1
|
Choo S, Phillips R, White J, Nuelle JAV. Neuromodulators can promote nerve regeneration and accelerate functional recovery after peripheral nerve injury: A systematic review. J Orthop 2024; 47:122-147. [PMID: 38074194 PMCID: PMC10700834 DOI: 10.1016/j.jor.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2025] Open
Abstract
Peripheral nerve injuries (PNIs) are debilitating injuries that are also challenging to treat. With several different techniques being investigated to optimize nerve regeneration, we performed this systematic review aiming to evaluate and synthesize the available peer-reviewed literature regarding PNIs and the research that has been done to optimize peripheral nerve regeneration. Two research databases were searched, and abstracts were reviewed for relevance. The abstracts that met screening criteria then underwent full-text review. Out of 6,128 unique citations, 164 publications were ultimately included in this review. Evidence supports many potential options for the management of PNIs, including surgical treatment and systemic and local administration of various pharmacological agents. Some of the reported benefits of treatment with such agents include faster nerve regeneration, improved functional recovery, neuroma prevention, and decreased scar formation. However, much of the research reviewed has been performed in animal models, not human trails. Additionally, the safety profile of some agents makes systemic treatment difficult. Further translational and clinical studies are needed to fill these remaining gaps in knowledge to make evidence-based recommendations regarding the most effective treatment for PNIs.
Collapse
Affiliation(s)
- Stephanie Choo
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - Rachel Phillips
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - James White
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - Julia AV Nuelle
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Pajer K, Bellák T, Grósz T, Nógrádi B, Patai R, Sinkó J, Vinay L, Liabeuf S, Erdélyi M, Nógrádi A. Riluzole treatment modulates KCC2 and EAAT-2 receptor expression and Ca 2+ accumulation following ventral root avulsion injury. Eur J Cell Biol 2023; 102:151317. [PMID: 37099936 DOI: 10.1016/j.ejcb.2023.151317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tímea Grósz
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Neurology, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - József Sinkó
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385 Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385 Marseille, France
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Zhou L, Yan K, Xing S, Cheng J. Tectorigenin alleviates the apoptosis and inflammation in spinal cord injury cell model through inhibiting insulin-like growth factor-binding protein 6. Open Med (Wars) 2023; 18:20230680. [PMID: 37069938 PMCID: PMC10105551 DOI: 10.1515/med-2023-0680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Since tectorigenin has been reported to possess anti-inflammation, redox balance restoration, and anti-apoptosis properties, we determine to unravel whether tectorigenin has potential in alleviating spinal cord injury (SCI). Herein, PC12 cells were induced by lipopolysaccharide (LPS) to establish in vitro SCI models. The cell viability and apoptosis were detected through cell counting kit-8 and flow cytometry assays. The caspase-3/8/9 content was measured by colorimetric method. Western blot was conducted to quantify the expressions of cleaved caspse-3/8/9, IGFBP6, TLR4, IκBα, p-IκBα, RELA proto-oncogene, p65, and p-p65. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were carried out to quantitate expressions of IGFBP6, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). SwissTargetPrediction and GSE21497 database were utilized to predict the potential therapeutic targets of tectorigenin. Comparison of IGFBP6 expression in SCI tissues and normal tissues was analyzed by GEO2R. Our study found that LPS induced the declined cell viability, elevated cell apoptosis, upregulation of caspase-3/8/9, cleaved caspase-3/8/9, IL-1β, IL-6, TNF-α, IGFBP6, and TLR4, and the activation of IκBα and p65 in PC12 cells. Tectorigenin reversed the above effects of LPS. IGFBP6 was predicted to be the potential therapeutic target of tectorigenin and was overexpressed in SCI tissues. Notably, IGFBP6 overexpression offset the effects of tectorigenin on PC12 cells. In conclusion, tectorigenin could alleviate the LPS-induced apoptosis, inflammation, and activation of NF-κB signaling in SCI cell models via inhibiting IGFBP6.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| | - Kui Yan
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People’s Hospital, No. 33 Mashi Street, Wenjiang
District, Chengdu, Sichuan Province, 611130, China
| | - Jun Cheng
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| |
Collapse
|
4
|
Török DG, Fekécs Z, Pajer K, Pintér S, Nógrádi A. The use of a detailed video-based locomotor pattern analysis system to assess the functional reinnervation of denervated hind limb muscles. J Neurosci Methods 2022; 365:109398. [PMID: 34728254 DOI: 10.1016/j.jneumeth.2021.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Spinal cord injuries induce a critical loss of motoneurons followed by irreversible locomotor function impairment. Surgical approaches combined with neuroprotective agents effectively rescue the damaged motoneurons and improve locomotor function. Our aim was to develop a reliable method which is able to provide quantifiable and in-depth data on the locomotor recovery during skeletal muscle reinnervation. NEW METHOD Sprague-Dawley rats underwent lumbar 4 ventral root avulsion and reimplantation followed by riluzole treatment in order to rescue the injured motoneurons of the damaged pool. Control animals were operated, but received no riluzole treatment. The locomotor pattern of the hind limb was recorded biweekly on a special runway equipped with high resolution and high speed digital cameras producing both lateral and rear views simultaneously. All together 12 parameters of the hind limb movement pattern were evaluated by measuring specific joint angles, footprints and gait parameters in single video frames. Four months after the operation Fast Blue, a fluorescent retrograde tracer was applied to the L4 spinal nerve in order to label the reinnervating motoneurons. RESULTS Our results confirmed the sensitivity of our arrangement and established strong relationship between the functional improvement and the morphological reinnervation. Moreover, we developed a correction method to make the system tolerant to the differences in the weight, step duration and step length. COMPARISON WITH EXISTING METHODS There are no commercially available cheap, multi-parametric analysing equipment to characterise the gait in its complexity. CONCLUSIONS Our system offers a modular, adaptable and expandable analysis on the reinnervation of the limb musculature in rodents.
