1
|
Stebbins K, Somaiya RD, Sabbagh U, Khaksar P, Liang Y, Su J, Fox MA. Retinal Input Is Required for the Maintenance of Neuronal Laminae in the Ventrolateral Geniculate Nucleus. eNeuro 2024; 11:ENEURO.0022-24.2024. [PMID: 39160068 PMCID: PMC11373735 DOI: 10.1523/eneuro.0022-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
Affiliation(s)
- Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Rachana Deven Somaiya
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ubadah Sabbagh
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| | - Parsa Khaksar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Yanping Liang
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia 24061
| | - Michael A Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia 24061
- Department of Biology, College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
2
|
Sanetra AM, Jeczmien-Lazur JS, Pradel K, Klich JD, Palus-Chramiec K, Janik ME, Bajkacz S, Izowit G, Nathan C, Piggins HD, Delogu A, Belle MD, Lewandowski MH, Chrobok L. A novel developmental critical period of orexinergic signaling in the primary visual thalamus. iScience 2024; 27:110352. [PMID: 39055917 PMCID: PMC11269934 DOI: 10.1016/j.isci.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.
Collapse
Affiliation(s)
- Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Jagoda S. Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Institute for Systems Physiology, University of Cologne, Cologne, Germany
| | - Jasmin D. Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcelina E. Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Christian Nathan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mino D.C. Belle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Stebbins K, Somaiya RD, Sabbagh U, Liang Y, Su J, Fox MA. Retinal input is required for the maintenance of neuronal laminae in the ventral lateral geniculate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575402. [PMID: 38293194 PMCID: PMC10827117 DOI: 10.1101/2024.01.12.575402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
|
4
|
Alipour N, Fallahnezhad S, Bagheri J, Babaloo H, Tahmasebi F, Sazegar G, Haghir H. Increased Apoptosis in Subcortical Regions of The Visual Pathway in Offspring Born to Diabetic Rats. CELL JOURNAL 2023; 25:564-569. [PMID: 37641418 PMCID: PMC10542209 DOI: 10.22074/cellj.2023.1989649.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Diabetes in pregnancy is a prevalent disease that can affect the central nervous system of the fetus by hyperglycemia. This study aimed to investigate the impact of maternal diabetes on neuronal apoptosis in the superior colliculus (SC) and the lateral geniculate nucleus (LGN) in male neonates born to diabetic mothers. MATERIALS AND METHODS In this experimental study, female adult rats were separated into three groups: control, diabetic (induced using an intraperitoneal injection of streptozotocin), and insulin-treated diabetic [diabetes controlled by subcutaneous neutral protamine hagedorn (NPH)-insulin injection]. Male neonates from each group were euthanized on 0, 7, and 14 postnatal days (P0, P7, and P14, respectively), and apoptotic cells were identified using TUNEL staining. RESULTS The numerical density per unit area (NA) of apoptotic cells was significantly higher in SC and the dorsal LGN (dLGN) in neonates born to the diabetic rats compared to the control group at P0, P7, and P14. However, insulin treatment normalized the number of apoptotic cells. CONCLUSION This study demonstrated that maternal diabetes increased apoptosis in dLGN and SC of male neonates at P0, P7, and P14.
