1
|
Casillas Martinez A, Wicki-Stordeur LE, Ariano AV, Swayne LA. Dual role for pannexin 1 at synapses: regulating functional and morphological plasticity. J Physiol 2024. [PMID: 39264228 DOI: 10.1113/jp285228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Pannexin 1 (PANX1) is an ion and metabolite membrane channel and scaffold protein enriched in synaptic compartments of neurons in the central nervous system. In addition to a well-established link between PANX1 and synaptic plasticity, we recently identified a role for PANX1 in the regulation of dendritic spine stability. Notably, PANX1 and its interacting proteins are linked to neurological conditions involving dendritic spine loss. Understanding the dual role of PANX1 in synaptic function and morphology may help to shed light on these links. We explore potential mechanisms, including PANX1's interactions with postsynaptic receptors and cytoskeleton regulating proteins. Finally, we contextualize PANX1's dual role within neurological diseases involving dendritic spine and synapse dysfunction.
Collapse
Affiliation(s)
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Annika V Ariano
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
2
|
Lissoni A, Tao S, Allewaert R, Witschas K, Leybaert L. Cx43 Hemichannel and Panx1 Channel Modulation by Gap19 and 10Panx1 Peptides. Int J Mol Sci 2023; 24:11612. [PMID: 37511370 PMCID: PMC10380488 DOI: 10.3390/ijms241411612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cx43 hemichannels (HCs) and Panx1 channels are two genetically distant protein families. Despite the lack of sequence homology, Cx43 and Panx1 channels have been the subject of debate due to their overlapping expression and the fact that both channels present similarities in terms of their membrane topology and electrical properties. Using the mimetic peptides Gap19 and 10Panx1, this study aimed to investigate the cross-effects of these peptides on Cx43 HCs and Panx1 channels. The single-channel current activity from stably expressing HeLa-Cx43 and C6-Panx1 cells was recorded using patch-clamp experiments in whole-cell voltage-clamp mode, demonstrating 214 pS and 68 pS average unitary conductances for the respective channels. Gap19 was applied intracellularly while 10Panx1 was applied extracellularly at different concentrations (100, 200 and 500 μM) and the average nominal open probability (NPo) was determined for each testing condition. A concentration of 100 µM Gap19 more than halved the NPo of Cx43 HCs, while 200 µM 10Panx1 was necessary to obtain a half-maximal NPo reduction in the Panx1 channels. Gap19 started to significantly inhibit the Panx1 channels at 500 µM, reducing the NPo by 26% while reducing the NPo of the Cx43 HCs by 84%. In contrast 10Panx1 significantly reduced the NPo of the Cx43 HCs by 37% at 100 µM and by 83% at 200 µM, a concentration that caused the half-maximal inhibition of the Panx1 channels. These results demonstrate that 10Panx1 inhibits Cx43 HCs over the 100-500 µM concentration range while 500 µM intracellular Gap19 is necessary to observe some inhibition of Panx1 channels.
Collapse
|
3
|
NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci 2022; 23:ijms23126705. [PMID: 35743148 PMCID: PMC9223805 DOI: 10.3390/ijms23126705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.
Collapse
|
4
|
García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021; 231:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| | - Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Luis C Barrio
- Hospital Ramon y Cajal-IRYCIS, Centro de Tecnología Biomédica de la Universidad Politécnica, Madrid, Spain
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| |
Collapse
|
5
|
Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci 2021; 22:ijms22105189. [PMID: 34068881 PMCID: PMC8156193 DOI: 10.3390/ijms22105189] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.
Collapse
Affiliation(s)
- Joon Ho Seo
- Department of Neurology and Nash Family, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA;
| | - Miloni S. Dalal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2770
| |
Collapse
|
6
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
7
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
8
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|
9
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
10
|
Dye ZT, Rutledge LV, Penuela S, Dyce PW. Pannexin 1 inhibition delays maturation and improves development of Bos taurus oocytes. J Ovarian Res 2020; 13:98. [PMID: 32838805 PMCID: PMC7447567 DOI: 10.1186/s13048-020-00704-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Intercellular exchange between the oocyte and its surrounding cells within the follicular environment is critical for oocyte maturation and subsequent development. In vertebrates this exchange is facilitated through gap junctions formed by connexin membrane proteins. Another family of membrane proteins called pannexins are able to form single membrane channels that allow cellular exchanges with the extracellular environment. The most ubiquitously expressed and studied member, pannexin 1 (PANX1), has yet to be described thoroughly in female reproductive tissues or functionally studied during oocyte maturation. Here, we look into the expression of pannexin 1 in bovine cumulus-oocyte complexes (COCs), as well as, its potential role in oocyte maturation and development. Results We show that pannexin 1 is expressed in bovine COCs and that the expression of PANX1 was significantly lower in COCs isolated from large antral follicles (> 5 mm) compared to those isolated from small antral follicles (< 2 mm). Supporting this we also found lower expression of PANX1 in oocytes with higher developmental potential when compared to oocytes with lower developmental potential. We further found that PANX1 channel inhibition during in vitro maturation resulted in temporarily delayed meiotic maturation and improved in vitro developmental outcomes while decreasing intercellular reactive oxygen species. Conclusions These data suggests PANX1 is differentially expressed at a critical stage of follicular development when oocytes are acquiring developmental competence, and may play a role in the timing of oocyte maturation.
