1
|
Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res 2020; 821:111695. [PMID: 32304909 DOI: 10.1016/j.mrfmmm.2020.111695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
The protein defective in the human genetic disorder ataxia-telangiectasia, ATM, plays a central role in responding to DNA double strand breaks and other lesions to protect the genome against DNA damage and in this way minimize the risk of mutations that can lead to abnormal cellular behaviour. Its function in normal cells is to protect the cell against genotoxic stress but inadvertently it can assist cancer cells by providing resistance against chemotherapeutic agents and thus favouring tumour growth and survival. However, it is now evident that ATM also functions in a DNA damage-independent fashion to protect the cell against other forms of stress such as oxidative and nutrient stress and this non-canonical mechanism may also be relevant to cancer susceptibility in individuals who lack a functional ATM gene. Thus the use of ATM inhibitors to combat resistance in tumours may extend beyond a role for this protein in the DNA damage response. Here, we provide some background on ATM and its activation and investigate the efficacy of ATM inhibitors in treating cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Carranza D, Torres-Rusillo S, Ceballos-Pérez G, Blanco-Jimenez E, Muñoz-López M, García-Pérez JL, Molina IJ. Reconstitution of the Ataxia-Telangiectasia Cellular Phenotype With Lentiviral Vectors. Front Immunol 2018; 9:2703. [PMID: 30515174 PMCID: PMC6255946 DOI: 10.3389/fimmu.2018.02703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a complex disease arising from mutations in the ATM gene (Ataxia-Telangiectasia Mutated), which plays crucial roles in repairing double-strand DNA breaks (DSBs). Heterogeneous immunodeficiency, extreme radiosensitivity, frequent appearance of tumors and neurological degeneration are hallmarks of the disease, which carries high morbidity and mortality because only palliative treatments are currently available. Gene therapy was effective in animal models of the disease, but the large size of the ATM cDNA required the use of HSV-1 or HSV/AAV hybrid amplicon vectors, whose characteristics make them unlikely tools for treating A-T patients. Due to recent advances in vector packaging, production and biosafety, we developed a lentiviral vector containing the ATM cDNA and tested whether or not it could rescue cellular defects of A-T human mutant fibroblasts. Although the cargo capacity of lentiviral vectors is an inherent limitation in their use, and despite the large size of the transgene, we successfully transduced around 20% of ATM-mutant cells. ATM expression and phosphorylation assays indicated that the neoprotein was functional in transduced cells, further reinforced by their restored capacity to phosphorylate direct ATM substrates such as p53 and their capability to repair radiation-induced DSBs. In addition, transduced cells also restored cellular radiosensitivity and cell cycle abnormalities. Our results demonstrate that lentiviral vectors can be used to rescue the intrinsic cellular defects of ATM-mutant cells, which represent, in spite of their limitations, a proof-of-concept for A-T gene therapy.
Collapse
Affiliation(s)
- Diana Carranza
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Sara Torres-Rusillo
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Gloria Ceballos-Pérez
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Eva Blanco-Jimenez
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - Martin Muñoz-López
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - José L García-Pérez
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Ignacio J Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada University Hospitals, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
4
|
Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 2012; 18:783-90. [PMID: 22466704 PMCID: PMC3378917 DOI: 10.1038/nm.2709] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/15/2012] [Indexed: 02/08/2023]
Abstract
Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.
Collapse
|
5
|
Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. ACTA ACUST UNITED AC 2011; 106:2-11. [PMID: 22108428 DOI: 10.1016/j.jphysparis.2011.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/11/2011] [Accepted: 11/04/2011] [Indexed: 12/24/2022]
Abstract
Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures of neuronal cells and into the brain of living animals.
Collapse
Affiliation(s)
- Diana Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN), CONICET-UBA. Buenos Aires, Argentina.
| | | | | |
Collapse
|
6
|
Abstract
Since its emergence onto the gene therapy scene nearly 25 years ago, the replication-defective Herpes Simplex Virus Type-1 (HSV-1) amplicon has gained significance as a versatile gene transfer platform due to its extensive transgene capacity, widespread cellular tropism, minimal immunogenicity, and its amenability to genetic manipulation. Herein, we detail the recent advances made with respect to the design of the HSV amplicon, its numerous in vitro and in vivo applications, and the current impediments this virus-based gene transfer platform faces as it navigates a challenging path towards future clinical testing.