Collapse
Affiliation(s)
- Nasim Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Babaloo
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Sazegar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Alipour N, Fallahnezhad S, Bagheri J, Babaloo H, Tahmasebi F, Sazegar G, Haghir H. Expression of GABA Aα1, GABA B1, and mGluR2 receptors in the lateral geniculate body of male neonates born to diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:805-811. [PMID: 37396950 PMCID: PMC10311974 DOI: 10.22038/ijbms.2023.69668.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 07/04/2023]
Abstract
Objectives Diabetes during gestation is one of the most common pregnancy complications and has adverse effects on offspring, including a negative impact on the offspring's central nervous system (CNS). Diabetes is a metabolic disease associated with visual impairment. Due to the importance of the lateral geniculate body (LGB) in the visual pathway, the present study examined the effect of maternal diabetes on the expression of gamma-aminobutyric acid (GABAAα1 and GABAB1) and metabotropic Glutamate (mGlu2) receptors in the LGB of male neonates of diabetic rats. Materials and Methods Diabetes was induced in female adult rats by a single intraperitoneal dose of streptozotocin (STZ) 65 (mg/kg). In the Insulin-treated diabetic rats, diabetes was controlled by subcutaneous NPH-insulin injection daily. After mating and delivery, male offspring were killed by carbon dioxide gas inhalation at P0, P7, and P14 (postnatal days 0, 7, and 14). The expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates was determined using the immunohistochemistry (IHC) method. Results The expression of GABAAα1 and GABAB1 was significantly reduced, whereas the expression of mGluR2 was markedly increased in the diabetic group compared with the control and insulin-treated groups at P0, P7, and P14. Conclusion The results of the present study showed that induction of diabetes altered the expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates born to diabetic rats at P0, P7, and P14. Moreover, insulin treatment could reverse these effects of diabetes.
Collapse
Affiliation(s)
- Nasim Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Babaloo
- Regenerative Medicine, Organ Procurement and transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Sazegar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Sabbagh U, Govindaiah G, Somaiya RD, Ha RV, Wei JC, Guido W, Fox MA. Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J Neurochem 2021; 159:479-497. [PMID: 32497303 PMCID: PMC8210463 DOI: 10.1111/jnc.15101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
In the visual system, retinal axons convey visual information from the outside world to dozens of distinct retinorecipient brain regions and organize that information at several levels, including either at the level of retinal afferents, cytoarchitecture of intrinsic retinorecipient neurons, or a combination of the two. Two major retinorecipient nuclei which are densely innervated by retinal axons are the dorsal lateral geniculate nucleus, which is important for classical image-forming vision, and ventral LGN (vLGN), which is associated with non-image-forming vision. The neurochemistry, cytoarchitecture, and retinothalamic connectivity in vLGN remain unresolved, raising fundamental questions of how it receives and processes visual information. To shed light on these important questions, used in situ hybridization, immunohistochemistry, and genetic reporter lines to identify and characterize novel neuronal cell types in mouse vLGN. Not only were a high percentage of these cells GABAergic, we discovered transcriptomically distinct GABAergic cell types reside in the two major laminae of vLGN, the retinorecipient, external vLGN (vLGNe) and the non-retinorecipient, internal vLGN (vLGNi). Furthermore, within vLGNe, we identified transcriptionally distinct subtypes of GABAergic cells that are distributed into four adjacent sublaminae. Using trans-synaptic viral tracing and in vitro electrophysiology, we found cells in each these vLGNe sublaminae receive monosynaptic inputs from retina. These results not only identify novel subtypes of GABAergic cells in vLGN, they suggest the subtype-specific laminar distribution of retinorecipient cells in vLGNe may be important for receiving, processing, and transmitting light-derived signals in parallel channels of the subcortical visual system.