Collapse
Affiliation(s)
- Dénes G Török
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6724, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6724, Hungary
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6724, Hungary
| | - Sándor Pintér
- Department of Traumatology, Semmelweis Hospital, Kiskunhalas H-6400, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6724, Hungary.
| |
Collapse
|
5
|
Fang J, Li L, Zhai H, Qin B, Quan D, Shi E, Zhu M, Yang J, Liu X, Gu L. Local Riluzole Release from a Thermosensitive Hydrogel Rescues Injured Motoneurons through Nerve Root Stumps in a Brachial Plexus Injury Rat Model. Neurochem Res 2020; 45:2800-2813. [PMID: 32986187 DOI: 10.1007/s11064-020-03120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and can thus be used as donors for nerve repair. A BPI rat model with C5-C6 nerve root stumps has been established in our previous work. The aim of this study was to test whether riluzole loaded into a thermosensitive hydrogel could applied locally in the nerve root stumps of this BPI rat model, thus increasing the reparative effect of the nerve root stumps. Nile red (a hydrophobic dye) was used as a substitute for riluzole since riluzole itself does not emit light. Nile red, loaded into a thermosensitive hydrogel, was added to the nerve root stumps of the BPI rat model. Additionally, eighteen rats, with operation on right brachial plexus, were evenly divided into three groups: control (Con), thermosensitive hydrogel (Gel) and thermosensitive hydrogel loaded with riluzole (Gel + Ri) groups. Direct nerve repair was performed after local riluzole release for two weeks. Functional and electrophysiological evaluations and histological assessments were used to evaluate the reparative effect 8 weeks after nerve repair. Nile red was slowly released from the thermosensitive hydrogel and retrograde transport through the nerve root stumps to the motoneurons, according to immunofluorescence. Discernible functional recovery began earlier in the Gel + Ri group. The compound muscle action potential, ChAT-expressing motoneurons, positivity for neurofilaments and S100, diameter of regenerating axons, myelin sheath thickness and density of myelinated fibers were markedly increased in the Gel + Ri group compared with the Con and Gel groups. Our results indicate that the local administration of riluzole could undergo retrograde transportation through C5-C6 nerve root stumps, thereby promoting neuroprotection and increasing nerve regeneration.
Collapse
Affiliation(s)
- Jintao Fang
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Liang Li
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.,Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Hong Zhai
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Bengang Qin
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Enxian Shi
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Menghai Zhu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Jiantao Yang
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Xiaolin Liu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.
| | - Liqiang Gu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Srinivas S, Wali AR, Pham MH. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg Focus 2020; 46:E6. [PMID: 30835675 DOI: 10.3171/2019.1.focus18596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVERiluzole is a glutamatergic modulator that has recently shown potential for neuroprotection after spinal cord injury (SCI). While the effects of riluzole are extensively documented in animal models of SCI, there remains heterogeneity in findings. Moreover, there is a paucity of data on the pharmacology of riluzole and its effects in humans. For the present study, the authors systematically reviewed the literature to provide a comprehensive understanding of the effects of riluzole in SCI.METHODSThe PubMed database was queried from 1996 to September 2018 to identify animal studies and clinical trials involving riluzole administration for SCI. Once articles were identified, they were processed for year of publication, study design, subject type, injury model, number of subjects in experimental and control groups, dose, timing/route of administration, and outcomes.RESULTSA total of 37 studies were included in this study. Three placebo-controlled clinical trials were included with a total of 73 patients with a mean age of 39.1 years (range 18-70 years). For the clinical trials included within this study, the American Spinal Injury Association Impairment Scale distributions for SCI were 42.6% grade A, 25% grade B, 26.6% grade C, and 6.2% grade D. Key findings from studies in humans included decreased nociception, improved motor function, and attenuated spastic reflexes. Twenty-six animal studies (24 in vivo, 1 in vitro, and 1 including both in vivo and in vitro) were included. A total of 520 animals/in vitro specimens were exposed to riluzole and 515 animals/in vitro specimens underwent other treatment for comparison. The average dose of riluzole for intraperitoneal, in vivo studies was 6.5 mg/kg (range 1-10 mg/kg). Key findings from animal studies included behavioral improvement, histopathological tissue sparing, and modified electrophysiology after SCI. Eight studies examined the pharmacology of riluzole in SCI. Key findings from pharmacological studies included riluzole dose-dependent effects on glutamate uptake and its modified bioavailability after SCI in both animal and clinical models.CONCLUSIONSSCI has many negative sequelae requiring neuroprotective intervention. While still relatively new in its applications for SCI, both animal and human studies demonstrate riluzole to be a promising pharmacological intervention to attenuate the devastating effects of this condition.
Collapse
|
7
|
Wu Z, Li L, Xie F, Xu G, Dang D, Yang Q. Enhancing KCNQ Channel Activity Improves Neurobehavioral Recovery after Spinal Cord Injury. J Pharmacol Exp Ther 2020; 373:72-80. [PMID: 31969383 PMCID: PMC7076523 DOI: 10.1124/jpet.119.264010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) usually leads to acute neuronal death and delayed secondary degeneration, resulting in sensory dysfunction, paralysis, and chronic pain. Excessive excitation is one of the critical factors leading to secondary neural damage initiated by various insults. KCNQ/Kv7 channels are highly expressed in spinal neurons and axons and play an important role in controlling their excitability. Enhancing KCNQ channel activity by using its specific opener retigabine could thus be a plausible treatment strategy to reduce the pathology after SCI. We produced contusive SCI at T10 in adult male rats, which then received 10 consecutive days' treatment with retigabine or vehicle starting 3 hours or 3 days after contusion. Two different concentrations and two different delivery methods were applied. Delivery of retigabine via Alzet osmotic pumps, but not intraperitoneal injections 3 hours after contusion, promoted recovery of locomotor function. Remarkably, retigabine delivery in both methods significantly attenuated the development of mechanical stimuli-induced hyperreflexia and spontaneous pain; however, no significant difference in the thermal threshold was observed. Although retigabine delivered 3 days after contusion significantly attenuated the development of mechanical hypersensitivity and spontaneous pain, the locomotor function is not improved by the delayed treatments. Finally, we found that early application of retigabine attenuates the inflammatory activity in the spinal cord and increases the survival of white matter after SCI. Our results suggest that decreasing neuronal excitability by targeting KCNQ/Kv7 channels at acute stage aids the recovery of locomotor function and attenuates the development of neuropathic pain after SCI. SIGNIFICANCE STATEMENT: Several pharmacological interventions have been proposed for spinal cord injury (SCI) treatment, but none have been shown to be both effective and safe in clinical trials. Necrotic neuronal death and chronic pain are often the cost of pathological neural excitation after SCI. We show that early, brief application of retigabine could aid locomotor and sensory neurobehavioral recovery after SCI, supporting the use of this drug in the clinic to promote motor and sensory function in patients with SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Lin Li
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Fuhua Xie
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Guoying Xu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Danny Dang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Qing Yang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| |
Collapse
|
8
|
Li RW, Deng Y, Pham HN, Weiss S, Chen M, Smith PN. Riluzole protects against skeletal muscle ischaemia-reperfusion injury in a porcine model. Injury 2020; 51:178-184. [PMID: 31882236 DOI: 10.1016/j.injury.2019.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Skeletal muscle ischaemia-reperfusion injury (IRI) can be a life threatening condition. It is relevant to various aspects of the management of trauma and surgical patients. Currently there lacks a pharmacological agent that can be used to dampen the effects of IRI. Riluzole has been shown to reduce the effects of IRI on various organ systems, but there have yet to be any studies on the effects in IRI of skeletal muscle. Our aim was to investigate the effects of Riluzole on IRI in the skeletal muscle of pigs. METHODS Twenty-two pigs were randomly divided into groups. Riluzole was administered before ligation of the femoral artery to produce ischaemia in the tibialis anterior muscle in the experimental group but not the control group. The microscopic appearance of muscles were recorded, a TUNEL assay was used to identify DNA damage and glutathione levels were measured. RESULTS In the Riluzole group, muscle fibres appeared less wavy and less oedematous compared to the control group. The Riluzole group also had less evidence of DNA fragmentation on the TUNEL assay. The glutathione levels in the Riluzole group were also significantly greater than the control group. DISCUSSION Our findings suggest that Riluzole can potentially reduce the effects of IRI on skeletal muscle. This is potentially due to the ability of Riluzole to block sodium channels, decreasing action potentials and therefore glutamate release. It also acts to decrease intracellular calcium levels, which prevents apoptosis. Riluzole is a promising drug for the prevention of IRI in skeletal muscle, but further research is required.
