscience 2014; 284:522-535. [PMID: 25453773 DOI: 10.1016/j.neuroscience.2014.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. Past studies have demonstrated that estradiol levels increase within the songbird auditory cortex (the caudomedial nidopallium, NCM) during social interactions. Local estradiol signaling enhances the auditory-evoked firing rate of neurons in NCM to a variety of stimuli, while also enhancing the selectivity of auditory-evoked responses of neurons in a downstream sensorimotor brain region, HVC (proper name). Since these two brain regions are not directly connected, we employed dual extracellular recordings in HVC and the upstream nucleus interfacialis of the nidopallium (NIf) during manipulations of estradiol within NCM to better understand the pathway by which estradiol signaling propagates to downstream circuits. NIf has direct input into HVC, passing auditory information into the vocal motor output pathway, and is a possible source of the neural selectivity within HVC. Here, during acute estradiol administration in NCM, NIf neurons showed increases in baseline firing rates and auditory-evoked firing rates to all stimuli. Furthermore, when estradiol synthesis was blocked in NCM, we observed simultaneous decreases in the selectivity of NIf and HVC neurons. These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity.
Collapse
Affiliation(s)
- B A Pawlisch
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - L Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|
16
|
Fusani L, Donaldson Z, London SE, Fuxjager MJ, Schlinger BA. Expression of androgen receptor in the brain of a sub-oscine bird with an elaborate courtship display. Neurosci Lett 2014; 578:61-5. [PMID: 24954076 PMCID: PMC4359618 DOI: 10.1016/j.neulet.2014.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/12/2023]
Abstract
Sex steroids control vertebrate behavior by modulating neural circuits specialized for sex steroid sensitivity. In birds, receptors for androgens (AR) and estrogens (ERα) show conserved expression in neural circuits controlling copulatory and vocal behaviors. Male golden-collared manakins have become a model for evaluating hormonal control of complex physical courtship displays. These birds perform visually and acoustically elaborate displays involving considerable neuromuscular coordination. Androgens activate manakin courtship and AR are expressed widely in spinal circuits and peripheral muscles utilized in courtship. Using in situ hybridization, we report here the distributions of AR and ERα mRNA in the brains of golden-collared manakins. Overall patterns of AR and ERα mRNA expression resemble what has been observed in non-vocal learning species. Notably, however, we detected a large area of AR expression in the arcopallium, a forebrain region that contains a crucial premotor song nucleus in vocal learning species. These results support the idea that AR signaling both centrally and peripherally is responsible for the activation of male manakin courtship, and the arcopallium is likely a premotor site for AR-mediated displays.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Zoe Donaldson
- Division of Integrative Neuroscience, Department of Psychiatry, Columbia University, New York, NY 10023, USA
| | - Sarah E London
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Matthew J Fuxjager
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - Barney A Schlinger
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Fusani L, Barske J, Day LD, Fuxjager MJ, Schlinger BA. Physiological control of elaborate male courtship: female choice for neuromuscular systems. Neurosci Biobehav Rev 2014; 46 Pt 4:534-46. [PMID: 25086380 DOI: 10.1016/j.neubiorev.2014.07.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Lainy D Day
- Department of Biology, University of Mississippi, University, MS 38677, USA.
| | - Matthew J Fuxjager
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Coumailleau P, Kah O. Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages. J Neuroendocrinol 2014; 26:226-36. [PMID: 24612124 PMCID: PMC4238815 DOI: 10.1111/jne.12142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 aromatase (P450arom; aromatase) is a microsomal enzyme involved in the production of endogeneous sex steroids by converting testosterone into oestradiol. Aromatase is the product of the cyp19a1 gene and plays a crucial role in the sexual differentiation of the brain and in the regulation of reproductive functions. In the brain of mammals and birds, expression of cyp19a1 has been demonstrated in neuronal populations of the telencephalon and diencephalon. By contrast, a wealth of evidence established that, in teleost fishes, aromatase expression in the brain is restricted to radial glial cells. The present study investigated the precise neuroanatomical distribution of cyp19a1 mRNA during brain development in Xenopus laevis (late embryonic to juvenile stages). For this purpose, we used in situ hybridisation alone or combined with the detection of a proliferative (proliferating cell nuclear antigen), glial (brain lipid binding protein, Vimentin) or neuronal (acetylated tubulin; HuC/D; NeuroβTubulin) markers. We provide evidence that cyp19a1 expression in the brain is initiated from the very early larval stage and remains strongly detected until the juvenile and adult stages. At all stages analysed, we found the highest expression of cyp19a1 in the preoptic area and the hypothalamus compared to the rest of the brain. In these two brain regions, cyp19a1-positive cells were never detected in the ventricular layers. Indeed, no co-labelling could be observed with radial glial (brain lipid binding protein, Vimentin) or dividing progenitors (proliferating cell nuclear antigen) markers. By contrast, cyp19a1-positive cells perfectly matched with the distribution of post-mitotic neurones as shown by the use of specific markers (HuC/D, acetylated tubulin and NeuroβTubulin). These data suggest that, similar to that found in other tetrapods, aromatase in the brain of amphibians is found in post-mitotic neurones and not in radial glia as reported in teleosts.