Collapse
Affiliation(s)
- Ubadah Sabbagh
- Center for Neurobiology ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- Graduate Program in Translational Biology, Medicine, and HealthVirginia TechBlacksburgVAUSA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Rachana D. Somaiya
- Center for Neurobiology ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- Graduate Program in Translational Biology, Medicine, and HealthVirginia TechBlacksburgVAUSA
| | - Ryan V. Ha
- School of NeuroscienceVirginia TechBlacksburgVAUSA
| | - Jessica C. Wei
- NeuroSURFFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - William Guido
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Michael A. Fox
- Center for Neurobiology ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- School of NeuroscienceVirginia TechBlacksburgVAUSA
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Department of PediatricsVirginia Tech Carilion School of MedicineRoanokeVAUSA
| |
Collapse
|
7
|
Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F, Louis C, Di Polo A. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:58. [PMID: 28774322 PMCID: PMC5543446 DOI: 10.1186/s13024-017-0199-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tau is an axon-enriched protein that binds to and stabilizes microtubules, and hence plays a crucial role in neuronal function. In Alzheimer’s disease (AD), pathological tau accumulation correlates with cognitive decline. Substantial visual deficits are found in individuals affected by AD including a preferential loss of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. At present, however, the mechanisms that underlie vision changes in these patients are poorly understood. Here, we asked whether tau plays a role in early retinal pathology and neuronal dysfunction in AD. Methods Alterations in tau protein and gene expression, phosphorylation, and localization were investigated by western blots, qPCR, and immunohistochemistry in the retina and visual pathways of triple transgenic mice (3xTg) harboring mutations in the genes encoding presenilin 1 (PS1M146 V), amyloid precursor protein (APPSwe), and tau (MAPTP301L). Anterograde axonal transport was assessed by intraocular injection of the cholera toxin beta subunit followed by quantification of tracer accumulation in the contralateral superior colliculus. RGC survival was analyzed on whole-mounted retinas using cell-specific markers. Reduction of tau expression was achieved following intravitreal injection of targeted siRNA. Results Our data demonstrate an age-related increase in endogenous retinal tau characterized by epitope-specific hypo- and hyper-phosphorylation in 3xTg mice. Retinal tau accumulation was observed as early as three months of age, prior to the reported onset of behavioral deficits, and preceded tau aggregation in the brain. Intriguingly, tau build up occurred in RGC soma and dendrites, while tau in RGC axons in the optic nerve was depleted. Tau phosphorylation changes and missorting correlated with substantial defects in anterograde axonal transport that preceded RGC death. Importantly, targeted siRNA-mediated knockdown of endogenous tau improved anterograde transport along RGC axons. Conclusions Our study reveals profound tau pathology in the visual system leading to early retinal neuron damage in a mouse model of AD. Importantly, we show that tau accumulation promotes anterograde axonal transport impairment in vivo, and identify this response as an early feature of neuronal dysfunction that precedes cell death in the AD retina. These findings provide the first proof-of-concept that a global strategy to reduce tau accumulation is beneficial to improve axonal transport and mitigate functional deficits in AD and tauopathies.
Collapse
Affiliation(s)
- Marius Chiasseu
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Laurie Destroismaisons
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Christine Vande Velde
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Fany Panayi
- Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Caroline Louis
- Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Adriana Di Polo
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
8
|
Chan KC, Zhou IY, Liu SS, van der Merwe Y, Fan SJ, Hung VK, Chung SK, Wu WT, So KF, Wu EX. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI. Sci Rep 2017; 7:43124. [PMID: 28230106 PMCID: PMC5322351 DOI: 10.1038/srep43124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes.
Collapse
Affiliation(s)
- Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, United States.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Iris Y Zhou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Stanley S Liu
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Victor K Hung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wu-Tian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Fai So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, Ng L, Oh SW, Ouellette B, Royall JJ, Stoecklin M, Wang Q, Zeng H, Sanes JR, Harris JA. Diverse Central Projection Patterns of Retinal Ganglion Cells. Cell Rep 2017; 18:2058-2072. [PMID: 28228269 PMCID: PMC5357325 DOI: 10.1016/j.celrep.2017.01.075] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 01/27/2017] [Indexed: 11/27/2022] Open
Abstract
Understanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.