Collapse
Affiliation(s)
- Rachel W Li
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia; John Curtin School of Medical Research, The Australian National University, Garran Rd, Canberra, ACT 2601 Australia.
| | - Yi Deng
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia; Canberra Hospital, Yamba Dr, Canberra, ACT 2605 Australia
| | - Hai Nam Pham
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia
| | - Steven Weiss
- John Curtin School of Medical Research, The Australian National University, Garran Rd, Canberra, ACT 2601 Australia
| | - Mingming Chen
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia
| | - Paul N Smith
- Canberra Hospital, Yamba Dr, Canberra, ACT 2605 Australia
| |
Collapse
|
9
|
Simandi Z, Pajer K, Karolyi K, Sieler T, Jiang LL, Kolostyak Z, Sari Z, Fekecs Z, Pap A, Patsalos A, Contreras GA, Reho B, Papp Z, Guo X, Horvath A, Kiss G, Keresztessy Z, Vámosi G, Hickman J, Xu H, Dormann D, Hortobagyi T, Antal M, Nógrádi A, Nagy L. Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J Neurosci 2018; 38:7683-7700. [PMID: 30054395 PMCID: PMC6113905 DOI: 10.1523/jneurosci.3389-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Krisztian Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Tatiana Sieler
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsanett Sari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Fekecs
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Andreas Patsalos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Balint Reho
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Greta Kiss
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsolt Keresztessy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany 80539
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 80539
| | - Tibor Hortobagyi
- HAS-UD Cerebrovascular and Neurodegenerative Research Group, Department of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Miklos Antal
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Neuroscience Research Group, University of Debrecen, Debrecen, Hungary, HU 4032, and
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827,
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Momentum Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary, HU 4032
| |
Collapse
|
10
|
Caglar YS, Demirel A, Dogan I, Huseynov R, Eroglu U, Ozgural O, Cansiz C, Bahadir B, Kilinc MC, Al-Beyati ES. Effect of Riluzole on Spinal Cord Regeneration with Hemisection Method Before Injury. World Neurosurg 2018. [DOI: 10.1016/j.wneu.2018.02.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Association of riluzole and dantrolene improves significant recovery after acute spinal cord injury in rats. Spine J 2018; 18:532-539. [PMID: 29155254 DOI: 10.1016/j.spinee.2017.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/15/2017] [Accepted: 10/26/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Damage to the spinal cord can result in irreversible impairment or complete loss of motor, sensory, and autonomic functions. Riluzole and dantrolene have been shown to provide neuroprotection by reducing neuronal apoptosis after brain and spinal cord injury (SCI) in several animal models of neurologic disorders. As these drugs protect the injured spinal cord through different mechanisms, we investigated the cumulative effects of riluzole and dantrolene. PURPOSE This study aimed to investigate the neuroprotective efficacy of the combined administration of riluzole and dantrolene in experimental thoracic SCI. STUDY DESIGN Twenty-nine Wistar rats were laminectomized at T12 and divided in five groups. Rats in GI (n=6) underwent laminectomy alone and were treated with placebo. Rats in GII (n=6) underwent laminectomy followed by SCI and were treated with placebo. Rats in GIII (n=5) underwent laminectomy followed by SCI and were treated with riluzole and placebo 15 minutes and 1 hour after laminectomy, respectively. Rats in GIV (n=6) underwent laminectomy followed by SCI and were treated with placebo and dantrolene 15 minutes and 1 hour after laminectomy, respectively. Rats in GV (n=6) underwent laminectomy followed by SCI and were treated with riluzole and dantrolene 15 minutes and 1 hour after laminectomy, respectively. A compressive trauma was performed to induce SCI. METHODS Behavioral testing of hind limb function was performed using the Basso Beattie Bresnahan locomotor rating scale, which revealed significant recovery in the group treated with the association of riluzole and dantrolene compared with other groups. After euthanasia, the spinal cord was evaluated using light microscopy and immunochemistry with anti-NeuN and transferase dUTP nick-end-labeling (TUNEL) staining. RESULTS Animals treated with the association of riluzole and dantrolene showed a larger number of NeuN-positive neurons adjacent to the epicenter of injury (p≤.05). Furthermore, the TUNEL staining was similar between animals treated with riluzole and dantrolene and those that did not receive spinal cord trauma (p>.05). CONCLUSIONS These results showed that riluzole and dantrolene have a synergistic effect in neuroprotection after traumatic SCI by decreasing apoptotic cell death.