Collapse
Affiliation(s)
- P Coumailleau
- Neuroendocrine Effects of Endocrine Disruptors, IRSET, INSERM U1085, SFR Biosit, Université de Rennes 1, Rennes, France
| | | |
Collapse
|
19
|
Vergauwen J, Groothuis TGG, Eens M, Müller W. Testosterone influences song behaviour and social dominance - but independent of prenatal yolk testosterone exposure. Gen Comp Endocrinol 2014; 195:80-7. [PMID: 24211320 DOI: 10.1016/j.ygcen.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
In the last two decades, maternally derived yolk androgens have been shown to significantly alter offspring development, and a number of these effects persist into adulthood. However, little is known about their underlying mechanisms. Mechanisms that have been suggested are changes in the endogenous androgen production post-hatching or changes in the sensitivity towards circulating androgens. We tested the effects of yolk testosterone on the plasma testosterone levels and the sensitivity to testosterone in 5months old male canaries that hatched from eggs that were either injected with testosterone (yT-males) or with a control solution (yC-males). Changes in sensitivity were investigated via the behavioural response to an experimental elevation of the plasma testosterone levels. We performed the experiment in fall (low endogenous testosterone production), focusing on testosterone dependent response traits (aggression and song). Before implantation, there was a non-significant trend that the plasma testosterone levels were lower in yT-males than in yC-males. Elevating the plasma testosterone concentrations increased aggressiveness, song bout length and similarity of repeated song elements (=consistency), with the latter likely being a consequence of testosterone-driven song crystallization. However, these effects were not different among yT- or yC-males in any of the parameters. Thus, our findings render it unlikely that changes in the sensitivity to testosterone post-hatching would form the main underlying mechanism of hormone-mediated maternal effects in birds. Further experiments are urgently needed in order to understand the nature of the phenotypic effects resulting from embryonic exposure to maternal yolk testosterone.
Collapse
Affiliation(s)
- Jonas Vergauwen
- Department of Biology - Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ton G G Groothuis
- Department of Behavioural Biology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Marcel Eens
- Department of Biology - Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wendt Müller
- Department of Biology - Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
20
|
Calisi RM, Knudsen DP, Krause JS, Wingfield JC, Gentner TQ. Estradiol differentially affects auditory recognition and learning according to photoperiodic state in the adult male songbird, European starling (Sturnus vulgaris). PeerJ 2013; 1:e150. [PMID: 24058881 PMCID: PMC3775630 DOI: 10.7717/peerj.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
Changes in hormones can affect many types of learning in vertebrates. Adults experience fluctuations in a multitude of hormones over a temporal scale, from local, rapid action to more long-term, seasonal changes. Endocrine changes during development can affect behavioral outcomes in adulthood, but how learning is affected in adults by hormone fluctuations experienced during adulthood is less understood. Previous reports have implicated the sex steroid hormone estradiol (E2) in both male and female vertebrate cognitive functioning. Here, we examined the effects of E2 on auditory recognition and learning in male European starlings (Sturnus vulgaris). European starlings are photoperiodic, seasonally breeding songbirds that undergo different periods of reproductive activity according to annual changes in day length. We simulated these reproductive periods, specifically 1. photosensitivity, 2. photostimulation, and 3. photorefractoriness in captive birds by altering day length. During each period, we manipulated circulating E2 and examined multiple measures of learning. To manipulate circulating E2, we used subcutaneous implants containing either 17-β E2 and/or fadrozole (FAD), a highly specific aromatase inhibitor that suppresses E2 production in the body and the brain, and measured the latency for birds to learn and respond to short, male conspecific song segments (motifs). We report that photostimulated birds given E2 had higher response rates and responded with better accuracy than those given saline controls or FAD. Conversely, photosensitive, animals treated with E2 responded with less accuracy than those given FAD. These results demonstrate how circulating E2 and photoperiod can interact to shape auditory recognition and learning in adults, driving it in opposite directions in different states.
