1
|
Melis MR, Argiolas A. Erectile Function and Sexual Behavior: A Review of the Role of Nitric Oxide in the Central Nervous System. Biomolecules 2021; 11:biom11121866. [PMID: 34944510 PMCID: PMC8699072 DOI: 10.3390/biom11121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), the neuromodulator/neurotransmitter formed from l-arginine by neuronal, endothelial and inducible NO synthases, is involved in numerous functions across the body, from the control of arterial blood pressure to penile erection, and at central level from energy homeostasis regulation to memory, learning and sexual behavior. The aim of this work is to review earlier studies showing that NO plays a role in erectile function and sexual behavior in the hypothalamus and its paraventricular nucleus and the medial preoptic area, and integrate these findings with those of recent studies on this matter. This revisitation shows that NO influences erectile function and sexual behavior in males and females by acting not only in the paraventricular nucleus and medial preoptic area but also in extrahypothalamic brain areas, often with different mechanisms. Most importantly, since these areas are strictly interconnected with the paraventricular nucleus and medial preoptic area, send to and receive neural projections from the spinal cord, in which sexual communication between brain and genital apparatus takes place, this review reveals that central NO participates in concert with neurotransmitters/neuropeptides to a neural circuit controlling both the consummatory (penile erection, copulation, lordosis) and appetitive components (sexual motivation, arousal, reward) of sexual behavior.
Collapse
|
2
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
3
|
Nakashima S, Morishita M, Ueno K, Tsukahara S. Region-specific effects of copulation on dendritic spine morphology and gene expression related to spinogenesis in the medial preoptic nucleus of male rats. Psychoneuroendocrinology 2019; 108:1-13. [PMID: 31174081 DOI: 10.1016/j.psyneuen.2019.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
The medial preoptic nucleus (MPN) plays an essential role in the control of male sexual behavior. In rats, the central part of the MPN (MPNc) contains a sexually dimorphic nucleus exhibiting male-biased morphological sex differences. Although it has been suggested that the MPNc of male rats functions to induce sexual arousal, the mechanisms by which male rats are sexually aroused to successfully achieve copulation are poorly understood. We recently showed that increased neuronal activity in the MPNc of male rats during copulation is higher at their first copulation compared with later copulations, indicating that a plastic change in excitatory synaptic transmission occurs with copulatory experience. In this study, we tested the hypothesis that changes to dendritic spines at structural and molecular levels occur following copulatory experience. First, we examined the effects of at least two copulations on the morphology of dendrites and spines in the MPNc and in the lateral and medial parts of the MPN (MPNlm) of male rats. In the MPNc, the total number of dendrites and their branches, and the surface area of dendrites were not significantly affected by copulation. However, the copulatory experience, specifically experience of ejaculation, significantly reduced the density of mushroom spines but not of filopodia, thin or stubby spines in the MPNc. In the MPNlm, the copulatory experience, specifically experience of ejaculation, significantly increased the surface area of dendrites, although there was no significant effect of copulation on spine density. Next, we measured the mRNA levels of genes encoding actin-binding proteins related to spinogenesis after male rats had copulated for their first and second times. Copulatory stimuli, especially stimuli from ejaculation, significantly reduced the mRNA levels of drebrin A and spinophilin in the MPNc but not in the MPNlm. These results indicate that copulatory experiences, especially experience of ejaculation, reduce spine density in the MPNc of male rats, which may result, in part, from downregulation of genes encoding actin-binding proteins.