Collapse
|
12
|
Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017; 80:S9-S22. [PMID: 28350947 DOI: 10.1093/neuros/nyw080] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injuries (SCI) have devastating consequences for the physical, financial, and psychosocial well-being of patients and their caregivers. Expediently delivering interventions during the early postinjury period can have a tremendous impact on long-term functional recovery. PATHOPHYSIOLOGY This is largely due to the unique pathophysiology of SCI where the initial traumatic insult (primary injury) is followed by a progressive secondary injury cascade characterized by ischemia, proapoptotic signaling, and peripheral inflammatory cell infiltration. Over the subsequent hours, release of proinflammatory cytokines and cytotoxic debris (DNA, ATP, reactive oxygen species) cyclically adds to the harsh postinjury microenvironment. As the lesions mature into the chronic phase, regeneration is severely impeded by the development of an astroglial-fibrous scar surrounding coalesced cystic cavities. Addressing these challenges forms the basis of current and upcoming treatments for SCI. MANAGEMENT This paper discusses the evidence-based management of a patient with SCI while emphasizing the importance of early definitive care. Key neuroprotective therapies are summarized including surgical decompression, methylprednisolone, and blood pressure augmentation. We then review exciting neuroprotective interventions on the cusp of translation such as Riluzole, Minocycline, magnesium, therapeutic hypothermia, and CSF drainage. We also explore the most promising neuroregenerative strategies in trial today including Cethrin™, anti-NOGO antibody, cell-based approaches, and bioengineered biomaterials. Each section provides a working knowledge of the key preclinical and patient trials relevant to clinicians while highlighting the pathophysiologic rationale for the therapies. CONCLUSION We conclude with our perspectives on the future of treatment and research in this rapidly evolving field.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| | - Satoshi Nori
- Department of Genetics and Development, University of Toronto, Toronto, Canada
| | | | - Jefferson Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada
| | - Brian Kwon
- Vancouver Spine Institute, Vancouver General Hospital, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada
| | - James Harrop
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - David Choi
- National Hospital for Neurology and Neurosurgery, University College London, London, England
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Nori S, Ahuja CS, Fehlings MG. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery 2017; 64:119-128. [DOI: 10.1093/neuros/nyx217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Satoshi Nori
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
| | - Christopher S. Ahuja
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Gloviczki B, Török DG, Márton G, Gál L, Bodzay T, Pintér S, Nógrádi A. Delayed Spinal Cord–Brachial Plexus Reconnection after C7 Ventral Root Avulsion: The Effect of Reinnervating Motoneurons Rescued by Riluzole Treatment. J Neurotrauma 2017; 34:2364-2374. [DOI: 10.1089/neu.2016.4754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Balázs Gloviczki
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Dénes G. Török
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Márton
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| | - László Gál
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tamás Bodzay
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Sándor Pintér
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury. Plast Reconstr Surg 2017; 139:1105e-1115e. [DOI: 10.1097/prs.0000000000003257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Vasconcelos NL, Gomes ED, Oliveira EP, Silva CJ, Lima R, Sousa N, Salgado AJ, Silva NA. Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury. Spine J 2016; 16:1015-24. [PMID: 27109831 DOI: 10.1016/j.spinee.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/18/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND CONTEXT Damage to the spinal cord can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective agents in animal models of spinal cord injury. As these drugs protect the injured spinal cord through different mechanisms, we aimed to investigate if their neuroprotective efficacy could be cumulative. PURPOSE This study aimed to investigate the neuroprotective efficacy of combined administration of riluzole and magnesium chloride in a contusive model of thoracic spinal cord injury. STUDY DESIGN An in vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion (T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive (1) saline, (2) riluzole (2.50 mg/kg), (3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol formulation, or (4) a combined treatment (riluzole and magnesium). Subsequent treatments were given in four intraperitoneal injections (spaced 12 hours apart). METHODS The Basso, Beattie, and Bresnahan locomotor rating scale, an activity box test, and a swimming test were used to evaluate behavioral recovery over a 4-week period. Histologic analysis of the spinal cords was performed to measure the extent and volume of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, and inflammation. RESULTS Our results show that only the riluzole treatment significantly improved behavioral recovery up to 4 weeks after injury when compared with saline controls (6.2±1.8), with animals achieving weight-supported stepping (9.1±1.2). Riluzole also promoted tissue sparing with significant differences achieved from 200 to 600 µm (caudally to the lesion epicenter), and reduced lesion volume, with animals presenting a significantly smaller lesion (3.23±0.26 mm(3)) when compared with the saline-treated group (4.74±0.80 mm(3)), representing a 32% decrease in lesion volume. Riluzole treatment induced significant axonal preservation, as well as serotonergic fiber sparing, caudally to the injury epicenter. CONCLUSIONS Our results suggest that the combined treatment, although simultaneously targeting two excitotoxic-related mechanisms, did not further improve behavioral and histologic outcome when compared with riluzole given alone.
Collapse
Affiliation(s)
- Natália L Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Eduarda P Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carlos J Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
18
|
Boros K, Jancsó G, Dux M, Fekécs Z, Bencsik P, Oszlács O, Katona M, Ferdinandy P, Nógrádi A, Sántha P. Multiple impairments of cutaneous nociceptor function induced by cardiotoxic doses of Adriamycin in the rat. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1009-20. [PMID: 27342418 DOI: 10.1007/s00210-016-1267-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents exert significant neurotoxic effects on primary sensory neurons. Since cardiac sensory nerves confer protective effects on heart muscle and share common traits with cutaneous chemosensitive nerves, this study examined the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal nerves. Sensory neurogenic vasodilatation, plasma extravasation, and the neural CGRP release evoked by TRPV1 and TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue technique, and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following the administration of adriamycin. Immunohistochemistry revealed a substantial loss of epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis. These findings indicate impairments in the functions of TRPV1 and TRPA1 receptors expressed on cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the administration of cardiotoxic doses of adriamycin. Monitoring of the cutaneous nociceptor function in the course of adriamycin therapy may well be of predictive value for early detection of the deterioration of cardiac nerves which confer protection against the deleterious effects of the drug.
Collapse
Affiliation(s)
- Krisztina Boros
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary.
| | - Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, University of Szeged, Kossuth L. Sgt. 40, Szeged, H-6724, Hungary
| | - Péter Bencsik
- Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Orsolya Oszlács
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Márta Katona
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Korányi fasor 14-15, Szeged, H-6720, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Antal Nógrádi
- Department of Anatomy, University of Szeged, Kossuth L. Sgt. 40, Szeged, H-6724, Hungary
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| |
Collapse
|
19
|
Ahuja CS, Fehlings M. Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. Stem Cells Transl Med 2016; 5:914-24. [PMID: 27130222 DOI: 10.5966/sctm.2015-0381] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Spinal cord injuries (SCIs) result in devastating lifelong disability for patients and their families. The initial mechanical trauma is followed by a damaging secondary injury cascade involving proapoptotic signaling, ischemia, and inflammatory cell infiltration. Ongoing cellular necrosis releases ATP, DNA, glutamate, and free radicals to create a cytotoxic postinjury milieu. Long-term regeneration of lost or injured networks is further impeded by cystic cavitation and the formation of an inhibitory glial-chondroitin sulfate proteoglycan scar. In this article, we discuss important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. We then explore exciting translational therapies on the horizon, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. Finally, we summarize the key neuroregenerative strategies of the next decade, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. Throughout, we emphasize the need for combinatorial approaches to this multifactorial problem and discuss relevant studies at the forefront of translation. We conclude by providing our perspectives on the future direction of SCI research. SIGNIFICANCE Spinal cord injuries (SCIs) result in devastating, lifelong disability for patients and their families. This article discusses important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. Translational therapies on the horizon are discussed, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. The key neuroregenerative strategies of the next decade are summarized, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. The need for combinatorial approaches to this multifactorial problem is emphasized, relevant studies at the forefront of translation are discussed, and perspectives on the future direction of SCI research are presented.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada McEwen Centre for Regenerative Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada Department of Surgery, University of Toronto, Toronto, Ontario, Canada Spine Program, University of Toronto, Toronto, Ontario, Canada McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Rosochowicz TW, Wrotek S, Kozak W. Axonal regeneration inhibitors: emerging therapeutic options. Acta Neurol Belg 2015; 115:527-32. [PMID: 25567550 DOI: 10.1007/s13760-015-0425-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
For the most part, the central nervous system is unable to regenerate. The majority of injuries of vascular, inflammatory, degenerative and traumatic aetiology lead to an irreversible loss of central nervous system function. The paper presents the role of Nogo-A, MAG and OMgp proteins in the inhibition of central nervous system regeneration, and their potential clinical significance.