Collapse
Affiliation(s)
- Rebecca M Calisi
- Department of Neurobiology, Physiology, and Behavior, The University of California , Davis , USA ; Department of Psychology, The University of California , San Diego , USA
| | | | | | | | | |
Collapse
|
21
|
Poremba A, Bigelow J, Rossi B. Processing of communication sounds: contributions of learning, memory, and experience. Hear Res 2013; 305:31-44. [PMID: 23792078 DOI: 10.1016/j.heares.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, non-human primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Amy Poremba
- University of Iowa, Dept. of Psychology, Div. Behavioral & Cognitive Neuroscience, E11 SSH, Iowa City, IA 52242, USA; University of Iowa, Neuroscience Program, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
22
|
Apfelbeck B, Mortega K, Kiefer S, Kipper S, Vellema M, Villavicencio CP, Gahr M, Goymann W. Associated and disassociated patterns in hormones, song, behavior and brain receptor expression between life-cycle stages in male black redstarts, Phoenicurus ochruros. Gen Comp Endocrinol 2013; 184:93-102. [PMID: 23337030 DOI: 10.1016/j.ygcen.2012.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/24/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
Testosterone has been suggested to be involved in the regulation of male territorial behavior. For example, seasonal peaks in testosterone typically coincide with periods of intense competition between males for territories and mating partners. However, some species also express territorial behavior outside a breeding context when testosterone levels are low and, thus, the degree to which testosterone facilitates territorial behavior in these species is not well understood. We studied territorial behavior and its neuroendocrine correlates in male black redstarts. Black redstarts defend territories in spring during the breeding period, but also in the fall outside a reproductive context when testosterone levels are low. In the present study we assessed if song output and structure remain stable across life-cycle stages. Furthermore, we assessed if brain anatomy may give insight into the role of testosterone in the regulation of territorial behavior in black redstarts. We found that males sang spontaneously at a high rate during the nonbreeding period when testosterone levels were low; however the trill-like components of spontaneously produced song contained less repetitive elements during nonbreeding than during breeding. This higher number of repetitive elements in trills did not, however, correlate with a larger song control nucleus HVC during breeding. However, males expressed more aromatase mRNA in the preoptic area - a brain nucleus important for sexual and aggressive behavior - during breeding than during nonbreeding. In combination with our previous studies on black redstarts our results suggest that territorial behavior in this species only partly depends on sex steroids: spontaneous song output, seasonal variation in trills and non-vocal territorial behavior in response to a simulated territorial intruder seem to be independent of sex steroids. However, context-dependent song during breeding may be facilitated by testosterone - potentially by conversion of testosterone to estradiol in the preoptic area.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013; 239:139-48. [PMID: 23291451 DOI: 10.1016/j.neuroscience.2012.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023]
Abstract
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus higher vocal center (HVC), from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
Collapse
|
24
|
Van Hout AJM, Pinxten R, Darras VM, Eens M. Testosterone increases repertoire size in an open-ended learner: an experimental study using adult male European starlings (Sturnus vulgaris). Horm Behav 2012; 62:563-8. [PMID: 23036784 DOI: 10.1016/j.yhbeh.2012.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/22/2022]
Abstract
Song in songbirds is a learned secondary sexual behavior, first acquired during a sensitive phase of juvenile development, which is affected by hormones such as testosterone (T). While the latter has received much attention, the potential involvement of T in the adult repertoire changes observed in a number of species is much less understood. Yet, this may prove essential to understand the role of song as a sexually selected trait. We therefore performed a T-implantation experiment during the non-breeding season (when T is basal), using adult male European starlings (Sturnus vulgaris), a songbird species in which song repertoire size (and composition) changes seasonally and increases with age. Repertoire size increased rapidly in T-males, but not in control males, indicating a role for T in repertoire size changes. This increase resulted from a lower proportion of dropped song types in T-males than in control males, while the proportion of added song types did not differ between both groups. Interestingly, the observed repertoire turnover (adding and removing song types from the repertoire) in both groups, suggests that elevated plasma T levels were not essential for changes in repertoire composition (contrary to repertoire size). Finally, T-males (but not control males) significantly increased their song rate, while neither group showed a significant change in their song bout length and phrase repetition rate. Taken together, our results suggest a role for T in adult song learning and provide new insights into the information content of repertoire size and song bout length as sexually selected traits.