Collapse
Affiliation(s)
- Shizuka Nakashima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Masahiro Morishita
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kanna Ueno
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shinji Tsukahara
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
4
|
Seizert CA. The neurobiology of the male sexual refractory period. Neurosci Biobehav Rev 2018; 92:350-377. [DOI: 10.1016/j.neubiorev.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/03/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
|
5
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
6
|
Increased expression of carbon monoxide-producing enzymes in the MPOA after sexual experience in male rats. Physiol Behav 2017; 171:149-157. [DOI: 10.1016/j.physbeh.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
|
7
|
The effects of sildenafil after chronic L-NAME administration in male rat sexual behavior. Pharmacol Biochem Behav 2016; 146-147:13-20. [DOI: 10.1016/j.pbb.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022]
|
8
|
Will RG, Hull EM, Dominguez JM. Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol Biochem Behav 2014; 121:115-23. [DOI: 10.1016/j.pbb.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/13/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022]
|
9
|
Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. Psychoneuroendocrinology 2013; 38:1688-97. [PMID: 23474276 PMCID: PMC3715561 DOI: 10.1016/j.psyneuen.2013.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/15/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022]
Abstract
Oxytocin (OT) promotes social and reproductive behaviors in mammals, and OT deficits may be linked to disordered social behaviors like autism and severe anxiety. Male rat sexual behavior is an excellent model for OT regulation of behavior, as its pattern and neural substrates are well characterized. We previously reported that OT microinjected into the medial preoptic area (MPOA), a major integrative site for male sexual behavior, facilitates copulation in sexually experienced male rats, whereas intra-MPOA injection of an OT antagonist (OTA) inhibits copulation. In the present studies, copulation on the day of sacrifice stimulated OTR mRNA expression in the MPOA, irrespective of previous sexual experience, with the highest levels observed in first-time copulators. In addition, sexually experienced males had higher levels of OTR protein in the MPOA than sexually naïve males and first-time copulators. Finally, intra-MPOA injection of OT facilitated mating in sexually naive males. Others have reported a positive correlation between OT mRNA levels and male sexual behavior. Our studies show that OT in the MPOA facilitates mating in both sexually naive and experienced males, some of the behavioral effects of OT are mediated by the OTR, and sexual experience is associated with increased OTR expression in the MPOA. Taken together, these data suggest a reciprocal interaction between central OT and behavior, in which OT facilitates copulation and copulation stimulates the OT/OTR system in the brain.
Collapse
|
10
|
Giuliano F, Clèment P. Pharmacology for the Treatment of Premature Ejaculation. Pharmacol Rev 2012; 64:621-44. [DOI: 10.1124/pr.111.004952] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
11
|
Hull EM. Sex, drugs and gluttony: how the brain controls motivated behaviors. Physiol Behav 2011; 104:173-7. [PMID: 21554895 PMCID: PMC3107928 DOI: 10.1016/j.physbeh.2011.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornical LH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel's emphasis on neural systems and interactions among brain areas and neurotransmitters.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States.
| |
Collapse
|
12
|
Yeh KY, Wu CH, Tsai YF. Ginkgo biloba treatment increases copulation but not nNOS activity in the medial preoptic area in male rats. Neurosci Lett 2011; 500:182-6. [PMID: 21723370 DOI: 10.1016/j.neulet.2011.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/28/2011] [Accepted: 06/15/2011] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important messenger in the central nervous system to mediate male copulatory behavior. EGb 761, a standardized extract of Gingko biloba, has been reported to facilitate male copulation in rats. The present study is to determine the effects of neuronal nitric oxide synthase (nNOS) in the medial preoptic area (MPOA) on copulation in male rats following EGb 761 treatment. Adult male rats were treated with 50mg/kg of EGb 761 or distilled water by oral gavage for 14 consecutive days. The animals were sacrificed approximately 14h after the last behavioral test and MPOA brain tissues were collected for nNOS immunohistochemistry. EGb 761 treatment for 14 days significantly increased the intromission frequency compared to the vehicle-treated controls on day 14. An increase in ejaculation frequency was also seen in the EGb 761-treated group compared to the vehicle-treated controls on day 14 and to the same group on day 0. However, EGb 761 treatment did not influence the number of nNOS-immunoreactive cells in the MPOA. These results suggest that enhanced male copulatory performance in sexually experienced rats administered EGb 761 may not be related to central nNOS activity in the MPOA.
