1
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
2
|
Hu H, Liu Y, Li K, Fang M, Zou Y, Wang J, Ge J. Retrograde fluorogold labeling of retinal ganglion cells in neonatal mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:878. [PMID: 34164512 PMCID: PMC8184436 DOI: 10.21037/atm-21-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The neonatal period, especially postnatal day 10 (P10), is important for mouse retinal ganglion cells (RGCs) development, and an effective labeling technique to track neonatal RGCs is needed. Retrograde fluorogold (FG) labeling is widely used for adult mouse RGCs, but its applicability for the neonatal mouse is still unknown. This study aimed to evaluate the safety and efficiency of retrograde FG labeling in P10 mice. Methods The anatomic location of the superior colliculus (SC) of P10 wild-type C57/BL6J mice was clarified by histological brain section and hematoxylin and eosin (H&E) staining. Three doses of 3% FG were injected into the SC of 30 mice, and 3 days post-surgery, labeling efficiency was quantified by retinal flat-mounts, and labeling safety was evaluated by mice mortality. Results Samples of brain tissue from 2–3.5 mm posterior to the bregma, and from 0.5–2.0 mm lateral to the midline showed major SC-related structures. The FG-positive RGC density in the 0.3 µL group was 3,563.9±311.9 cells/mm2, significantly more than in the 0.6 µL group (1,718.6±177.1 cells/mm2) or 1.0 µL group (2,496.8±342.2 cells/mm2). The mortality rate was 10% in both the 0.3 and 0.6 µL groups, but 40% in the 1.0 µL group. Conclusions The appropriate labeling site in P10 mice was confirmed and 0.3 µL FG is an appropriate dose for retrograde labeling of RGCs.
Collapse
Affiliation(s)
- Huiling Hu
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Fang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Yunyun Zou
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
The Same Magnocellular Neurons Send Axon Collaterals to the Posterior Pituitary and Retina or to the Posterior Pituitary and Autonomic Preganglionic Centers of the Eye in Rats. NEUROSCI 2021. [DOI: 10.3390/neurosci2010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In rats, some parvocellular paraventricular neurons project to spinal autonomic centers. Using the virus tracing technique, we have demonstrated that some magnocellular paraventricular neurons, but not supraoptic neurons, also project to autonomic preganglionic centers of the mammary gland, gingiva, or lip. A part of these neurons has shown oxytocin immunoreactivity. In the present experiment, we have examined whether the same magnocellular neuron that sends fibers to the retina or autonomic preganglionic centers of the eye also projects to the posterior pituitary. Double neurotropic viral labeling and oxytocin immunohistochemistry were used. After inoculation of the posterior pituitary and the eye with viruses, spreading in a retrograde direction and expressing different fluorescence proteins, we looked for double-labeled neurons in paraventricular and supraoptic nuclei. Double-labeled neurons were observed in non-sympathectomized and cervical-sympathectomized animals. Some double-labeled neurons contained oxytocin. After the optic nerve was cut, the labeling did not appear in the supraoptic nucleus; however, it could still be observed in the paraventricular nucleus. In the paraventricular nucleus, the double-labeled cells may be the origin of centrifugal visual fibers or autonomic premotor neurons. In the supraoptic nucleus, all double-labeled neurons are cells of origin of centrifugal visual fibers.
Collapse
|
4
|
Pinealocytes can not transport neurotropic viruses. Pinealo-to-retinal connection in prepubertal rats originates from pineal neurons: Light and electron microscopic immunohistochemical studies. Neurosci Lett 2020; 744:135517. [PMID: 33246028 DOI: 10.1016/j.neulet.2020.135517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
It is well established that the adult mammalian pineal body (PB), with the exception of rodents, contains nerve cell bodies. Based on our previous results we have proposed that there is a pinealo-to-retinal neuronal connection in adult hamsters and in prebubertal rats. By the time the animals reached puberty, labeled cells in the PB were not observed in rats. In the present experiment, we provide light and electron microscopic immunohistochemical evidence that the labeled cells in the PB of prepubertal rats are neurons. Pinealocytes cannot transport neurotropic viruses. Virus labeled cells do not show S-antigen immunoreactivity typical for pinealocytes of six-day-old rats. Electron microscopic investigation confirmed the neuronal nature of virus labeled cells. These neurons, similarly to that of hamsters, also establish pinealo-to-retinal connections in prepubertal rats.