Collapse
Affiliation(s)
- Emily M Martersteck
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Mariah Evarts
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xin Duan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yang Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Seung W Oh
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Chrobok L, Palus K, Lewandowski MH. Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents. Neuroscience 2016; 329:306-17. [DOI: 10.1016/j.neuroscience.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
11
|
Fiuza FP, Silva KDA, Pessoa RA, Pontes ALB, Cavalcanti RLP, Pires RS, Soares JG, Nascimento Júnior ES, Costa MSMO, Engelberth RCGJ, Cavalcante JS. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet. AGE (DORDRECHT, NETHERLANDS) 2016; 38:4. [PMID: 26718202 PMCID: PMC5005876 DOI: 10.1007/s11357-015-9867-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Kayo D A Silva
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Renata A Pessoa
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - André L B Pontes
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rodolfo L P Cavalcanti
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel S Pires
- Neuroscience Center, University of São Paulo City, São Paulo, SP, Brazil
| | - Joacil G Soares
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
12
|
Gaillard F, Karten HJ, Sauvé Y. Retinorecipient areas in the diurnal murine rodentArvicanthis niloticus: A disproportionally large superior colliculus. J Comp Neurol 2013; 521:1699-726. [DOI: 10.1002/cne.23303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/01/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
|
13
|
Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Imaging axonal transport in the rat visual pathway. BIOMEDICAL OPTICS EXPRESS 2013; 4:364-386. [PMID: 23412846 PMCID: PMC3567722 DOI: 10.1364/boe.4.000364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
A technique was developed for assaying axonal transport in retinal ganglion cells using 2 µl injections of 1% cholera toxin b-subunit conjugated to AlexaFluor488 (CTB). In vivo retinal and post-mortem brain imaging by confocal scanning laser ophthalmoscopy and post-mortem microscopy were performed. The transport of CTB was sensitive to colchicine, which disrupts axonal microtubules. The bulk rates of transport were determined to be approximately 80-90 mm/day (anterograde) and 160 mm/day (retrograde). Results demonstrate that axonal transport of CTB can be monitored in vivo in the rodent anterior visual pathway, is dependent on intact microtubules, and occurs by active transport mechanisms.
Collapse
Affiliation(s)
- Carla J. Abbott
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Tiffany E. Choe
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Theresa A. Lusardi
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Legacy
Health, Portland, OR 97232, USA
| | - Claude F. Burgoyne
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Lin Wang
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
14
|
Szkudlarek HJ, Orlowska P, Lewandowski MH. Light-induced responses of slow oscillatory neurons of the rat olivary pretectal nucleus. PLoS One 2012; 7:e33083. [PMID: 22427957 PMCID: PMC3299748 DOI: 10.1371/journal.pone.0033083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. Methodology To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). Conclusions We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillation-preserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firing rate of oscillatory cells. These results suggest that contralateral retinal innervation is crucial for the generation of an oscillatory pattern in addition to its role in driving responses to visual stimuli.
Collapse
Affiliation(s)
- Hanna J. Szkudlarek
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
- Institute of Physiology I, Westfaelische Wilhelms-University, Muenster, Germany
| | - Patrycja Orlowska
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
15
|
Speer CM, Mikula S, Huberman AD, Chapman B. The developmental remodeling of eye-specific afferents in the ferret dorsal lateral geniculate nucleus. Anat Rec (Hoboken) 2010; 293:1-24. [PMID: 20039439 DOI: 10.1002/ar.21001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eye-specific projections to the dorsal lateral geniculate nucleus (dLGN) serve as a model for exploring how precise patterns of circuitry form during development in the mammalian central nervous system. Using a combination of dual-label anterograde retinogeniculate tracing and Nissl-staining, we studied the patterns of eye-specific afferents and cellular laminae in the dLGN of the pigmented sable ferret at eight developmental timepoints between birth and adulthood. Each time point was investigated in the three standard orthogonal planes of section, allowing us to generate a complete anatomical map of eye-specific development in this species. We find that eye-specific retinal ganglion cell axon segregation varies according to location in the dLGN, with the principle contralateral (A) and ipsilateral layers (A1) maturing first, followed by the contralateral and ipsilateral C laminae. Cytoarchitectural lamination lags behind eye-specific segregation, except in the C laminae where underlying cellular layers never develop to accompany eye-specific afferent domains. The emergence of On/Off sublaminae occurs following eye-specific segregation in this species. On the basis of these findings, we constructed a three-dimensional map of eye-specific channels in the developing and mature ferret dLGN.