Collapse
|
21
|
Eggers R, Tannemaat MR, De Winter F, Malessy MJA, Verhaagen J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 2015; 43:318-35. [PMID: 26415525 DOI: 10.1111/ejn.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Dennys CN, Armstrong J, Levy M, Byun YJ, Ramdial KR, Bott M, Rossi FH, Fernández-Valle C, Franco MC, Estevez AG. Chronic inhibitory effect of riluzole on trophic factor production. Exp Neurol 2015; 271:301-7. [PMID: 26071088 PMCID: PMC4864959 DOI: 10.1016/j.expneurol.2015.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Riluzole is the only FDA approved drug for the treatment of amyotrophic lateral sclerosis (ALS). However, the drug affords moderate protection to ALS patients, extending life for a few months by a mechanism that remains controversial. In the presence of riluzole, astrocytes increase the production of factors protective to motor neurons. The stimulation of trophic factor production by motor neuron associated cells may contribute to riluzole's protective effect in ALS. Here, we investigated the effects of media conditioned by astrocytes and Schwann cells acutely or chronically incubated with riluzole on trophic factor-deprived motor neuron survival. While acute riluzole incubation induced CT-1 secretion by astrocytes and Schwann cells, chronic treatment stimulated a significant decrease in trophic factor production compared to untreated cultures. Accordingly, conditioned media from astrocytes and Schwann cells acutely treated with riluzole protected motor neurons from trophic factor deprivation-induced cell death. Motor neuron protection was prevented by incubation with CT-1 neutralizing antibodies. In contrast, conditioned media from astrocytes and Schwann cells chronically treated with riluzole was not protective. Acute and chronic treatment of mice with riluzole showed opposite effects on trophic factor production in spinal cord, sciatic nerve and brain. There was an increase in the production of CT-1 and GDNF in the spinal cord and CT-1 in the sciatic nerve during the first days of treatment with riluzole, but the levels dropped significantly after chronic treatment with the drug. Similar results were observed in brain for CT-1 and BDNF while there was no change in GDNF levels after riluzole treatment. Our results reveal that riluzole regulates long-lasting processes involving protein synthesis, which may be relevant for riluzole therapeutic effects. Changing the regimen of riluzole administration to favor the acute effect of the drug on trophic factor production by discontinuous long-term treatment may improve the outcome of ALS patient therapy.
Collapse
Affiliation(s)
- Cassandra N Dennys
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - JeNay Armstrong
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Mark Levy
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Youn Jung Byun
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Kristina R Ramdial
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Marga Bott
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Fabian H Rossi
- Orlando Veteran Administration Healthcare System, Orlando, FL 32803, United States
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Maria Clara Franco
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Alvaro G Estevez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States.
| |
Collapse
|
23
|
Pajer K, Nemes C, Berzsenyi S, Kovács KA, Pirity MK, Pajenda G, Nógrádi A, Dinnyés A. Grafted murine induced pluripotent stem cells prevent death of injured rat motoneurons otherwise destined to die. Exp Neurol 2015; 269:188-201. [PMID: 25889458 DOI: 10.1016/j.expneurol.2015.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/02/2015] [Accepted: 03/24/2015] [Indexed: 12/23/2022]
Abstract
Human plexus injuries often include the avulsion of one or more ventral roots, resulting in debilitating conditions. In this study the effects of undifferentiated murine iPSCs on damaged motoneurons were investigated following avulsion of the lumbar 4 (L4) ventral root, an injury known to induce the death of the majority of the affected motoneurons. Avulsion and reimplantation of the L4 ventral root (AR procedure) were accompanied by the transplantation of murine iPSCs into the injured spinal cord segment in rats. Control animals underwent ventral root avulsion and reimplantation, but did not receive iPSCs. The grafted iPSCs induced an improved reinnervation of the reimplanted ventral root by the host motoneurons as compared with the controls (number of retrogradely labeled motoneurons: 503 ± 38 [AR+iPSCs group] vs 48 ± 6 [controls, AR group]). Morphological reinnervation resulted in a functional recovery, i.e. the grafted animals exhibited more motor units in their reinnervated hind limb muscles, which produced a greater force than that in the controls (50 ± 2.1% vs 11.9 ± 4.2% maximal tetanic tension [% ratio of operated/intact side]). Grafting of undifferentiated iPSCs downregulated the astroglial activation within the L4 segment. The grafted cells differentiated into neurons and astrocytes in the injured cord. The grafted iPSCs, host neurons and glia were found to produce the cytokines and neurotrophic factors MIP-1a, IL-10, GDNF and NT-4. These findings suggest that, following ventral root avulsion injury, iPSCs are able to induce motoneuron survival and regeneration through combined neurotrophic and cytokine modulatory effects.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | - Gholam Pajenda
- Department for Trauma Surgery, Medical University Vienna, Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - András Dinnyés
- Biotalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary.