Collapse
|
25
|
Stevenson TJ, Calabrese MD, Ball GF. Variation in enkephalin immunoreactivity in the social behavior network and song control system of male European starlings (Sturnus vulgaris) is dependent on breeding state and gonadal condition. J Chem Neuroanat 2012; 43:87-95. [DOI: 10.1016/j.jchemneu.2011.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
26
|
Templeton CN, Burt JM, Campbell SE, Lent K, Brenowitz EA, Beecher MD. Immediate and long-term effects of testosterone on song plasticity and learning in juvenile song sparrows. Behav Processes 2012; 90:254-60. [PMID: 22387677 DOI: 10.1016/j.beproc.2012.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/11/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Steroid sex hormones play critical roles in the development of brain regions used for vocal learning. It has been suggested that puberty-induced increases in circulating testosterone (T) levels crystallize a bird's repertoire and inhibit future song learning. Previous studies show that early administration of T crystallizes song repertoires but have not addressed whether new songs can be learned after this premature crystallization. We brought 8 juvenile song sparrows (Melospiza melodia) into the laboratory in the late summer and implanted half of them with subcutaneous T pellets for a two week period in October. Birds treated with T tripled their singing rates and crystallized normal songs in 2 weeks. After T removal, subjects were tutored by 4 new adults. Birds previously treated with T tended toward learning fewer new songs post T, consistent with the hypothesis that T helps to close the song learning phase. However, one T-treated bird proceeded to learn several new songs in the spring, despite singing perfectly crystallized songs in the fall. His small crystallized fall repertoire and initial lag behind other subjects in song development suggest that this individual may have had limited early song learning experience. We conclude that an exposure to testosterone sufficient for crystallization of a normal song repertoire does not necessarily prevent future song learning and suggest that early social experiences might override the effects of hormones in closing song learning.
Collapse
|
27
|
Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, Hatanaka Y, Ogiue-Ikeda M. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1030-44. [DOI: 10.1016/j.bbagen.2009.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
|
28
|
London SE, Remage-Healey L, Schlinger BA. Neurosteroid production in the songbird brain: a re-evaluation of core principles. Front Neuroendocrinol 2009; 30:302-14. [PMID: 19442685 PMCID: PMC2724309 DOI: 10.1016/j.yfrne.2009.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/17/2022]
Abstract
Concepts of brain-steroid signaling have traditionally placed emphasis on the gonads and adrenals as the source of steroids, the strict dichotomy of early developmental ("organizational") and mature ("activational") effects, and a relatively slow mechanism of signaling through intranuclear receptors. Continuing research shows that these concepts are not inaccurate, but they are certainly incomplete. In this review, we focus on the song control circuit of songbird species to demonstrate how each of these concepts is limited. We discuss the solid evidence for steroid synthesis within the brain ("neurosteroidogenesis"), the role of neurosteroids in organizational events that occur both early in development and later in life, and how neurosteroids can act in acute and non-traditional ways. The songbird model therefore illustrates how neurosteroids can dramatically increase the diversity of steroid-sensitive brain functions in a behaviorally-relevant system. We hope this inspires further research and thought into neurosteroid signaling in songbirds and other animals.
Collapse
Affiliation(s)
- Sarah E. London
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Luke Remage-Healey
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Barney A. Schlinger
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
29
|
Fukui H, Toyoshima K. Music facilitate the neurogenesis, regeneration and repair of neurons. Med Hypotheses 2008; 71:765-9. [PMID: 18692321 DOI: 10.1016/j.mehy.2008.06.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 05/29/2008] [Accepted: 06/13/2008] [Indexed: 12/22/2022]
Abstract
Experience has shown that therapy using music for therapeutic purposes has certain effects on neuropsychiatric disorders (both functional and organic disorders). However, the mechanisms of action underlying music therapy remain unknown, and scientific clarification has not advanced. While that study disproved the Mozart effect, the effects of music on the human body and mind were not disproved. In fact, more scientific studies on music have been conducted in recent years, mainly in the field of neuroscience, and the level of interest among researchers is increasing. The results of past studies have clarified that music influences and affects cranial nerves in humans from fetus to adult. The effects of music at a cellular level have not been clarified, and the mechanisms of action for the effects of music on the brain have not been elucidated. We propose that listening to music facilitates the neurogenesis, the regeneration and repair of cerebral nerves by adjusting the secretion of steroid hormones, ultimately leading to cerebral plasticity. Music affects levels of such steroids as cortisol (C), testosterone (T) and estrogen (E), and we believe that music also affects the receptor genes related to these substances, and related proteins. In the prevention of Alzheimer's disease and dementia, hormone replacement therapy has been shown to be effective, but at the same time, side effects have been documented, and the clinical application of hormone replacement therapy is facing a serious challenge. Conversely, music is noninvasive, and its existence is universal and mundane. Thus, if music can be used in medical care, the application of such a safe and inexpensive therapeutic option is limitless.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Education, Nara University of Education, Takabatake, Nara 630 8528, Japan.
| | | |
Collapse
|
30
|
Abstract
Aromatase, the enzyme that synthesises oestrogens from androgen precursors, is expressed in the brain, where it has been classically associated with the regulation of neuroendocrine events and behaviours linked with reproduction. Recent findings, however, have revealed new unexpected roles for brain aromatase, indicating that the enzyme regulates synaptic activity, synaptic plasticity, neurogenesis and the response of neural tissue to injury, and may contribute to control nonreproductive behaviours, mood and cognition. Therefore, the function of brain aromatase is not restricted to the regulation of reproduction as previously thought.