Collapse
Affiliation(s)
- Colenso M Speer
- Center for Neuroscience, University of California, Davis, Davis, California 95618, USA
| | | | | | | |
Collapse
|
16
|
Chan KC, Xing K, Cheung MM, Zhou IY, Wu EX. Functional MRI of postnatal visual development in normal rat superior colliculi. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:4436-9. [PMID: 19963832 DOI: 10.1109/iembs.2009.5332756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study employed blood oxygenation level-dependent functional MRI (BOLD-fMRI) to evaluate the visual responses in the superior colliculus of the developing rat brain from the time of eyelid opening to adulthood. Upon flash illumination to the contralateral eye, the regional BOLD response underwent a systematic increase in amplitude with age especially after the third postnatal week. However, no significant difference in BOLD signal increase was found between postnatal days 14 and 21. Our results constitute the first fMRI report in demonstrating the critical period of visual functions in the rat brain during maturation. This can be potentially useful in establishing the links between changes in relation to visual sensory development.
Collapse
Affiliation(s)
- Kevin C Chan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
17
|
Functional MRI of postnatal visual development in normal and hypoxic-ischemic-injured superior colliculi. Neuroimage 2009; 49:2013-20. [PMID: 19879366 DOI: 10.1016/j.neuroimage.2009.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/17/2009] [Accepted: 10/23/2009] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus (SC) is a laminated subcortical structure in the mammalian midbrain, whose superficial layers receive visual information from the retina and the visual cortex. To date, its functional organization and development in the visual system remain largely unknown. This study employed blood oxygenation level-dependent (BOLD) functional MRI to evaluate the visual responses of the SC in normally developing and severe neonatal hypoxic-ischemic (HI)-injured rat brains from the time of eyelid opening to adulthood. MRI was performed to the normal animals (n=7) at postnatal days (P) 14, 21, 28 and 60. In the HI-injured group (n=7), the ipsilesional primary and secondary visual cortices were completely damaged after unilateral ligation of the left common carotid artery at P7 followed by hypoxia for 2 h, and MRI was performed at P60. Upon unilateral flash illumination, the normal contralateral SC underwent a systematic increase in BOLD signal amplitude with age especially after the third postnatal week. However, no significant difference in BOLD signal increase was found between P14 and P21. These findings implied the presence of neurovascular coupling at the time of eyelid opening, and the progressive development of hemodynamic regulation in the subcortical visual system. In the HI-injured group at P60, the BOLD signal increases in both SC remained at the same level as the normal group at P28 though they were significantly lower than the normal group at P60. These observations suggested the residual visual functions on both sides of the subcortical brain, despite the damages to the entire ipsilesional visual cortex. The results of this study constitute important evidence on the progressive maturation of visual functions and hemodynamic responses in the normal subcortical brain, and its functional plasticity upon neonatal HI injury.
Collapse
|
18
|
Halverson HE, Hubbard EM, Freeman JH. Stimulation of the lateral geniculate, superior colliculus, or visual cortex is sufficient for eyeblink conditioning in rats. Learn Mem 2009; 16:300-7. [PMID: 19395671 PMCID: PMC2683004 DOI: 10.1101/lm.1340909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/18/2009] [Indexed: 11/24/2022]
Abstract
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN), superior colliculus (SC), pretectal nuclei, and visual cortex (VCTX) as reported by Koutalidis and colleagues in an earlier paper. The following experiments examined whether electrical stimulation of neural structures in the putative visual CS pathway can serve as a sufficient CS for eyeblink conditioning in rats. Unilateral stimulation of the ventral LGN (Experiment 1), SC (Experiment 2), or VCTX (Experiment 3) was used as a CS paired with a periorbital shock unconditioned stimulus. Stimulation was delivered to the hemisphere contralateral to the conditioned eye. Rats in all experiments were given five 100-trial sessions of paired or unpaired eyeblink conditioning with the stimulation CS followed by three paired sessions with a light CS. Stimulation of each visual area when paired with the unconditioned stimulus supported acquisition of eyeblink conditioned responses (CRs) and substantial savings when switched to a light CS. The results provide evidence for a unilateral parallel visual CS pathway for eyeblink conditioning that includes the LGN, SC, and VCTX inputs to the pontine nuclei.