Collapse
|
5
|
Nega S, Marquez P, Hamid A, Ahmad SM, Lutfy K. The role of pituitary adenylyl cyclase activating polypeptide in affective signs of nicotine withdrawal. J Neurosci Res 2020; 98:1549-1560. [PMID: 32476165 DOI: 10.1002/jnr.24649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.
Collapse
Affiliation(s)
- Shiromani Nega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Paul Marquez
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Abdul Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Syed Muzzammil Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
6
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
7
|
Chan KC, Zhou IY, Liu SS, van der Merwe Y, Fan SJ, Hung VK, Chung SK, Wu WT, So KF, Wu EX. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI. Sci Rep 2017; 7:43124. [PMID: 28230106 PMCID: PMC5322351 DOI: 10.1038/srep43124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes.
Collapse
Affiliation(s)
- Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, United States.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Iris Y Zhou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Stanley S Liu
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Victor K Hung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wu-Tian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Fai So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
8
|
|
9
|
Csáki Á, Vígh B, Boldogkői Z, Vereczki V, Szél Á, Köves K. Is a neuronal chain between the pineal body and the retina in rats and hamsters? Transneural tracing studies. Neurosci Lett 2015; 588:1-6. [DOI: 10.1016/j.neulet.2014.12.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 11/27/2022]
|
10
|
Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts. PLoS One 2014; 9:e110612. [PMID: 25343338 PMCID: PMC4208790 DOI: 10.1371/journal.pone.0110612] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/20/2014] [Indexed: 11/19/2022] Open
Abstract
To investigate the reliability of different methods of quantifying retinal ganglion cells (RGCs) in rat retinal sections and wholemounts from eyes with either intact optic nerves or those axotomised after optic nerve crush (ONC). Adult rats received a unilateral ONC and after 21 days the numbers of Brn3a+, βIII-tubulin+ and Islet-1+ RGCs were quantified in either retinal radial sections or wholemounts in which FluoroGold (FG) was injected 48 h before harvesting. Phenotypic antibody markers were used to distinguish RGCs from astrocytes, macrophages/microglia and amacrine cells. In wholemounted retinae, counts of FG+ and Brn3a+ RGCs were of similar magnitude in eyes with intact optic nerves and were similarly reduced after ONC. Larger differences in RGC number were detected between intact and ONC groups when images were taken closer to the optic nerve head. In radial sections, Brn3a did not stain astrocytes, macrophages/microglia or amacrine cells, whereas βIII-tubulin and Islet-1 did localize to amacrine cells as well as RGCs. The numbers of βIII-tubulin+ RGCs was greater than Brn3a+ RGCs, both in retinae from eyes with intact optic nerves and eyes 21 days after ONC. Islet-1 staining also overestimated the number of RGCs compared to Brn3a, but only after ONC. Estimates of RGC loss were similar in Brn3a-stained radial retinal sections compared to both Brn3a-stained wholemounts and retinal wholemounts in which RGCs were backfilled with FG, with sections having the added advantage of reducing experimental animal usage.
Collapse
|
11
|
McGuire N, Ferris JK, Arckens L, Bentley GE, Soma KK. Gonadotropin releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH) in the songbird hippocampus: regional and sex differences in adult zebra finches. Peptides 2013; 46:64-75. [PMID: 23727031 DOI: 10.1016/j.peptides.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/15/2022]
Abstract
Hypothalamic gonadotropin releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH) are vital to reproduction in all vertebrates. These neuropeptides are also present outside of the hypothalamus, but the roles of extra-hypothalamic GnRH and GnIH remain enigmatic and widely underappreciated. We used immunohistochemistry and PCR to examine whether multiple forms of GnRH (chicken GnRH-I (GnRH1), chicken GnRH-II (GnRH2) and lamprey GnRH-III (GnRH4)) and GnIH are present in the hippocampus (Hp) of adult zebra finches (Taeniopygia guttata). Using immunohistochemistry, we provide evidence that GnRH1, GnRH2 and GnRH4 are present in hippocampal cell bodies and/or fibers and that GnIH is present in hippocampal fibers only. There are regional differences in hippocampal GnRH immunoreactivity, and these vary across the different forms of GnRH. There are also sex differences in hippocampal GnRH immunoreactivity, with generally more GnRH1 and GnRH2 in the female Hp. In addition, we used PCR to examine the presence of GnRH1 mRNA and GnIH mRNA in micropunches of Hp. PCR and subsequent product sequencing demonstrated the presence of GnRH1 mRNA and the absence of GnIH mRNA in the Hp, consistent with the pattern of immunohistochemical results. To our knowledge, this is the first study in any species to systematically examine multiple forms of GnRH in the Hp or to quantify sex or regional differences in hippocampal GnRH. Moreover, this is the first demonstration of GnIH in the avian Hp. These data shed light on an important issue: the sites of action and possible functions of GnRH and GnIH outside of the HPG axis.