Collapse
Affiliation(s)
- Kuei-Ying Yeh
- Department of Physical Therapy, HungKuang University, No. 34 Chung-Chie Road, Sha Lu, Taichung 443, Taiwan, ROC.
| | | | | |
Collapse
|
13
|
Panzica GC, Mura E, Miceli D, Martini MA, Gotti S, Viglietti-Panzica C. Effects of Xenoestrogens on the Differentiation of Behaviorally Relevant Neural Circuits in Higher Vertebrates. Ann N Y Acad Sci 2009; 1163:271-8. [DOI: 10.1111/j.1749-6632.2008.03628.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Succu S, Sanna F, Cocco C, Melis T, Boi A, Ferri GL, Argiolas A, Melis MR. Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 2008; 28:813-21. [PMID: 18671741 DOI: 10.1111/j.1460-9568.2008.06385.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxytocin (80 ng) injected into the caudal mesencephalic ventral tegmental area (VTA) of male rats induces penile erection. Such an effect occurs together with an increase in nitric oxide (NO) production, as measured by the augmented concentration of NO(2)(-) and NO(3)(-) found in the dialysate obtained from this brain area by means of intracerebral microdialysis. Both effects are abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (1 microg), an oxytocin receptor antagonist, by S-methyl-l-thiocitrulline acetate (20 microg), a neuronal NO synthase inhibitor, or by omega-conotoxin GVIA (50 ng), a N-type Ca(2+) channel blocker, all injected into the VTA 15 min before oxytocin. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (40 microg), a guanylate cyclase inhibitor, given into the VTA 15 min before oxytocin, abolishes penile erection, but not the increase in NO production, while haemoglobin (40 microg), a NO scavenger, injected immediately before oxytocin reduces the increase in NO production, but not penile erection. 8-Bromo-cyclic guanosine monophosphate (0.5-10 microg) microinjected into the VTA induces penile erection with an inverted U-shaped dose-response curve; the maximal effective dose being 3 microg. Immunohistochemistry reveals that in the caudal VTA oxytocin-containing axons/fibres (originating from the paraventricular nucleus of the hypothalamus) contact cell bodies of mesolimbic dopaminergic (tyrosine hydroxylase-positive) neurons containing both NO synthase and guanylate cyclase. These results suggest that oxytocin injected into the VTA induces penile erection by activating NO synthase in the cell bodies of mesolimbic dopaminergic neurons. NO in turn activates guanylate cyclase present in these neurons, thereby increasing cyclic GMP concentration.
Collapse
Affiliation(s)
- Salvatora Succu
- Bernard B Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chu X, Ågmo A. Sexual incentive motivation in old male rats: The effects of sildenafil and a compound (Impaza) stimulating endothelial NO synthase. Pharmacol Biochem Behav 2008; 89:209-17. [DOI: 10.1016/j.pbb.2007.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/13/2007] [Accepted: 12/11/2007] [Indexed: 01/23/2023]
|
16
|
Panzica GC, Viglietti-Panzica C, Mura E, Quinn MJ, Lavoie E, Palanza P, Ottinger MA. Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits. Front Neuroendocrinol 2007; 28:179-200. [PMID: 17868795 DOI: 10.1016/j.yfrne.2007.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
It has become increasingly clear that environmental chemicals have the capability of impacting endocrine function. Moreover, these endocrine disrupting chemicals (EDCs) have long term consequences on adult reproductive function, especially if exposure occurs during embryonic development thereby affecting sexual differentiation. Of the EDCs, most of the research has been conducted on the effects of estrogen active compounds. Although androgen active compounds are also present in the environment, much less information is available about their action. However, in the case of xenoestrogens, there is mounting evidence for long-term consequences of early exposure at a range of doses. In this review, we present data relative to two widely used animal models: the mouse and the Japanese quail. These two species long have been used to understand neural, neuroendocrine, and behavioral components of reproduction and are therefore optimal models to understand how these components are altered by precocious exposure to EDCs. In particular we discuss effects of bisphenol A and methoxychlor on the dopaminergic and noradrenergic systems in rodents and the impact of these alterations. In addition, the effects of embryonic exposure to diethylstilbestrol, genistein or ethylene,1,1-dichloro-2,2-bis(p-chlorophenyl) is reviewed relative to behavioral impairment and associated alterations in the sexually dimorphic parvocellular vasotocin system in quail. We point out how sexually dimorphic behaviors are particularly useful to verify adverse developmental consequences produced by chemicals with endocrine disrupting properties, by examining either reproductive or non-reproductive behaviors.