Collapse
Affiliation(s)
- Zachary Timothy Dye
- Department of Animal Sciences, Auburn University, CASIC Building, 559 Devall Drive, Auburn, AL, 36849, USA
| | - Lauren Virginia Rutledge
- Department of Animal Sciences, Auburn University, CASIC Building, 559 Devall Drive, Auburn, AL, 36849, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Paul William Dyce
- Department of Animal Sciences, Auburn University, CASIC Building, 559 Devall Drive, Auburn, AL, 36849, USA.
| |
Collapse
|
11
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Scemes E, Velíšek L, Velíšková J. Astrocyte and Neuronal Pannexin1 Contribute Distinctly to Seizures. ASN Neuro 2020; 11:1759091419833502. [PMID: 30862176 PMCID: PMC6415468 DOI: 10.1177/1759091419833502] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ATP- and adenosine-mediated signaling are prominent types of glia–glia and glia–neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.
Collapse
Affiliation(s)
- Eliana Scemes
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,2 Departments of Neurology and Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,3 Departments of Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
13
|
Synaptic Pruning by Microglia in Epilepsy. J Clin Med 2019; 8:jcm8122170. [PMID: 31818018 PMCID: PMC6947403 DOI: 10.3390/jcm8122170] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Structural and functional collapse of the balance between excitatory (E) and inhibitory (I) synapses, i.e., synaptic E/I balance, underlies the pathogeneses of various central nervous system (CNS) disorders. In epilepsy, the synaptic E/I balance tips toward excitation; thus, most of the existing epileptic remedies have focused on how to directly suppress the activity of neurons. However, because as many as 30% of patients with epilepsy are drug resistant, the discovery of new therapeutic targets is strongly desired. Recently, the roles of glial cells in epilepsy have gained attention because glial cells manipulate synaptic structures and functions in addition to supporting neuronal survival and growth. Among glial cells, microglia, which are brain-resident immune cells, have been shown to mediate inflammation, neuronal death and aberrant neurogenesis after epileptic seizures. However, few studies have investigated the involvement of synaptic pruning—one of the most important roles of microglia—in the epileptic brain. In this review, we propose and discuss the hypothesis that synaptic pruning by microglia is enhanced in the epileptic brain, drawing upon the findings of previous studies. We further discuss the possibility that aberrant synaptic pruning by microglia induces synaptic E/I imbalance, promoting the development and aggravation of epilepsy.
Collapse
|
14
|
Dossi E, Blauwblomme T, Moulard J, Chever O, Vasile F, Guinard E, Le Bert M, Couillin I, Pallud J, Capelle L, Huberfeld G, Rouach N. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci Transl Med 2019; 10:10/443/eaar3796. [PMID: 29848662 DOI: 10.1126/scitranslmed.aar3796] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/02/2017] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Epilepsies are characterized by recurrent seizures, which disrupt normal brain function. Alterations in neuronal excitability and excitation-inhibition balance have been shown to promote seizure generation, yet molecular determinants of such alterations remain to be identified. Pannexin channels are nonselective, large-pore channels mediating extracellular exchange of neuroactive molecules. Recent data suggest that these channels are activated under pathological conditions and regulate neuronal excitability. However, whether pannexin channels sustain or counteract chronic epilepsy in human patients remains unknown. We studied the impact of pannexin-1 channel activation in postoperative human tissue samples from patients with epilepsy displaying epileptic activity ex vivo. These samples were obtained from surgical resection of epileptogenic zones in patients suffering from lesional or drug-resistant epilepsy. We found that pannexin-1 channel activation promoted seizure generation and maintenance through adenosine triphosphate signaling via purinergic 2 receptors. Pharmacological inhibition of pannexin-1 channels with probenecid or mefloquine-two medications currently used for treating gout and malaria, respectively-blocked ictal discharges in human cortical brain tissue slices. Genetic deletion of pannexin-1 channels in mice had anticonvulsant effects when the mice were exposed to kainic acid, a model of temporal lobe epilepsy. Our data suggest a proepileptic role of pannexin-1 channels in chronic epilepsy in human patients and that pannexin-1 channel inhibition might represent an alternative therapeutic strategy for treating lesional and drug-resistant epilepsies.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Thomas Blauwblomme
- Assistance Publique-Hopitaux de Paris (AP-HP), Department of Pediatric Neurosurgery, Necker Hospital, INSERM U1129, Paris Descartes University, PRES Sorbonne Paris Cité, 75015 Paris, France.,INSERM U1129, Paris Descartes University, PRES Sorbonne Paris Cité, CEA, 75015 Paris, France
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Eleonore Guinard
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France.,INSERM U1129, Paris Descartes University, PRES Sorbonne Paris Cité, CEA, 75015 Paris, France
| | - Marc Le Bert
- CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, 45067 Orléans, France
| | - Isabelle Couillin
- CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, 45067 Orléans, France
| | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital and IMA-BRAIN, INSERM U894, Paris Descartes University, PRES Sorbonne Paris Cité, 75014 Paris, France
| | - Laurent Capelle
- Department of Neurosurgery, University Pierre and Marie Curie, La Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Universités, 75013 Paris, France
| | - Gilles Huberfeld
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France.,INSERM U1129, Paris Descartes University, PRES Sorbonne Paris Cité, CEA, 75015 Paris, France.,Department of Neurophysiology, La Pitié-Salpetrière Hospital, Sorbonne Universités, University Pierre and Marie Curie, AP-HP, 75013 Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France.