Collapse
Affiliation(s)
- Nicolette McGuire
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
12
|
Tirassa P, Maccarone M, Florenzano F, Cartolano S, De Nicolò S. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy. CNS Neurosci Ther 2013; 19:307-18. [PMID: 23528019 DOI: 10.1111/cns.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/18/2013] [Accepted: 02/02/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. METHODS Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. RESULTS oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. CONCLUSIONS Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Cellular Biology and Neurobiology, National Research Council (CNR), Rome, Italy.
| | | | | | | | | |
Collapse
|
13
|
Calza A, Florenzano F, Pellegrini D, Tirassa P. Time-dependent activation of c-fos in limbic brain areas by ocular administration of nerve growth factor in adult rats. J Ocul Pharmacol Ther 2011; 27:209-18. [PMID: 21510807 DOI: 10.1089/jop.2010.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE The ocular administration of the neurotrophin nerve growth factor (NGF) has been successfully used in humans to recover damaged ocular tissues. Studies on animal models have demonstrated the ability of ocular applied NGF to reach the retina and the optic nerve and affect brain visual areas. The aim of this study was to examine whether the ocular application of NGF as eye drops might affect brain areas other than the primary visual centers. METHODS Two drops (10 μL) of NGF solution (200 μg/mL) or saline were applied as collyrium to both eyes of adult male Sprague-Dawley rats. The animals were sacrificed at 4, 8, or 24 h after treatment and the brains were fixed through intracardiac perfusion. Coronal brain sections were cut with a cryostat and used for immunohistochemical time series and double immunofluorescence studies using c-fos and NeuN as markers for neuronal activation. RESULTS The immunohistochemical studies show a time-dependent effect of NGF eye drop treatment. At 4 h after NGF ocular administration, the increase in c-fos immunoreactivity is mainly observed in areas belonging to the central visual system, such as the lateral geniculate nucleus and visual cortex. At 8 h posttreatment, c-fos expression is enhanced in several limbic structures, including the frontal cortex, hippocampus, amygdala, and hypothalamus. The effects of NGF on c-fos distribution persist at 24 h postadministration. Specificity of NGF-induced c-fos in brain was confirmed using inactivated NGF. The neuronal nature of the NGF-activated cells was demonstrated by confocal microscopy observation of c-fos and NeuN colocalization. CONCLUSION This study demonstrates that NGF, when applied on ocular surface, is able to activate c-fos in several areas of the limbic system in a time-dependent manner. These findings suggest that the effects of NGF eye drops are not restricted to the primary visual areas, but are extended to all the retinal central targets, including the forebrain structure. Based on these data, the use of NGF eye drops as a strategy to produce NGF-mediated protective and reparative actions in brain is hypothesizable.
Collapse
Affiliation(s)
- Arianna Calza
- National Council of Research, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | | | | | | |
Collapse
|
14
|
Abudureheman A, Nakagawa S. Retinopetal neurons located in the diencephalon of the Japanese monkey (Macaca fuscata). Okajimas Folia Anat Jpn 2010; 87:17-23. [PMID: 20715568 DOI: 10.2535/ofaj.87.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After a monocular injection of the cholera toxin B subunit (CTB) into the vitreous chamber of one eye, the retrogradely labeled retinopetal neurons were studied in the diencephalon of the Japanese monkey. The retrogradely transported tracer was visualized using the peroxidase antibody technique and an anti-cholera toxin antibody. The CTB-labeled nerve cell bodies were scattered in the periventricular nucleus of the hypothalamus, lateral hypothalamic area, and midline nuclei of the thalamus on both sides. In addition, a few retrogradely labeled nerve somata were observed in the most rostral portion of the lateral geniculate nucleus on the contralateral side.