Collapse
|
17
|
Sato SM, Wersinger SR, Hull EM. The effects of nitric oxide-cGMP pathway stimulation on dopamine in the medial preoptic area and copulation in DHT-treated castrated male rats. Horm Behav 2007; 52:177-82. [PMID: 17467707 PMCID: PMC2001311 DOI: 10.1016/j.yhbeh.2007.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/17/2007] [Accepted: 03/20/2007] [Indexed: 11/24/2022]
Abstract
Dopamine (DA) in the medial preoptic area (MPOA) provides important facilitative influence on male rat copulation. We have shown that the nitric oxide-cGMP (NO-cGMP) pathway modulates MPOA DA levels and copulation. We have also shown that systemic estradiol (E(2)) maintains neuronal NO synthase (nNOS) immunoreactivity in the MPOA of castrates, as well as relatively normal DA levels. This effect of E(2) on nNOS probably accounts for at least some of the previously demonstrated behavioral facilitation by intra-MPOA E(2) administration in castrates. Therefore, we hypothesized that stimulation of the MPOA NO-cGMP pathway in dihydrotestosterone (DHT)-treated castrates should restore DA levels and copulatory behaviors. Reverse-dialysis of a NO donor, sodium nitroprusside (SNP), increased extracellular DA in the MPOA of DHT-treated castrates and restored the ability to copulate to ejaculation in half of the animals. A cGMP analog, 8-Br-cGMP, also increased extracellular DA, though not as robustly, but did not restore copulatory ability. The effectiveness of the NO donor in restoring copulation and MPOA DA levels is consistent with our hypothesis. However, the lack of behavioral effects of 8-Br-cGMP, despite its increase in MPOA DA, suggests that NO may have additional mediators in the MPOA in the regulation of copulation. Furthermore, the suboptimal copulation seen in the NO donor-treated animals suggests the importance of extra-MPOA systems in the regulation of copulation.
Collapse
Affiliation(s)
- Satoru M. Sato
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California CA, 90033
| | - Scott R. Wersinger
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260
| | - Elaine M. Hull
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260
- Department of Psychology, Florida Sate University, Tallahassee, FL 32306−1270
| |
Collapse
|
18
|
Hull EM, Dominguez JM. Getting his act together: roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res 2006; 1126:66-75. [PMID: 16963001 DOI: 10.1016/j.brainres.2006.08.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/27/2006] [Accepted: 08/04/2006] [Indexed: 12/31/2022]
Abstract
Gonadal hormones have primarily slow, genomically mediated effects, but copulation requires rapid interactions with a partner. A major way in which hormones facilitate male sexual behavior is by increasing production of neurotransmitter receptors or of enzymes that regulate neurotransmitter synthesis or release. Dopamine is an important facilitative neurotransmitter, and the medial preoptic area (MPOA) is a critical integrative site for male sexual behavior. MPOA dopamine is released before and during mating and facilitates copulation, genital reflexes, and sexual motivation. Gonadal hormones regulate dopamine release in the MPOA of male rats in part by increasing nitric oxide synthase (NOS) in the MPOA; the resultant increase in production of nitric oxide (NO) increases both basal and female-stimulated dopamine release. Glutamate also increases dopamine release via increased production of NO. At least some of the glutamatergic inputs to the MPOA are from the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), which mediate the female-stimulated increase in dopamine, which in turn enhances copulatory ability. Extracellular glutamate in the MPOA increases during copulation, especially during ejaculation, and increased glutamate facilitates copulation and genital reflexes. Previous sexual experience also facilitates copulation and confers resistance to impairment by various lesions, drugs, and stress. Experience enhances processing of sexual stimuli, and its effects require activation of glutamate NMDA receptors and NOS in the MPOA. Neuronal NOS is increased in the MPOA of experienced males. Therefore, glutamate, NO, and dopamine interact in the MPOA to facilitate mating and to enhance future sexual responsiveness.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | |
Collapse
|