Collapse
|
31
|
Ball GF, Balthazart J. Individual variation and the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective. Philos Trans R Soc Lond B Biol Sci 2008; 363:1699-710. [PMID: 18048288 PMCID: PMC2606728 DOI: 10.1098/rstb.2007.0010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Investigations of the cellular and molecular mechanisms of physiology and behaviour have generally avoided attempts to explain individual differences. The goal has rather been to discover general processes. However, understanding the causes of individual variation in many phenomena of interest to avian eco-physiologists will require a consideration of such mechanisms. For example, in birds, changes in plasma concentrations of steroid hormones are important in the activation of social behaviours related to reproduction and aggression. Attempts to explain individual variation in these behaviours as a function of variation in plasma hormone concentrations have generally failed. Cellular variables related to the effectiveness of steroid hormone have been useful in some cases. Steroid hormone target sensitivity can be affected by variables such as metabolizing enzyme activity, hormone receptor expression as well as receptor cofactor expression. At present, no general theory has emerged that might provide a clear guidance when trying to explain individual variability in birds or in any other group of vertebrates. One strategy is to learn from studies of large units of intraspecific variation such as population or sex differences to provide ideas about variables that might be important in explaining individual variation. This approach along with the use of newly developed molecular genetic tools represents a promising avenue for avian eco-physiologists to pursue.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
32
|
Markman S, Leitner S, Catchpole C, Barnsley S, Müller CT, Pascoe D, Buchanan KL. Pollutants increase song complexity and the volume of the brain area HVC in a songbird. PLoS One 2008; 3:e1674. [PMID: 18301751 PMCID: PMC2244705 DOI: 10.1371/journal.pone.0001674] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/24/2007] [Indexed: 12/05/2022] Open
Abstract
Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds.
Collapse
Affiliation(s)
- Shai Markman
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefan Leitner
- School of Biological Sciences, University of London, Egham, Surrey, United Kingdom
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Clive Catchpole
- School of Biological Sciences, University of London, Egham, Surrey, United Kingdom
| | - Sara Barnsley
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - David Pascoe
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
33
|
Gahr M. Sexual Differentiation of the Vocal Control System of Birds. GENETICS OF SEXUAL DIFFERENTIATION AND SEXUALLY DIMORPHIC BEHAVIORS 2007; 59:67-105. [PMID: 17888795 DOI: 10.1016/s0065-2660(07)59003-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Birds evolved neural circuits of various complexities in relation to their capacity to produce learned or unlearned vocalizations. These vocalizations, in particular those that function in the realm of reproduction, are frequently sexually dimorphic, both in vocal learners (songbirds, parrots, some hummingbirds) and vocal nonlearners (all other birds). In many cases, the development and/or the adult differentiation of vocalizations of sociosexual function is sensitive to sex hormones, androgens and estrogens. The underlying mechanisms have been studied in detail in songbirds, a bird group that comprises about half of all bird species. Next to unlearned calls, songbirds produce learned songs that require forebrain vocal control areas that express receptors for androgens and estrogens. These forebrain vocal areas are sexually dimorphic in many species, but a clear relation between the degree of "brain sex" and sex differences in vocal pattern is lacking, except that a minimum number of vocal neurons is necessary to sing learned songs. Genetic brain-intrinsic mechanisms are likely to determine the neuron pools that develop into forebrain song control areas. Subsequently, gonadal steroid hormones, androgens and estrogens, modulate the fate of these neurons and thus the functionality of the vocal control systems. Further action of gonadal hormones, and may be other factors signaling the sociosexual and physical environment, affect the phenotype of vocal control areas in adulthood. Despite the clear evidence of hormone dependency of both adult vocalizations and phenotypes of vocal neuron pools, their causal relation is little understood.
Collapse
Affiliation(s)
- Manfred Gahr
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
34
|
A Neuroethological Approach to Song Behavior and Perception in European Starlings: Interrelationships Among Testosterone, Neuroanatomy, Immediate Early Gene Expression, and Immune Function. ADVANCES IN THE STUDY OF BEHAVIOR 2006. [DOI: 10.1016/s0065-3454(06)36002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|