| |
Collapse
|
24
|
Cytokine signaling by grafted neuroectodermal stem cells rescues motoneurons destined to die. Exp Neurol 2014; 261:180-9. [DOI: 10.1016/j.expneurol.2014.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
|
25
|
Pajenda G, Hercher D, Márton G, Pajer K, Feichtinger GA, Maléth J, Redl H, Nógrádi A. Spatiotemporally limited BDNF and GDNF overexpression rescues motoneurons destined to die and induces elongative axon growth. Exp Neurol 2014; 261:367-76. [DOI: 10.1016/j.expneurol.2014.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/30/2014] [Accepted: 05/18/2014] [Indexed: 01/09/2023]
|
26
|
Wu Y, Satkunendrarajah K, Fehlings M. Riluzole improves outcome following ischemia–reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience 2014; 265:302-12. [DOI: 10.1016/j.neuroscience.2014.01.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/15/2022]
|
27
|
Abstract
Over the past 2 decades, the biological understanding of the mechanisms underlying structural and functional repair of the injured central nervous system has strongly increased. This has resulted in the development of multiple experimental treatment strategies with the collective aim of enhancing and surpassing the limited spontaneous recovery occurring in animal models and ultimately humans suffering from spinal cord or brain injuries. Several of these experimental treatments have revealed beneficial effects in animal models of spinal cord injury. With the exception of neurorehabilitative therapies, however, therapeutic interventions that enhance recovery are currently absent within the clinical realm of spinal cord injury. The present review surveys the prospects and challenges in experimental and clinical spinal cord repair. Major shortcomings in experimental research center on the difficulty of closely modeling human traumatic spinal cord injury in animals, the small number of investigations done on cervical spinal injury and tetraplegia, and the differences in lesion models, species, and functional outcome parameters used between laboratories. The main challenges in the clinical field of spinal cord repair are associated with the standardization and sensitivity of functional outcome measures, the definition of the inclusion/exclusion criteria for patient recruitment in trials, and the accuracy and reliability of an early diagnosis to predict subsequent neurological outcome. Research and clinical networks were recently created with the goal of optimizing animal studies and human trials. Promising clinical trials are currently in progress. The time has come to translate the biologic-mechanistic knowledge from basic science into efficacious treatments able to improve the conditions of humans suffering from spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University Zurich and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
28
|
Sámano C, Nasrabady S, Nistri A. A study of the potential neuroprotective effect of riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by excitotoxicity. Neuroscience 2012; 222:356-65. [DOI: 10.1016/j.neuroscience.2012.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|
29
|
Tator CH, Hashimoto R, Raich A, Norvell D, Fehlings MG, Harrop JS, Guest J, Aarabi B, Grossman RG. Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J Neurosurg Spine 2012; 17:157-229. [DOI: 10.3171/2012.5.aospine12116] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is a need to enhance the pipeline of discovery and evaluation of neuroprotective pharmacological agents for patients with spinal cord injury (SCI). Although much effort and money has been expended on discovering effective agents for acute and subacute SCI, no agents that produce major benefit have been proven to date. The deficiencies of all aspects of the pipeline, including the basic science input and the clinical testing output, require examination to determine remedial strategies. Where has the neuroprotective/pharmacotherapy preclinical process failed and what needs to be done to achieve success? These are the questions raised in the present review, which has 2 objectives: 1) identification of articles that address issues related to the translational readiness of preclinical SCI pharmacological therapies; and 2) examination of the preclinical studies of 5 selected agents evaluated in animal models of SCI (including blunt force trauma, penetrating trauma, or ischemia). The 5 agents were riluzole, glyburide, magnesium sulfate, nimodipine, and minocycline, and these were selected because of their promise of translational readiness as determined by the North American Clinical Trials Network Consortium.
The authors found that there are major deficiencies in the effort that has been extended to coordinate and conduct preclinical neuroprotection/pharmacotherapy trials in the SCI field. Apart from a few notable exceptions such as the NIH effort to replicate promising strategies, this field has been poorly coordinated. Only a small number of articles have even attempted an overall evaluation of the neuroprotective/pharmacotherapy agents used in preclinical SCI trials. There is no consensus about how to select the agents for translation to humans on the basis of their preclinical performance and according to agreed-upon preclinical performance criteria.
In the absence of such a system and to select the next agent for translation, the Consortium has developed a Treatment Strategy Selection Committee, and this committee selected the most promising 5 agents for potential translation. The results show that the preclinical work on these 5 agents has left numerous gaps in knowledge about their preclinical performance and confirm the need for significant changes in preclinical neuroprotection/pharmacotherapy trials in SCI. A recommendation is made for the development and validation of a preclinical scoring system involving worldwide experts in preclinical and clinical SCI.
Collapse
Affiliation(s)
- Charles H. Tator
- 1Division of Neurosurgery and Spinal Program, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | | | - Annie Raich
- 2Spectrum Research, Inc., Tacoma, Washington
| | | | - Michael G. Fehlings
- 1Division of Neurosurgery and Spinal Program, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - James S. Harrop
- 3Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James Guest
- 4Department of Neurological Surgery and the Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Florida
| | - Bizhan Aarabi
- 5Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | |
Collapse
|
30
|
Mackinnon SE, Yee A, Ray WZ. Nerve transfers for the restoration of hand function after spinal cord injury. J Neurosurg 2012; 117:176-85. [DOI: 10.3171/2012.3.jns12328] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI) remains a significant public health problem. Despite advances in understanding of the pathophysiological processes of acute and chronic SCI, corresponding advances in translational applications have lagged behind. Nerve transfers using an expendable nearby motor nerve to reinnervate a denervated nerve have resulted in more rapid and improved functional recovery than traditional nerve graft reconstructions following a peripheral nerve injury. The authors present a single case of restoration of some hand function following a complete cervical SCI utilizing nerve transfers.
Collapse
Affiliation(s)
| | - Andrew Yee
- 1Division of Plastic and Reconstructive Surgery, and
| | - Wilson Z. Ray
- 2Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
32
|
De Freria CM, Barbizan R, De Oliveira ALR. Granulocyte colony stimulating factor neuroprotective effects on spinal motoneurons after ventral root avulsion. Synapse 2011; 66:128-41. [PMID: 21953623 DOI: 10.1002/syn.20993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/14/2011] [Indexed: 01/02/2023]
Abstract
G-CSF is a glycoprotein commonly used to treat neutropenia. Recent studies have shown that the G-CSF receptor (G-CSF-R) is expressed by neurons in the central nervous system (CNS), and neuroprotective effects of G-CSF have been observed. In this study, the influence of G-CSF treatment on the glial reactivity and synaptic plasticity of spinal motoneurons in rats subjected to ventral root avulsion (VRA) was investigated. Lewis rats (7 weeks old) were subjected to unilateral VRA and divided into two groups: G-CSF and placebo treated. The drug treated animals were injected subcutaneously with 200 μg/kg/day of G-CSF for 5 days post lesion. The placebo group received saline buffer. After 2 weeks, both groups were sacrificed and their lumbar intumescences processed for transmission electron microscopy (TEM), motoneuron counting, and immunohistochemistry with antibodies against GFAP, Iba-1, and synaptophysin. Furthermore, in vitro analysis was carried out, using newborn cortical derived astrocytes. The results indicated increased neuronal survival in the G-CSF treated group coupled with synaptic preservation. TEM analyses revealed an improved preservation of the synaptic covering in treated animals. Additionally, the drug treated group showed an increase in astroglial reactivity both in vivo and in vitro. The astrocytes also presented an increased cell proliferation rate when compared with the controls after 3 days of culturing. In conclusion, the present results suggest that G-CSF has an influence on the stability of presynaptic terminals in the spinal cord as well as on the astroglial reaction, indicating a possible neuroprotective action.
Collapse
Affiliation(s)
- Camila Marques De Freria
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
33
|
Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 2011; 132:57-71. [DOI: 10.1016/j.pharmthera.2011.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
|
34
|
Rabchevsky AG, Patel SP, Springer JE. Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward? Pharmacol Ther 2011; 132:15-29. [PMID: 21605594 DOI: 10.1016/j.pharmthera.2011.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Despite numerous studies reporting some measures of efficacy in the animal literature, there are currently no effective therapies for the treatment of traumatic spinal cord injuries (SCI) in humans. The purpose of this review is to delineate key pathophysiological processes that contribute to neurological deficits after SCI, as well as to describe examples of pharmacological approaches that are currently being tested in clinical trials, or nearing clinical translation, for the therapeutic management of SCI. In particular, we will describe the mechanistic rationale to promote neuroprotection and/or functional recovery based on theoretical, yet targeted pathological events. Finally, we will consider the clinical relevancy for emerging evidence that pharmacologically targeting mitochondrial dysfunction following injury may hold the greatest potential for increasing tissue sparing and, consequently, the extent of functional recovery following traumatic SCI.