| |
Collapse
|
15
|
Pannexin 1 Regulates Network Ensembles and Dendritic Spine Development in Cortical Neurons. eNeuro 2019; 6:ENEURO.0503-18.2019. [PMID: 31118206 PMCID: PMC6557035 DOI: 10.1523/eneuro.0503-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are the postsynaptic targets of excitatory synaptic inputs that undergo extensive proliferation and maturation during the first postnatal month in mice. However, our understanding of the molecular mechanisms that regulate spines during this critical period is limited. Previous work has shown that pannexin 1 (Panx1) regulates neurite growth and synaptic plasticity. We therefore investigated the impact of global Panx1 KO on spontaneous cortical neuron activity using Ca2+ imaging and in silico network analysis. Panx1 KO increased both the number and size of spontaneous co-active cortical neuron network ensembles. To understand the basis for these findings, we investigated Panx1 expression in postnatal synaptosome preparations from early postnatal mouse cortex. Between 2 and 4 postnatal weeks, we observed a precipitous drop in cortical synaptosome protein levels of Panx1, suggesting it regulates synapse proliferation and/or maturation. At the same time points, we observed significant enrichment of the excitatory postsynaptic density proteins PSD-95, GluA1, and GluN2a in cortical synaptosomes from global Panx1 knock-out mice. Ex vivo analysis of pyramidal neuron structure in somatosensory cortex revealed a consistent increase in dendritic spine densities in both male and female Panx1 KO mice. Similar findings were observed in an excitatory neuron-specific Panx1 KO line (Emx1-Cre driven; Panx1 cKOE) and in primary Panx1 KO cortical neurons cultured in vitro. Altogether, our study suggests that Panx1 negatively regulates cortical dendritic spine development.
Collapse
|
16
|
Boucher J, Simonneau C, Denet G, Clarhaut J, Balandre AC, Mesnil M, Cronier L, Monvoisin A. Pannexin-1 in Human Lymphatic Endothelial Cells Regulates Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19061558. [PMID: 29882918 PMCID: PMC6032340 DOI: 10.3390/ijms19061558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms governing the formation of lymphatic vasculature are not yet well understood. Pannexins are transmembrane proteins that form channels which allow for diffusion of ions and small molecules (<1 kDa) between the extracellular space and the cytosol. The expression and function of pannexins in blood vessels have been studied in the last few decades. Meanwhile, no studies have been conducted to evaluate the role of pannexins during human lymphatic vessel formation. Here we show, using primary human dermal lymphatic endothelial cells (HDLECs), pharmacological tools (probenecid, Brilliant Blue FCF, mimetic peptides [10Panx]) and siRNA-mediated knockdown that Pannexin-1 is necessary for capillary tube formation on Matrigel and for VEGF-C-induced invasion. These results newly identify Pannexin-1 as a protein highly expressed in HDLECs and its requirement during in vitro lymphangiogenesis.
Collapse
Affiliation(s)
- Jonathan Boucher
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Claire Simonneau
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Golthlay Denet
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Jonathan Clarhaut
- CNRS UMR 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), University of Poitiers, 86073 Poitiers, France.
- CHU de Poitiers, 86021 Poitiers, France.
| | - Annie-Claire Balandre
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Marc Mesnil
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Laurent Cronier
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Arnaud Monvoisin
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| |
Collapse
|
17
|
Wu XL, Ma DM, Zhang W, Zhou JS, Huo YW, Lu M, Tang FR. Cx36 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Epilepsy Res 2018; 141:64-72. [PMID: 29476948 DOI: 10.1016/j.eplepsyres.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022]
Abstract
Gap junctions play an important role in the synchronization activity of coupled cells. Hippocampal inhibitory interneurons are involved in epileptogenesis and seizure activity, and express gap junction protein connexin (Cx) 36. Cx36 is also localized in the axons (mossy fibers) of granule cells in the dentate gyrus. While it has been documented that Cx36 is involved in epileptogenesis, there are still controversies regarding the expression levels of Cx36 at different developmental stages of human and animal models of epileptogenesis. In this study, the expression of Cx36 was investigated in the mouse hippocampus at 1 h, 4 h during pilocarpine-induced status epilepticus (PISE) and 1 week, 2 months after PISE. We found that Cx36 was down-regulated in neurons at different time points during and after PISE, whereas it was increased significantly in the stratum lucidum of CA3 area at 2 months after PISE. Double immunofluorescence indicated that Cx36 was localized in parvalbumin (PV) immunopositive interneuron in CA1 area and in mossy fibers and their terminals in the stratum lucidum of CA3 area. It suggests that decreased expression of Cx36 in interneurons may be related to less effective inhibitory control of excitatory activity of hippocampal principal neurons. However, the increased Cx36 immunopositive product in mossy fibers at the chronic stage after PISE may enhance the contacts between granule cells in the dentate gyrus and pyramidal neurons in CA3 area. The two different changes of Cx36 may be implicated in the epileptogenesis.
Collapse
Affiliation(s)
- X L Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - D M Ma
- Department of Thoracic Surgery, The Ninth Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, China
| | - W Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - J S Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Y W Huo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - M Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - F R Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower 138602, Singapore.
| |
Collapse
|
18
|
Sword J, Croom D, Wang PL, Thompson RJ, Kirov SA. Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading. J Cereb Blood Flow Metab 2017; 37:1626-1633. [PMID: 26994044 PMCID: PMC5435276 DOI: 10.1177/0271678x16639328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spreading depolarization-induced focal dendritic swelling (beading) is an early hallmark of neuronal cytotoxic edema. Pyramidal neurons lack membrane-bound aquaporins posing a question of how water enters neurons during spreading depolarization. Recently, we have identified chloride-coupled transport mechanisms that can, at least in part, participate in dendritic beading. Yet transporter-mediated ion and water fluxes could be paralleled by water entry through additional pathways such as large-pore pannexin-1 channels opened by spreading depolarization. Using real-time in vivo two-photon imaging in mice with pharmacological inhibition or conditional genetic deletion of pannexin-1, we showed that pannexin-1 channels are not required for spreading depolarization-induced focal dendritic swelling.