Collapse
|
7
|
Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 2009; 16:709-15. [PMID: 19369969 DOI: 10.1038/gt.2009.42] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last two years have seen significant advances in our understanding of the cellular innate responses elicited or activated by the entry of amplicon particles, which may, in part, explain the transient nature of transgene expression often observed in cells infected with helper-free amplicon stocks. At the technological level, the most consistent progress has been in strategies to enhance the stability of transgene cassettes, either through integration into host chromosomes or through the conversion of the amplicon genome into a replication-competent extrachromosomal element.
Collapse
|
8
|
Cortés ML, Oehmig A, Saydam O, Sanford JD, Perry KF, Fraefel C, Breakefield XO. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther 2007; 16:81-8. [PMID: 17998902 DOI: 10.1038/sj.mt.6300338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability, and sensitivity to ionizing radiation (IR). We have previously shown that a herpes simplex virus type 1 (HSV-1) amplicon vector carrying the human ataxia-telangiectasia mutated (ATM) complementary DNA (cDNA) is able to correct aspects of the cellular phenotype of human A-T cells in culture, and is also able to transfer the ATM cDNA to the Atm(-/-) mouse cerebellum. In order to achieve stable gene replacement, we have generated an HSV/adeno-associated virus (AAV) hybrid amplicon vector carrying the expression cassettes for the ATM cDNA [(9.2 kilobases (kb)] and enhanced green fluorescent protein (EGFP), flanked by AAV inverted terminal repeats (ITRs). This hybrid vector, in the presence of AAV Rep proteins, mediates site-specific integration into the AAVS1 site on chromosome 19 in human cells and in Atm(-/-) mice carrying that human locus. The functional activity of the vector-derived ATM was confirmed in vitro and in vivo by ATM autophosphorylation at Ser-1981 after IR. This proof-of-principle study establishes the ability of HSV/AAV hybrid amplicon vectors to mediate functional targeted integration of the ATM cDNA into A-T cells in culture and in Atm(-/-) mice in vivo, thus laying a foundation for possible gene therapy approaches in the treatment of A-T patients.
Collapse
Affiliation(s)
- Maria L Cortés
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007; 7:975-95. [PMID: 17665988 DOI: 10.1517/14712598.7.7.975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amplicons are defective and non-integrative vectors derived from herpes simplex virus type 1. They carry no virus genes in the vector genome and are, therefore, not toxic to the infected cells or pathogenic for the transduced organisms, making these vectors safe. In addition, the large transgenic capacity of amplicons, which allow delivery of < or = 150 Kbp of foreign DNA, make these vectors one of the most powerful, interesting and versatile gene delivery platforms. Here, the authors present recent technological developments that have significantly improved and extended the use of amplicons, both in cultured cells and in living organisms. In addition, this review illustrates the many possible applications that are presently being developed with amplicons and discuss the many difficulties still pending to be solved in order to achieve stable and physiologically regulated transgenic expression.
Collapse
|
10
|
Du L, Pollard JM, Gatti RA. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci U S A 2007; 104:6007-12. [PMID: 17389389 PMCID: PMC1832221 DOI: 10.1073/pnas.0608616104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used antisense morpholino oligonucleotides (AMOs) to redirect and restore normal splicing of three prototypic splicing mutations in the ataxia-telangiectasia mutated (ATM) gene. Two of the mutations activated cryptic 5' or 3' splice sites within exonic regions; the third mutation activated a downstream 5' splice site leading to pseudoexon inclusion of a portion of intron 28. AMOs were targeted to aberrant splice sites created by the mutations; this effectively restored normal ATM splicing at the mRNA level and led to the translation of full-length, functional ATM protein for at least 84 h in the three cell lines examined, as demonstrated by immunoblotting, ionizing irradiation-induced autophosphorylation of ATM, and transactivation of ATM substrates. Ionizing irradiation-induced cytotoxicity was markedly abrogated after AMO exposure. The ex vivo data strongly suggest that the disease-causing molecular pathogenesis of such prototypic mutations is not the amino acid change of the protein but the mutated DNA code itself, which alters splicing. Such prototypic splicing mutations may be correctable in vivo by systemic administration of AMOs and may provide an approach to customized, mutation-based treatment for ataxia-telangiectasia and other genetic disorders.
Collapse
Affiliation(s)
- Liutao Du
- *Department of Pathology and Laboratory Medicine
- To whom correspondence may be addressed. E-mail: or
| | - Julianne M. Pollard
- *Department of Pathology and Laboratory Medicine
- Biomedical Physics Interdepartmental Graduate Program, and
| | - Richard A. Gatti
- *Department of Pathology and Laboratory Medicine
- Biomedical Physics Interdepartmental Graduate Program, and
- Department of Human Genetics, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|