Collapse
Affiliation(s)
- Abuduaini Abudureheman
- Laboratory for Neuroanatomy, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | | |
Collapse
|
15
|
Atlasz T, Szabadfi K, Kiss P, Racz B, Gallyas F, Tamas A, Gaal V, Marton Z, Gabriel R, Reglodi D. Pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects. Ann N Y Acad Sci 2010; 1200:128-39. [PMID: 20633141 DOI: 10.1111/j.1749-6632.2010.05512.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects against different neuronal injuries, such as traumatic brain and spinal cord injury, models of neurodegenerative diseases, and cerebral ischemia. PACAP and its receptors are present in the retina. In this study, we summarize the current knowledge on retinal PACAP with focus on the retinoprotective effects. Results of histological, immunohistochemical, and molecular biological analysis are reviewed. In vitro, PACAP shows protection against glutamate, thapsigargin, anisomycin, and anoxia. In vivo, the protective effects of intravitreal PACAP treatment have been shown in the following models of retinal degeneration in rats: excitotoxic injury induced by glutamate and kainate, ischemic injury, degeneration caused by UV-A light, optic nerve transection, and streptozotocin-induced diabetic retinopathy. Studying the molecular mechanism has revealed that PACAP acts by activating antiapoptotic and inhibiting proapoptotic signaling pathways in the retina in vivo. These studies strongly suggest that PACAP is an excellent candidate retinoprotective agent that could be a potential therapeutic substance in various retinal diseases.
Collapse
Affiliation(s)
- T Atlasz
- Department of Sportbiology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anti-NGF-antibody administration as collyrium reduces the presence of NGF and enhances the expression of VEGF in the retina, lacrimal gland and hippocampus. Neurosci Lett 2009; 463:203-6. [DOI: 10.1016/j.neulet.2009.07.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/22/2023]
|
17
|
Atlasz T, Szabadfi K, Kiss P, Tamas A, Toth G, Reglodi D, Gabriel R. Evaluation of the protective effects of PACAP with cell-specific markers in ischemia-induced retinal degeneration. Brain Res Bull 2009; 81:497-504. [PMID: 19751807 DOI: 10.1016/j.brainresbull.2009.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/08/2009] [Indexed: 01/26/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as traumatic brain injury, models of neurodegenerative diseases and cerebral ischemia. We have provided evidence that PACAP is neuroprotective in several models of retinal degeneration in vivo. In our previous studies we showed that PACAP treatment significantly ameliorated the damaging effects of permanent bilateral common carotid artery occlusion (BCCAO). In the present study cell-type-specific markers were used in the same models in order to further specify the protective effects of PACAP. In rats BCCAO led to severe degeneration of all retinal layers that was attenuated by PACAP (100 pmol) administered unilaterally immediately following BCCAO into the vitreous body of one eye. Retinas were processed for immunohistochemistry after 3 weeks. Immunolabeling was executed for vesicular glutamate transporter 1 (VGLUT 1), vesicular gamma-aminobutyric acid transporter (VGAT), protein kinase Calpha (PKCalpha), glial fibrillary acidic protein (GFAP) and calcium-binding proteins, such as calbindin, calretinin, parvalbumin. In BCCAO retinas, intensity of immunopositivity for all antisera was dramatically decreased, except in the case of GFAP. In PACAP-treated retinas, immunostaining was similar to that of the control animals. In summary, our study presented immunohistochemical identification of cell types sensitive to chronic retinal hypoperfusion and the protective effects of PACAP. This analysis revealed that the retinoprotective effects of PACAP are not phenotype-specific, but it rather influences general cytoprotective pathways irrespective of the neuronal subtypes in the retina subjected to chronic hypoperfusion.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
18
|
Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 2009; 57:645-56. [PMID: 18942756 DOI: 10.1002/glia.20793] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress is an important molecular mechanism of astrocyte injury and death following ischemia/reperfusion and may be an effective target of intervention. One therapeutic strategy for detoxifying the many different reactive oxygen and nitrogen species that are produced under these conditions is induction of the Phase II gene response by the use of chemicals or conditions that promote the translocation of the transcriptional activating factor NRF2 from the cytosol to the nucleus, where it binds to genomic antioxidant response elements. This study tested the hypothesis that pre- or post-treatment of cultured cortical astrocytes with sulforaphane, an alkylating agent known to activate the NRF2 pathway of gene expression protects against death of astrocytes caused by transient exposure to O(2) and glucose deprivation (OGD). Rat cortical astrocytes were exposed to 5 muM sulforaphane either 48 h prior to, or for 48 h after a 4-h period of OGD. Both pre- and post-treatments significantly reduced cell death at 48 h after OGD. Immunostaining for 8-hydroxy-2-deoxyguanosine, a marker of DNA/RNA oxidation, was reduced at 4 h reoxygenation with sulforaphane pretreatment. Sulforaphane exposure was followed by an increase in cellular and nuclear NRF2 immunoreactivity. Moreover, sulforaphane also increased the mRNA, protein level, and enzyme activity of NAD(P)H/Quinone Oxidoreductase1, a known target of NRF2 transcriptional activation. We conclude that sulforaphane stimulates the NRF2 pathway of antioxidant gene expression in astrocytes and protects them from cell death in an in vitro model of ischemia/reperfusion.
Collapse
Affiliation(s)
- Camelia A Danilov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gonadotrophin-releasing hormone (GnRH) was first isolated in the mammal and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotrophin release. Subsequent to its discovery, this form of GnRH has been shown to be one of many structural variants found in the brain and peripheral tissues. Accordingly, the original form first discovered and cloned in the mammal is commonly referred to as GnRH-I. In addition to the complex regulation of GnRH-I synthesis, release and function, further evidence suggests that the processing of GnRH-I produces yet another layer of complexity in its activity. GnRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15), which cleaves the hormone at the covalent bond between the fifth and sixth residue of the decapeptide (Tyr(5)-Gly(6)) to form GnRH-(1-5). It was previously thought that the cleavage of GnRH-I by EP24.15 represents the initiation of its degradation. Here, we review the evidence for the involvement of GnRH-(1-5), the metabolite of GnRH-I, in the regulation of GnRH-I synthesis, secretion and facilitation of reproductive behaviour.
Collapse
Affiliation(s)
- T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
20
|
Atlasz T, Szabadfi K, Kiss P, Babai N, Koszegi Z, Tamas A, Reglodi D, Gabriel R. PACAP-Mediated Neuroprotection of Neurochemically Identified Cell Types in MSG-Induced Retinal Degeneration. J Mol Neurosci 2008; 36:97-104. [DOI: 10.1007/s12031-008-9059-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/22/2008] [Indexed: 11/28/2022]
|
21
|
Roberts JL, Mani SK, Woller MJ, Glucksman MJ, Wu TJ. LHRH-(1-5): a bioactive peptide regulating reproduction. Trends Endocrinol Metab 2007; 18:386-92. [PMID: 17997103 DOI: 10.1016/j.tem.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022]
Abstract
Luteinizing hormone-releasing hormone-I (LHRH-I) was isolated from the mammalian hypothalamus and shown to be the primary regulator of reproduction through its initiation of pituitary gonadotropin release. Subsequently, it has also been shown to have non-pituitary actions. Although the regulation of LHRH-I synthesis and release has been extensively studied, there is additional evidence to suggest that processing of the peptide represents another layer of regulation. The focus of this review will be on evidence for the action of LHRH-(1-5), the pentapeptide metabolite of LHRH-I, in regulating LHRH-I synthesis, secretion and reproductive behavior. The involvement of LHRH-(1-5) in the control of aspects of reproduction might represent yet another level of regulatory complexity through neuropeptide processing.
Collapse
Affiliation(s)
- James L Roberts
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
22
|
Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotox Res 2007; 12:95-104. [DOI: 10.1007/bf03033918] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|