Collapse
Affiliation(s)
- Jeremy Sword
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Deborah Croom
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Phil L Wang
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Roger J Thompson
- 2 Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Sergei A Kirov
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA.,3 Department of Neurosurgery, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
19
|
Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol 2017; 14:759-71. [PMID: 27262601 PMCID: PMC5050393 DOI: 10.2174/1570159x14666160603115942] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. OBJECTIVE Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. RESULTS Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. CONCLUSION Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S. Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico D.F., Mexico
| |
Collapse
|
20
|
Orellana JA, Retamal MA, Moraga-Amaro R, Stehberg J. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Front Integr Neurosci 2016; 10:26. [PMID: 27489539 PMCID: PMC4951483 DOI: 10.3389/fnint.2016.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
21
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
22
|
Raslan A, Hainz N, Beckmann A, Tschernig T, Meier C. Pannexin-1 expression in developing mouse nervous system: new evidence for expression in sensory ganglia. Cell Tissue Res 2015; 364:29-41. [PMID: 26453396 DOI: 10.1007/s00441-015-2294-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Pannexin1 (Panx1) is one of three members of the pannexin protein family. The expression of Panx1 mRNA has been extensively investigated from late embryonic to adult stages. In contrast, expression during early embryonic development is largely unknown. Our aim is to examine the temporal and spatial expression of Panx1 in mouse embryonic development by focusing on embryonic days (E) 9.5 to 12.5. Whole embryos are investigated in order to provide a comprehensive survey. Analyses were performed at the mRNA level by using reverse transcription plus the polymerase chain reaction and whole-mount in situ hybridization. Panx1 mRNA was detected in the heads and bodies of embryos at all developmental stages investigated (E9.5, E10.5, E11.5, E12.5). In particular, the nervous system expressed Panx1 at an early time point. Interestingly, Panx1 expression was found in afferent ganglia of the cranial nerves and spinal cord. This finding is of particular interest in the context of neuropathic pain and other Panx1-related neurological disorders. Our study shows, for the first time, that Panx1 is expressed in the central and peripheral nervous system during early developmental stages. The consequences of Panx1 deficiency or inhibition in a number of experimental paradigms might therefore be predicated on changes during early development.
Collapse
Affiliation(s)
- Abdulrahman Raslan
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany.
| |
Collapse
|
23
|
Li L, He L, Wu D, Chen L, Jiang Z. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:391-6. [PMID: 25921414 DOI: 10.1093/abbs/gmv028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/04/2015] [Indexed: 11/15/2022] Open
Abstract
Pannexin-1, Pannexin-2, and Pannexin-3 are three members of the Pannexin family of channel-forming glycoprotein. Their primary function is defined by their ability to form single-membrane channels. Pannexin-1 ubiquitously exists in many cells and organs throughout the body and is specially distributed in the circulatory system, while the expressions of Pannexin-2 and Pannexin-3 are mostly restricted to organs and tissues. Pannexin-1 oligomers have been shown to be functional single membrane channels that connect intracellular and extracellular compartments and are not intercellular channels in appositional membranes. The physiological functions of Pannexin-1 are to link to the adenosine triphosphate efflux that acts as a paracrine signal, and regulate cellular inflammasomes in a variety of cell types under physiological and pathophysiological conditions. However, there are still many functions to be explored. This review summarizes recent reports and discusses the role of Pannexin-1 in cardiovascular diseases, including ischemia, arrhythmia, cardiac fibrosis, and hypertension. Pannexin-1 has been suggested as an exciting, clinically relevant target in cardiovascular diseases.
Collapse
Affiliation(s)
- Lanfang Li
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Di Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Zhisheng Jiang
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
24
|
Zhang Y, Laumet G, Chen SR, Hittelman WN, Pan HL. Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. J Biol Chem 2015; 290:14647-55. [PMID: 25925949 DOI: 10.1074/jbc.m115.650218] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 01/10/2023] Open
Abstract
Pannexin-1 (Panx1) is a large-pore membrane channel involved in the release of ATP and other signaling mediators. Little is known about the expression and functional role of Panx1 in the dorsal root ganglion (DRG) in the development of chronic neuropathic pain. In this study, we determined the epigenetic mechanism involved in increased Panx1 expression in the DRG after nerve injury. Spinal nerve ligation in rats significantly increased the mRNA and protein levels of Panx1 in the DRG but not in the spinal cord. Immunocytochemical labeling showed that Panx1 was primarily expressed in a subset of medium and large DRG neurons in control rats and that nerve injury markedly increased the number of Panx1-immunoreactive DRG neurons. Nerve injury significantly increased the enrichment of two activating histone marks (H3K4me2 and H3K9ac) and decreased the occupancy of two repressive histone marks (H3K9me2 and H3K27me3) around the promoter region of Panx1 in the DRG. However, nerve injury had no effect on the DNA methylation level around the Panx1 promoter in the DRG. Furthermore, intrathecal injection of the Panx1 blockers or Panx1-specific siRNA significantly reduced pain hypersensitivity induced by nerve injury. In addition, siRNA knockdown of Panx1 expression in a DRG cell line significantly reduced caspase-1 release induced by neuronal depolarization. Our findings suggest that nerve injury increases Panx1 expression levels in the DRG through altered histone modifications. Panx1 up-regulation contributes to the development of neuropathic pain and stimulation of inflammasome signaling.