Collapse
Affiliation(s)
- Alexander G Rabchevsky
- Spinal Cord & Brain injury Research Center, Lexington, University of Kentucky, KY 40536-0509, USA.
| | | | | |
Collapse
|
35
|
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17:4-31. [PMID: 20236142 DOI: 10.1111/j.1755-5949.2009.00116.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range (<1 μM to >1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na(+) current = inhibition of repetitive firing < potentiation of calcium-dependent K(+) current < inhibition of neurotransmitter release < inhibition of fast Na(+) current < inhibition of voltage-gated Ca(2+) current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K(+) current = modulation of two-pore K(+) current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 μM with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld. 4072, Australia.
| |
Collapse
|
36
|
The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord. Ann Anat 2011; 193:362-70. [PMID: 21600746 DOI: 10.1016/j.aanat.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 12/26/2022]
Abstract
Spinal cord injury or disease result in the loss of critical numbers of spinal motoneurons and consequentially, in severe functional impairment. The most successful way to replace missing motoneurons is the use of embryonic postmitotic motoneuron grafts. This method may also at least partially restore integrity of the injured spinal cord. It has been shown that grafted motoneurons survive, differentiate and integrate into the host cord and many of them are able to reinnervate the denervated muscles. If grafted motoneurons are provided with a conduit (e.g. reimplanted ventral root) the grafted cells are able to extend their axons along the entire length of the peripheral nerves and reach the hind or forelimb muscles and to restore limb locomotion patterns. Grafted motoneurons show excellent survival in motoneuron-depleted adult host cords, but the developing spinal cord appears to provide an unfavourable environment for these motoneurons as they do not survive in immature cords. The long term survival and maturation of the grafted neurons depend on the availability of a nerve conduit and one or more target muscles, independently of whether these are ectopic nerve-muscle implants or limb muscles in their original site. Thus, grafted and host motoneurons induce functional recovery in the denervated limb muscles when their axons can grow into an avulsed and reimplanted ventral root and then reach the limb muscles. Following segmental loss of motoneurons induced by partial spinal cord injury, motoneuron-enriched embryonic grafts can be placed into the gap-like hemisection cavity in the cervical spinal cord. Such transplants induce the regeneration of great numbers of host motoneurons possibly by the bridging effect of the grafts. In this case, the regenerating host motoneurons reinnervate their original target muscles while the small graft plays a minimal role in the reinnervation of muscles. These results suggest that reconstruction of the injured spinal cord using an embryonic motoneuron-enriched spinal cord graft is a feasible way to achieve improvement after severe functional motor deficits of the spinal cord.
Collapse
|
37
|
Pintér S, Gloviczki B, Szabó A, Márton G, Nógrádi A. Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root. J Neurotrauma 2011; 27:2273-82. [PMID: 20939695 DOI: 10.1089/neu.2010.1445] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although adult motoneurons do not die if their axons are injured at some distance from the cell body, they are unable to survive injury caused by ventral root avulsion. Some of the injured motoneurons can be rescued if the ventral root is re-inserted into the spinal cord. Brachial plexus injuries that involve the complete or partial avulsion of one or more cervical ventral roots can be treated successfully only if satisfactory numbers of motoneurons remain alive following such an injury at the time of reconstructive surgery. Here we investigated the various strategies that could be used to rescue injured rat cervical motoneurons. The seventh cervical ventral root (C7) was avulsed and various therapeutic approaches were applied to induce motoneuronal survival and regeneration. Avulsion of the root without reimplantation resulted in very low numbers of surviving motoneurons (65 ± 8 SEM), while treatment of the injured motoneurons with riluzole resulted in high numbers of surviving motoneurons (637 ± 26 SEM). When the C7 ventral root was reimplanted or a peripheral nerve implant was used to guide the regenerating axons to a muscle, considerable numbers of motoneurons regenerated their axons (211 ± 15 SEM and 274 ± 28 SEM, respectively). Much greater numbers of axons regenerated when reimplantation was followed by riluzole treatment (573 ± 9 SEM). These results show that injured adult motoneurons can be rescued by riluzole treatment, even if they cannot regenerate their axons. Reinnervation of the peripheral targets can also be further improved with riluzole treatment.
Collapse
Affiliation(s)
- Sándor Pintér
- Laboratory of Neuromorphology, Department of Ophthalmology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review will discuss recent progress in experimental and translational research related to surgical repair of proximal nerve root injuries, and emerging potential therapies, which may be combined with replantation surgeries to augment functional outcomes after brachial plexus and cauda equina injuries. RECENT FINDINGS Progress in experimental studies of root and peripheral nerve injuries has identified potential candidates for adjunctive therapies, which may be combined with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries. We will discuss recent advances related to adjunctive neuroprotective strategies, neurotrophic factor delivery, and emerging cellular treatment strategies after extensive nerve root trauma. We will also provide an update on electrical stimulation to promote regenerative axonal growth and new insights on the recovery of sensory functions after root injury and repair. SUMMARY In the light of recent advances in experimental studies, we envision that future repair of brachial plexus and cauda equina injuries will include spinal cord surgery to restore motor and sensory trajectories and a variety of adjunctive therapies to augment the recovery of neurological function.
Collapse
|
39
|
Arun P, Moffett JR, Namboodiri AMA. Riluzole decreases synthesis of N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells. Brain Res 2010; 1334:25-30. [PMID: 20394738 DOI: 10.1016/j.brainres.2010.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
N-acetylaspartate (NAA) is present at very high concentrations in the brain and is used as a non-invasive marker of neuronal viability in magnetic resonance spectroscopy. N-acetylaspartylglutamate (NAAG) is an acetylated dipeptide formed from NAA, and may be an agonist of the mGluR3 receptor. Both NAA and NAAG are synthesized primarily in neurons. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder resulting in motor neuron death, and progressive paralysis. Levels of both NAA and NAAG are reported to be decreased in ALS. Riluzole is a glutamatergic modulating agent used to treat ALS, but there are conflicting results in the literature concerning the recovery of NAA after riluzole treatment. We studied the effects of riluzole on the biosynthesis of both NAA and NAAG in SH-SY5Y human neuroblastoma cells. We used two methodologies to examine the effect; one involving radiolabel incorporation from corresponding substrates into NAA and NAAG, and the other involving the measurement of endogenous NAA and NAAG levels using HPLC. We show that riluzole treatment, which decreases glutamatergic neuronal excitation, decreases the synthesis and levels of both NAA and NAAG in SH-SY5Y cells in a dose and time dependant manner. These results suggest that the synthesis of NAA and NAAG may be coupled to glutamatergic neurotransmission, and further investigations along these lines are warranted.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | | | |
Collapse
|
40
|
Boulenguez P, Vinay L. Strategies to restore motor functions after spinal cord injury. Curr Opin Neurobiol 2009; 19:587-600. [PMID: 19896827 DOI: 10.1016/j.conb.2009.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 12/20/2022]
Abstract
This review presents recent advances in the development of strategies to restore posture and locomotion after spinal cord injury (SCI). A set of strategies focusing on the lesion site includes prevention of secondary damages, promotion of axonal sprouting/regeneration, and replacement of lost cells. Other strategies focus on spinal central pattern generators (CPGs). Training promotes functional recovery by enhancing the plasticity of CPGs and these sublesional networks can be reactivated by means of pharmacological or electrical stimulation. It is now clear that substantial functional recovery will require a combination of strategies adapted to each phase following SCI. Finally, improvements in the understanding of the mechanisms underlying spasticity may lead to new treatments of this disabling complication affecting patients with SCI.