Collapse
Affiliation(s)
| | - Erin M. Hubbard
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
19
|
Retinal projections to the accessory optic system in pigmented and albino ferrets (Mustela putorius furo). Exp Brain Res 2009; 199:333-43. [PMID: 19139858 DOI: 10.1007/s00221-008-1690-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
We investigated if a reduced specificity of the retinal projection to the accessory optic system might be responsible for the loss of direction selectivity in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) and, in consequence of this, the optokinetic deficits in albino ferrets. Under electrophysiological control we performed dual tracer injections into the NOT-DTN and the medial terminal nucleus (MTN). Retrogradely labelled ganglion cells were found in the visual streak, the dorsal, and the ventral retina both after injections into the NOTDTN and the MTN indicating that both nuclei receive input from the same retinal regions. The distribution and spacing of labelled ganglion cells did not differ between pigmented and albino ferrets. However, retinal ganglion cells projecting simultaneously to both the NOT-DTN and the MTN occurred only in albino ferrets. These results suggest that a reduced specificity of the projection pattern of direction specific ganglion cells may contribute to the loss of direction selectivity in the NOT-DTN in albino ferrets.
Collapse
|
20
|
Salinas-Navarro M, Mayor-Torroglosa S, Jiménez-López M, Avilés-Trigueros M, Holmes TM, Lund RD, Villegas-Pérez MP, Vidal-Sanz M. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vision Res 2008; 49:115-26. [PMID: 18952118 DOI: 10.1016/j.visres.2008.09.029] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
In adult albino (SD) and pigmented (PVG) rats the entire population of retinal ganglion cells (RGCs) was quantified and their spatial distribution analyzed using a computerized technique. RGCs were back-labelled from the optic nerves (ON) or the superior colliculi (SCi) with Fluorogold (FG). Numbers of RGCs labelled from the ON [SD: 82,818+/-3,949, n=27; PVG: 89,241+/-3,576, n=6) were comparable to those labelled from the SCi [SD: 81,486+/-4,340, n=37; PVG: 87,229+/-3,199; n=59]. Detailed methodology to provide cell density information at small scales demonstrated the presence of a horizontal region in the dorsal retina with highest densities, resembling a visual streak.
Collapse
Affiliation(s)
- M Salinas-Navarro
- Laboratorio de Oftalmología Experimental, Facultad de Medicina, Universidad de Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res 2008; 88:65-70. [PMID: 18992243 DOI: 10.1016/j.exer.2008.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/28/2008] [Accepted: 10/02/2008] [Indexed: 11/20/2022]
Abstract
Glaucoma is a neurodegenerative disease of the visual system. While elevated intraocular pressure is considered to be a major risk factor, the primary cause and pathogenesis of this disease are still unclear. This study aims to employ in vivo proton magnetic resonance spectroscopy ((1)H MRS) to evaluate the metabolic changes in the visual cortex in a rat model of chronic glaucoma. Five Sprague-Dawley female rats were prepared to induce ocular hypertension unilaterally in the right eye by photocoagulating the episcleral and limbal veins using an argon laser. Single voxel (1)H MRS was performed on each side of the visual cortex 6 weeks after laser treatment. Relative to the creatine level, the choline level was found to be significantly lower in the left glaucomatous visual cortex than the right control visual cortex in all animals. In addition, a marginally significant increase in glutamate level was observed in the glaucomatous visual cortex. No apparent difference was observed between contralateral sides of the visual cortex in T1-weighted or T2-weighted imaging. The results of this study showed that glaucoma is accompanied with alterations in the metabolism of choline-containing compounds in the visual cortex contralateral to the glaucomatous rat eye. These potentially associated the pathophysiological mechanisms of glaucoma with the dysfunction of the cholinergic system in the visual pathway. (1)H MRS is a potential tool for studying the metabolic changes in glaucoma in vivo in normally appearing brain structures, and may possess direct clinical applications for humans. Measurement of the Cho:Cr reduction in the visual cortex may be a noninvasive biomarker for this disease.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
22
|
Baracchi F, Zamboni G, Cerri M, Del Sindaco E, Dentico D, Jones CA, Luppi M, Perez E, Amici R. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat. J Sleep Res 2008; 17:166-79. [PMID: 18482105 DOI: 10.1111/j.1365-2869.2008.00658.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.