Collapse
Affiliation(s)
- Yuhao Zhang
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine and
| | - Geoffroy Laumet
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine and
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine and
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine and
| |
Collapse
|
25
|
Kurtenbach S, Kurtenbach S, Zoidl G. Emerging functions of pannexin 1 in the eye. Front Cell Neurosci 2014; 8:263. [PMID: 25309318 PMCID: PMC4163987 DOI: 10.3389/fncel.2014.00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/14/2014] [Indexed: 01/23/2023] Open
Abstract
Pannexin 1 (Panx1) is a high-conductance, voltage-gated channel protein found in vertebrates. Panx1 is widely expressed in many organs and tissues, including sensory systems. In the eye, Panx1 is expressed in major divisions including the retina, lens and cornea. Panx1 is found in different neuronal and non-neuronal cell types. The channel is mechanosensitive and responds to changes in extracellular ATP, intracellular calcium, pH, or ROS/nitric oxide. Since Panx1 channels operate at the crossroad of major signaling pathways, physiological functions in important autocrine and paracrine feedback signaling mechanisms were hypothesized. This review starts with describing in depth the initial Panx1 expression and localization studies fostering functional studies that uncovered distinct roles in processing visual information in subsets of neurons in the rodent and fish retina. Panx1 is expressed along the entire anatomical axis from optical nerve to retina and cornea in glia, epithelial and endothelial cells as well as in neurons. The expression and diverse localizations throughout the eye points towards versatile functions of Panx1 in neuronal and non-neuronal cells, implicating Panx1 in the crosstalk between immune and neural cells, pressure related pathological conditions like glaucoma, wound repair or neuronal cell death caused by ischemia. Summarizing the literature on Panx1 in the eye highlights the diversity of emerging Panx1 channel functions in health and disease.
Collapse
Affiliation(s)
- Sarah Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Stefan Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Georg Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada ; Department of Biology, Faculty of Science, York University Toronto, ON, Canada
| |
Collapse
|
26
|
Konopacki J, Bocian R, Kowalczyk T, Kłos-Wojtczak P. The electrical coupling and the hippocampal formation theta rhythm in rats. Brain Res Bull 2014; 107:1-17. [PMID: 24747291 DOI: 10.1016/j.brainresbull.2014.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 02/05/2023]
Abstract
Gap junctions (GJs) were discovered more than five decades ago, and since that time enormous strides have been made in understanding their structure and function. Despite the voluminous literature concerning the function of GJs, the involvement of these membrane structures in the central mechanisms underlying oscillations and synchrony in the neuronal network is still a matter of intensive debate. This review summarizes what is known concerning the involvement of GJs as electrical synapses in mechanisms underlying the generation of theta band oscillations. The first part of the chapter discusses the role of GJs in mechanisms of oscillations and synchrony. Following this, in vitro, ex vivo, and in vivo experiments concerning the involvement of GJs in the generation of hippocampal formation theta in rats are reviewed.
Collapse
Affiliation(s)
- Jan Konopacki
- Department of Neurobiology, The University of Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, The University of Lodz, Poland
| | | | | |
Collapse
|
27
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
28
|
Penuela S, Simek J, Thompson RJ. Regulation of pannexin channels by post-translational modifications. FEBS Lett 2014; 588:1411-5. [PMID: 24486011 DOI: 10.1016/j.febslet.2014.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/25/2023]
Abstract
The large-pore channels formed by the pannexin family of proteins have been implicated in many physiological and pathophysiological functions, mainly through their ATP release function. However, a tight regulation of channel opening is necessary to modulate their function in vivo. Post-translational modifications have been postulated as some of the regulating mechanisms for Panx1, while Panx2 and Panx3 have not been as well characterized. Positive regulators include caspase cleavage to open Panx1 channels in apoptotic cells, and activation by Src family kinases via ionotropic receptors in neurons and macrophages. S-nitrosylation of cysteines has been shown to both inhibit and activate the Panx1 channel in different cell types. All three pannexins are N-glycosylated but to different levels of modification. Their diverse glycosylation appears to regulate cellular localization, intermixing, and may restrict their ability to function as inter-cellular channels. It is clear that our understanding of pannexin post-translational modification and their role in channel function regulation is still in its infancy even a decade after their discovery.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Jamie Simek
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A5C1, Canada
| | - Roger J Thompson
- Hotchkiss Brain Institute and Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
29
|
Jiang T, Long H, Ma Y, Long L, Li Y, Li F, Zhou P, Yuan C, Xiao B. Altered expression of pannexin proteins in patients with temporal lobe epilepsy. Mol Med Rep 2013; 8:1801-6. [PMID: 24146091 DOI: 10.3892/mmr.2013.1739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the expression of the pannexin (Panx) proteins, Panx1 and Panx2, in the temporal lobe tissue of patients with temporal lobe epilepsy (TLE). Immunohistochemistry and western blotting methods were used to localize and quantify Panx1 and Panx2 in the surgically removed brain tissue of patients with TLE (n=37). The results were then compared with non-epileptogenic controls (n=9). Panx1 and Panx2 expression was detected in the temporal lobe cortex of patients with TLE and in the control tissues. Panx1 and Panx2 proteins were expressed in all layers of the epileptic cortex, but predominantly in layers II and III of the cortex in the control group. Panx1 protein expression was significantly higher in the temporal lobe cortex of the patients with TLE than in the controls (P<0.05; t-test); however, no significant differences were identified in the Panx2 expression levels between the patients and the controls (P>0.05; t-test). The expression of the two Panx proteins in the tissue layers of the epileptic cortex varied in the patients and controls. The results indicate that Panx channels may be involved in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Cone AC, Ambrosi C, Scemes E, Martone ME, Sosinsky GE. A comparative antibody analysis of pannexin1 expression in four rat brain regions reveals varying subcellular localizations. Front Pharmacol 2013; 4:6. [PMID: 23390418 PMCID: PMC3565217 DOI: 10.3389/fphar.2013.00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/09/2013] [Indexed: 11/13/2022] Open
Abstract
Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and download.