Collapse
Affiliation(s)
- Pascale Boulenguez
- Laboratoire Plasticité et Physio-Pathologie de Motricité (UMR6196), Centre National de Recherche Scientifique (CNRS) & Aix-Marseille Université, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cx 20, France
| | | |
Collapse
|
41
|
A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol 2009; 223:207-20. [PMID: 19646436 DOI: 10.1016/j.expneurol.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/20/2022]
Abstract
Reimplantation of avulsed rat lumbar spinal ventral roots results in poor recovery of function of the denervated hind limb muscles. In contrast, reimplantation of cervical or sacral ventral roots is a successful repair strategy that results in a significant degree of regeneration. A possible explanation for this difference could be that following lumbar root avulsion, axons have to travel longer distances towards their target muscles, resulting in prolonged denervation of the distal nerve and a diminished capacity to support regeneration. Here we present a detailed spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression following unilateral avulsion and implantation of lumbar ventral roots L3, L4, and L5. Reimplantation prolongs the survival of motoneurons up to one month post-lesion. The first regenerating motor axons entered the reimplanted ventral roots during the first week and large numbers of fibers gradually enter the lumbar plexus between 2 and 4 weeks, indicating that axons enter the reimplanted roots and plexus over an extended period of time. However, motor axon counts show that relatively few axons reach the distal sciatic nerve in the 16 week post-lesion period. The observed initial increase and subsequent decline in expression of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor correlate with the apparent spatio-temporal decline in the regenerative capacity of motor axons, indicating that the distal nerve is losing its capacity to support regenerating motor axons following prolonged denervation. These findings have important implications for future strategies to promote long-distance regeneration through distal, chronically denervated peripheral nerves.
Collapse
|
42
|
Abstract
STUDY DESIGN Literature review. OBJECTIVES To review the main published current neuroprotection research trends and results in spinal cord injury (SCI). SETTING This paper is the result of a collaboration between a group of European scientists. METHODS Recent studies, especially in genetic, immune, histochemical and bio (nano)-technological fields, have provided new insight into the cellular and molecular mechanisms occurring within the central nervous system (NS), including SCIs. As a consequence, a new spectrum of therapies aiming to antagonize the 'secondary injury' pathways (that is, to provide neuroprotection) and also to repair such classically irreparable structures is emerging. We reviewed the most significant published works related to such novel, but not yet entirely validated, clinical practice therapies. RESULTS There have been identified many molecules, primarily expressed by heterogenous glial and neural subpopulations of cells, which are directly or indirectly critical for tissue damaging/sparing/re-growth inhibiting, angiogenesis and neural plasticity, and also various substances/energy vectors with regenerative properties, such as MAG (myelin-associated glycoprotein), Omgp (oligodendrocyte myelin glycoprotein), KDI (synthetic: Lysine-Asparagine-Isoleucine 'gamma-1 of Laminin Kainat Domain'), Nogo (Neurite outgrowth inhibitor), NgR (Nogo protein Receptor), the Rho signaling pathway (superfamily of 'Rho-dopsin gene-including neurotransmitter-receptors'), EphA4 (Ephrine), GFAP (Glial Fibrillary Acidic Protein), different subtypes of serotonergic and glutamatergic receptors, antigens, antibodies, immune modulators, adhesion molecules, scavengers, neurotrophic factors, enzymes, hormones, collagen scar inhibitors, remyelinating agents and neurogenetic/plasticity inducers, all aiming to preserve/re-establish the morphology and functional connections across the lesion site. Accordingly, modern research and experimental SCI therapies focus on several intricate, rather overlapping, therapeutic objectives and means, such as neuroprotective, neurotrophic, neurorestorative, neuroreparative, neuroregenerative, neuro(re)constructive and neurogenetic interventions. CONCLUSION The first three of these therapeutical directions are generically assimilated as neuroprotective, and are synthetically presented and commented in this paper in an attempt to conceptually systematize them; thus, the aim of this article is, by emphasizing the state-of-the art in the domain, to optimize theoretical support in selecting the most effective pharmacological and physical interventions for preventing, as much as possible, paralysis, and for maximizing recovery chances after SCI.
Collapse
|
43
|
Hawryluk GWJ, Rowland J, Kwon BK, Fehlings MG. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 2009; 25:E14. [PMID: 18980474 DOI: 10.3171/foc.2008.25.11.e14] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past 2 decades, advances in understanding the pathophysiology of spinal cord injury (SCI) have stimulated the recent emergence of several therapeutic strategies that are being examined in Phase I/II clinical trials. Ten randomized controlled trials examining methylprednisolone sodium succinate, tirilizad mesylate, monosialotetrahexosylganglioside, thyrotropin releasing hormone, gacyclidine, naloxone, and nimodipine have been completed. Although the primary outcomes in these trials were laregely negative, a secondary analysis of the North American Spinal Cord Injury Study II demonstrated that when administered within 8 hours of injury, methylprednisolone sodium succinate was associated with modest clinical benefits, which need to be weighed against potential complications. Thyrotropin releasing hormone (Phase II trial) and monosialotetrahexosylganglioside (Phase II and III trials) also showed some promise, but we are unaware of plans for future trials with these agents. These studies have, however, yielded many insights into the conduct of clinical trials for SCI. Several current or planned clinical trials are exploring interventions such as early surgical decompression (Surgical Treatment of Acute Spinal Cord Injury Study) and electrical field stimulation, neuroprotective strategies such as riluzole and minocycline, the inactivation of myelin inhibition by blocking Nogo and Rho, and the transplantation of various cellular substrates into the injured cord. Unfortunately, some experimental and poorly characterized SCI therapies are being offered outside a formal investigational structure, which will yield findings of limited scientific value and risk harm to patients with SCI who are understandably desperate for any intervention that might improve their function. Taken together, recent advances suggest that optimism for patients and clinicians alike is justified, as there is real hope that several safe and effective therapies for SCI may become available over the next decade.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Division of Genetics and Development, Toronto Western Research Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|