Collapse
Affiliation(s)
- Francesca Baracchi
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Szkudlarek HJ, Herdzina O, Lewandowski MH. Ultra-slow oscillatory neuronal activity in the rat olivary pretectal nucleus: comparison with oscillations within the intergeniculate leaflet. Eur J Neurosci 2008; 27:2657-64. [DOI: 10.1111/j.1460-9568.2008.06225.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chan KC, Fu QL, So KF, Wu EX. Evaluation of the visual system in a rat model of chronic glaucoma using manganese-enhanced magnetic resonance imaging. ACTA ACUST UNITED AC 2008; 2007:67-70. [PMID: 18001890 DOI: 10.1109/iembs.2007.4352224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study aims to employ in vivo manganese-enchanced MRI (MEMRI) to evaluate dynamically the Mn(2+) enhancements along the visual pathway following an induction of ocular hypertension in a rat model of chronic glaucoma. Results showed an accumulation of Mn(2+) ions in the vitreous humor of the glaucomatous eye, with no statistical changes in the total retinal thickness but a possible occlusion of the ions at the optic nerve head. Meanwhile, there was a reduction in Mn(2+) transport in the glaucomatous optic nerve in the later stage of our model. Fewer enhancements in the visual cortex projected from the glaucomatous eye were also detectable. These may help understand the disease mechanisms, monitor the effect of drug interventions to glaucoma models, and complement the conventional techniques in examining the visual components.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
25
|
Prichard JR, Armacanqui HS, Benca RM, Behan M. Light-dependent retinal innervation of the rat superior colliculus. Anat Rec (Hoboken) 2007; 290:341-8. [PMID: 17525949 DOI: 10.1002/ar.20424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian retinal projections are divided into two anatomically and functionally distinct systems: the primary visual system, which mediates conscious visual processing, and the subcortical visual system, which mediates nonconscious responses to light. Light deprivation during a critical period in development alters the anatomy, physiology, and function of the primary visual system in many mammalian species. However, little is known about the influence of dark-rearing on the development of the subcortical visual system. To evaluate whether the early lighting environment alters the anatomy of the subcortical visual system, we examined the retinas and retinofugal projections of rats reared in a 12:12 light/dark cycle or in constant dark from birth to 4 months of age. We found that dark-rearing was associated with a reduction in the distribution of retinal fibers in the stratum opticum of the contralateral superior colliculus. In contrast to the plasticity of the retinocollicular projection, retinal input to sleep, circadian, and pupillary control centers in the hypothalamus, pretectum, and lateral geniculate complex was unaffected by dark-rearing. A decrease in retinal innervation of the stratum opticum and intermediate layers of the superior colliculus may account for some of the deficits in multisensory integration that have been observed in dark-reared animals of several species.
Collapse
Affiliation(s)
- J Roxanne Prichard
- Behavioral Neuroscience Program, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | | | | | | |
Collapse
|