Collapse
Affiliation(s)
- Angela C Cone
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.
Collapse
|
33
|
Bond SR, Wang N, Leybaert L, Naus CC. Pannexin 1 Ohnologs in the Teleost Lineage. J Membr Biol 2012; 245:483-93. [DOI: 10.1007/s00232-012-9497-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/31/2012] [Indexed: 02/04/2023]
|
34
|
Carlen PL. Curious and contradictory roles of glial connexins and pannexins in epilepsy. Brain Res 2012; 1487:54-60. [PMID: 22796594 DOI: 10.1016/j.brainres.2012.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Glia play an under-recognized role in epilepsy. This review examines the involvement of glial connexins (Cxs) and pannexins (Panxs), proteins which form gap junctions and membrane hemichannels (connexins) and hemichannels (pannexins), in epilepsy. These proteins, particularly glial Cx43, have been shown to be upregulated in epileptic brain tissue. In a cobalt model of in vitro seizures, seizures increased Panxs1 and 2 and Cx43 expression, and remarkably reorganized the interrelationships between their mRNA levels (transcriptome) which then became statistically significant. Gap junctions are highly implicated in synchronous seizure activity. Blocking gap junctional communication (GJC) is often anticonvulsant, and assumed to be due to blocking gap junctionally-medicated electrotonic coupling between neurons. However, in organotypic hippocampal slice cultures, connexin43 specific peptides, which attenuate GJC possibly by blocking connexon docking, diminished spontaneous seizures. Glia have many functions including extracellular potassium redistribution, in part via gap junctions, which if blocked, can be seizuregenic. Glial gap junctions are critical for the delivery of nutrients to neurons, which if interrupted, can depress seizure activity. Other functions of glia possibly related to epileptogenesis are mentioned including anatomic reorganization in chronic seizure models greatly increasing the overlapping domains of glial processes, changes in neurotransmitter re-uptake, and possible glial generation of currents and fields during seizure activity. Finally there is recent evidence for Cx43 hemichannels and Panx1 channels in glial membranes which could play a role in brain damage and seizure activity. Although glial Cxs and Panxs are increasingly recognized as contributing to fundamental mechanisms of epilepsy, the data are often contradictory and controversial, requiring much more research. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Peter L Carlen
- Toronto Western Research Institute, Epilepsy Program, University Health Network, Toronto, Ontario, Canada M5T2S8.
| |
Collapse
|
35
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 2012; 7:11. [PMID: 22458943 PMCID: PMC3390283 DOI: 10.1186/1749-8104-7-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
36
|
The biochemistry and function of pannexin channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:15-22. [PMID: 22305965 DOI: 10.1016/j.bbamem.2012.01.017] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/05/2012] [Accepted: 01/19/2012] [Indexed: 11/21/2022]
Abstract
Three family members compose the pannexin family of channel-forming glycoproteins (Panx1, Panx2 and Panx3). Their primary function is defined by their capacity to form single-membrane channels that are regulated by post-translational modifications, channel intermixing, and sub-cellular expression profiles. Panx1 is ubiquitously expressed in many mammalian tissues, while Panx2 and Panx3 appear to be more restricted in their expression. Paracrine functions of Panx1 as an ATP release channel have been extensively studied and this channel plays a key role, among others, in the release of "find-me" signals for apoptotic cell clearance. In addition Panx1 has been linked to propagation of calcium waves, regulation of vascular tone, mucociliary lung clearance, taste-bud function and has been shown to act like a tumor suppressor in gliomas. Panx1 channel opening can also be detrimental, contributing to cell death and seizures under ischemic or epileptic conditions and even facilitating HIV-1 viral infection. Panx2 is involved in differentiation of neurons while Panx3 plays a role in the differentiation of chondrocytes, osteoblasts and the maturation and transport of sperm. Using the available Panx1 knockout mouse models it has now become possible to explore some of its physiological functions. However, given the potential for one pannexin to compensate for another it seems imperative to generate single and double knockout mouse models involving all three pannexins and evaluate their interplay in normal differentiation and development as well as in malignant transformation and disease. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
|
37
|
Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS. Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 2011; 152:2342-52. [PMID: 21467198 PMCID: PMC3100624 DOI: 10.1210/en.2010-1216] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pannexins are a newly discovered three-member family of proteins expressed in the brain and peripheral tissues that belong to the superfamily of gap junction proteins. However, in mammals pannexins do not form gap junctions, and their expression and function in the pituitary gland have not been studied. Here we show that the rat pituitary gland expresses mRNA and protein transcripts of pannexins 1 and 2 but not pannexin 3. Pannexin 1 was more abundantly expressed in the anterior lobe, whereas pannexin 2 was more abundantly expressed in the intermediate and posterior pituitary. Pannexin 1 was identified in corticotrophs and a fraction of somatotrophs, the S100-positive pituicytes of the posterior pituitary and AtT-20 (mouse pituitary adrenocorticotropin-secreting cells) and rat immortalized pituitary cells secreting prolactin, whereas pannexin 2 was detected in the S100-positive folliculostellate cells of the anterior pituitary, melanotrophs of the intermediate lobe, and vasopressin-containing axons and nerve endings in the posterior lobe. Overexpression of pannexins 1 and 2 in AtT-20 pituitary cells enhanced the release of ATP in the extracellular medium, which was blocked by the gap junction inhibitor carbenoxolone. Basal ATP release in At-T20 cells was also suppressed by down-regulating the expression of endogenous pannexin 1 but not pannexin 2 with their short interfering RNAs. These results indicate that pannexins may provide a pathway for delivery of ATP, which is a native agonist for numerous P2X cationic channels and G protein-coupled P2Y receptors endogenously expressed in the pituitary gland.
Collapse
Affiliation(s)
- Shuo Li
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
38
|
Simões de Souza FM, De Schutter E. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations. NEURAL SYSTEMS & CIRCUITS 2011; 1:7. [PMID: 22330240 PMCID: PMC3278348 DOI: 10.1186/2042-1001-1-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain.
Collapse
Affiliation(s)
- Fabio M Simões de Souza
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0411, Japan.
| | | |
Collapse
|
39
|
Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 2011; 31:414-25. [PMID: 21228152 DOI: 10.1523/jneurosci.5247-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.
Collapse
|
40
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
41
|
Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 2010; 23:305-16. [PMID: 20688156 DOI: 10.1016/j.cellsig.2010.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023]
Abstract
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Collapse
|
42
|
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11:87-99. [DOI: 10.1038/nrn2757] [Citation(s) in RCA: 562] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Mylvaganam S, Zhang L, Wu C, Zhang ZJ, Samoilova M, Eubanks J, Carlen PL, Poulter MO. Hippocampal seizures alter the expression of the pannexin and connexin transcriptome. J Neurochem 2010; 112:92-102. [DOI: 10.1111/j.1471-4159.2009.06431.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Bunse S, Locovei S, Schmidt M, Qiu F, Zoidl G, Dahl G, Dermietzel R. The potassium channel subunit Kvbeta3 interacts with pannexin 1 and attenuates its sensitivity to changes in redox potentials. FEBS J 2009; 276:6258-70. [PMID: 19780818 DOI: 10.1111/j.1742-4658.2009.07334.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pannexin 1 (Panx1), a member of the second gap junction protein family identified in vertebrates, appears to preferentially form non-junctional membrane channels. A candidate regulatory protein of Panx1 is the potassium channel subunit Kvbeta3, previously identified by bacterial two-hybrid strategies. Here, we report on the physical association of Panx1 with Kvbeta3 by immunoprecipitation when co-expressed in a neuroblastoma cell line (Neuro2A). Furthermore, in vivo co-expression of Panx1 and Kvbeta3 was shown to occur in murine hippocampus and cerebellum. Kvbeta3 is known to accelerate inactivation of otherwise slowly inactivating potassium channels under reducing conditions. We subsequently found that Panx1 channel currents exhibit a significant reduction when exposed to reducing agents, and that this effect is attenuated in the presence of Kvbeta3. Apparently, Kvbeta3 is involved in regulating the susceptibility of Panx1 channels to redox potential. Furthermore, the Panx1 channel blockers carbenoxolone and Probenecid were less effective in inhibiting Panx1 currents when Kvbeta3 was co-expressed. The influence of Kvbeta3 on Panx1 is the first example of modulation of Panx1 channel function(s) by interacting proteins, and suggests the physiological importance of sensing changes in redox potentials.
Collapse
Affiliation(s)
- Stefanie Bunse
- Department of Neuroanatomy & Molecular Brain Research, Ruhr University, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Penuela S, Bhalla R, Nag K, Laird DW. Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 2009; 20:4313-23. [PMID: 19692571 DOI: 10.1091/mbc.e09-01-0067] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pannexin family of mammalian proteins, composed of Panx1, Panx2, and Panx3, has been postulated to be a new class of single-membrane channels with functional similarities to connexin gap junction proteins. In this study, immunolabeling and coimmunoprecipitation assays revealed that Panx1 can interact with Panx2 and to a lesser extent, with Panx3 in a glycosylation-dependent manner. Panx2 strongly interacts with the core and high-mannose species of Panx1 but not with Panx3. Biotinylation and dye uptake assays indicated that all three pannexins, as well as the N-glycosylation-defective mutants of Panx1 and Panx3, can traffic to the cell surface and form functional single-membrane channels. Interestingly, Panx2, which is also a glycoprotein and seems to only be glycosylated to a high-mannose form, is more abundant in intracellular compartments, except when coexpressed with Panx1, when its cell surface distribution increases by twofold. Functional assays indicated that the combination of Panx1 and Panx2 results in compromised channel function, whereas coexpressing Panx1 and Panx3 does not affect the incidence of dye uptake in 293T cells. Collectively, these results reveal that the functional state and cellular distribution of mouse pannexins are regulated by their glycosylation status and interactions among pannexin family members.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
46
|
Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Lévesque M, Courtemanche R, Léna C, Dieudonné S. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 2009; 61:126-39. [PMID: 19146818 DOI: 10.1016/j.neuron.2008.11.028] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 08/01/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Tonic motor control involves oscillatory synchronization of activity at low frequency (5-30 Hz) throughout the sensorimotor system, including cerebellar areas. We investigated the mechanisms underpinning cerebellar oscillations. We found that Golgi interneurons, which gate information transfer in the cerebellar cortex input layer, are extensively coupled through electrical synapses. When depolarized in vitro, these neurons displayed low-frequency oscillatory synchronization, imposing rhythmic inhibition onto granule cells. Combining experiments and modeling, we show that electrical transmission of the spike afterhyperpolarization is the essential component for oscillatory population synchronization. Rhythmic firing arises in spite of strong heterogeneities, is frequency tuned by the mean excitatory input to Golgi cells, and displays pronounced resonance when the modeled network is driven by oscillating inputs. In vivo, unitary Golgi cell activity was found to synchronize with low-frequency LFP oscillations occurring during quiet waking. These results suggest a major role for Golgi cells in coordinating cerebellar sensorimotor integration during oscillatory interactions.
Collapse
|
47
|
Wang XH, Streeter M, Liu YP, Zhao HB. Identification and characterization of pannexin expression in the mammalian cochlea. J Comp Neurol 2009; 512:336-46. [PMID: 19009624 DOI: 10.1002/cne.21898] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gap junction in vertebrates is encoded by the connexin gene family. Recently, a new gene family termed pannexin (Panx) has been identified in vertebrates and found to encode gap junctional proteins as well. To date, three pannexin isoforms (Panx1, 2, and 3) have been cloned from mouse and human genomes. In this study, expression of pannexins in the mouse and rat cochlea was investigated. Polymerase chain reaction and Western blot analysis showed that all three pannexin isoforms were expressed in the cochlea. Immunofluorescent staining showed that Panx1 expression was extensive. In the organ of Corti, Panx1 labeling was found in supporting cells, including pillar cells, Hensen cells, Claudius cells, and Boettcher cells. Both surface plaque-like punctate labeling and diffuse-cytoplasmic labeling were visible. However, the labeling was weak and rare in Deiters cells. No labeling was found in the hair cells. Intense labeling for Panx1 was also observed in the interdental cells in the spiral limbus, the inner and outer sulcus cells, and the type II fibrocytes in the spiral prominence and central region in the cochlear lateral wall. In addition, Panx1 labeling was detectable in Reissner's membrane and strial blood vessel cells. Panx2 labeling was restricted to the basal cells in the stria vascularis and was also detectable in the spiral ganglion neurons. However, no overlapping labeling for Panx1 and Panx2 was observed. Finally, Panx3 labeling was exclusively observed in the cochlear bone. Thus, Panx1, 2, and 3 are abundantly expressed in the mammalian cochlea and demonstrate distinct cellular distributions. Like connexins, they may play an important role in hearing.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Surgery-Otolaryngology, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
48
|
Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MVL, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11:369-99. [PMID: 18816186 PMCID: PMC2713807 DOI: 10.1089/ars.2008.2130] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Penuela S, Celetti SJ, Bhalla R, Shao Q, Laird DW. Diverse subcellular distribution profiles of pannexin 1 and pannexin 3. ACTA ACUST UNITED AC 2008; 15:133-42. [PMID: 18649185 DOI: 10.1080/15419060802014115] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pannexins have been proposed to play a role in gap junctional intercellular communication and as single-membrane channels, although many of their molecular characteristics differ from connexins. Localization of untagged Panx1 and Panx3 exogenously expressed in five cultured cell lines revealed a cell surface distribution profile with limited evidence of cell surface clustering and variable levels of intracellular pools. However, N-glycosylation-defective mutants of pannexins exhibited a more prominent intracellular distribution with decreased cell surface labeling, suggesting an important role for pannexin glycosylation in trafficking. Similar to wild-type pannexins, the glycosylation-defective mutants failed to noticeably transfer microinjected fluorescent dyes to neighboring cells, suggesting that few, or no functional intercellular channels were formed. Finally, varied distribution patterns of endogenous Panx1 and Panx3 were observed in cells of osteoblast origin and Madin-Darby canine kidney cells. Collectively, diverse expression and distribution profiles of Panx1 and Panx3 suggest that they may have multiple cellular functions.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X. Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 2008; 86:2281-91. [PMID: 18381763 DOI: 10.1002/jnr.21675] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increased hemichannel opening induced by oxygen glucose deprivation (OGD) was reported in the hippocampal pyramidal neuron. It was suggested that the pannexin1 hemichannel opening could mediate ionic flux dysregulation, anoxic depolarization, and energy-depleting efflux of glucose and ATP for ischemic neurons. However, the regulatory mechanisms of pannexin1 hemichannel opening have been poorly understood. Here we showed that excessive generation of nitric oxide (NO) during ischemia could induce the calcein leakage from neurons, which was markedly reduced by NO synthase inhibitor. The calcein leakage from neurons during OGD was also attenuated by the application of N-ethylmaleimide (NEM), an SH-alkylating agent, and dithiothreitol (DTT), a reducer of oxidized sulfhydryl groups. However, the soluble guanylyl cyclase (sGC) inhibitor had a minor effect on the calcein leakage during OGD. Furthermore, the elevated intracellular but not extracellular levels of glutathione could also inhibit the calcein leakage during OGD. Similar results were observed in metabolic inhibition (MI), which is another ischemic-like condition. Finally, immunocytochemical and immunoblotting analysis revealed that, after 1 hr of OGD stimulation, the distribution and expression of pannexin1 showed no significant difference compared with control. However, the pannexin1 mRNA expression was elevated after 1 hr of OGD and a sustained increase was maintained during reperfusion. These results implied that the reactive oxygen species (ROS), especially NO, might be involved in the enhanced pannexin1 hemichannel opening and that the S-nitrosylation but not the NO/cGMP pathway played a more important role in this event.
Collapse
Affiliation(s)
- Le Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|