1
|
Zhai Z, Kong F, Zhu Z, Dai J, Cai J, Xie D, Shen Y, Xu Y, Sun T. Effect and Potential Mechanism of Immunotherapy on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-Analysis. Am J Geriatr Psychiatry 2024; 32:555-583. [PMID: 38158285 DOI: 10.1016/j.jagp.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Immunotherapy has been reported to ameliorate Alzheimer's disease (AD) in the animal model; however, the immunologic approaches and mechanisms have not been specifically described. Thus, the systematic review and meta-analysis were conducted to explore the effect and potential mechanism of immunotherapy on AD animal experiments based on behavioral indicators. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the Cochrane Collaboration guidelines and the inclusion/exclusion criteria of immunotherapy in animal studies, 15 studies were systematically reviewed after extraction from a collected database of 3,742 publications. Finally, the effect and mechanism of immunotherapy on AD models were described by performing multiple subgroup analyses. RESULTS After immunotherapy, the escape latency was reduced by 18.15 seconds and the number of crossings over the platform location was increased by 1.60 times in the Morris Water Maze. Furthermore, compared to the control group, active and passive immunization could markedly ameliorate learning and memory impairment in 3 × Tg AD animal models, and active immunization could ameliorate the learning and memory ability of the APPswe/PS1ΔE9 AD animal model. Meanwhile, it could be speculated that cognitive dysfunction was improved by immunotherapy, perhaps mainly via reducing Aβ40, Aβ42, and Tau levels, as well as increasing IL-4 levels. CONCLUSION Immunotherapy significantly ameliorated the cognitive dysfunction of AD animal models by assessing behavioral indicators.
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fanjing Kong
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhishan Zhu
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingyi Dai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Cai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province (YX), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tao Sun
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Lenz M, Eichler A, Kruse P, Galanis C, Kleidonas D, Andrieux G, Boerries M, Jedlicka P, Müller U, Deller T, Vlachos A. The Amyloid Precursor Protein Regulates Synaptic Transmission at Medial Perforant Path Synapses. J Neurosci 2023; 43:5290-5304. [PMID: 37369586 PMCID: PMC10359033 DOI: 10.1523/jneurosci.1824-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Lee AK, Yi N, Khaled H, Feller B, Takahashi H. SorCS1 inhibits amyloid-β binding to neurexin and rescues amyloid-β-induced synaptic pathology. Life Sci Alliance 2023; 6:e202201681. [PMID: 36697254 PMCID: PMC9880023 DOI: 10.26508/lsa.202201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Amyloid-β oligomers (AβOs), toxic peptide aggregates found in Alzheimer's disease, cause synapse pathology. AβOs interact with neurexins (NRXs), key synaptic organizers, and this interaction dampens normal trafficking and function of NRXs. Axonal trafficking of NRX is in part regulated by its interaction with SorCS1, a protein sorting receptor, but the impact of SorCS1 regulation of NRXs in Aβ pathology was previously unstudied. Here, we show competition between the SorCS1 ectodomain and AβOs for β-NRX binding and rescue effects of the SorCS1b isoform on AβO-induced synaptic pathology. Like AβOs, the SorCS1 ectodomain binds to NRX1β through the histidine-rich domain of NRX1β, and the SorCS1 ectodomain and AβOs compete for NRX1β binding. In cultured hippocampal neurons, SorCS1b colocalizes with NRX1β on the axon surface, and axonal expression of SorCS1b rescues AβO-induced impairment of NRX-mediated presynaptic organization and presynaptic vesicle recycling and AβO-induced structural defects in excitatory synapses. Thus, our data suggest a role for SorCS1 in the rescue of AβO-induced NRX dysfunction and synaptic pathology, providing the basis for a novel potential therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Biasetti L, Rey S, Fowler M, Ratnayaka A, Fennell K, Smith C, Marshall K, Hall C, Vargas-Caballero M, Serpell L, Staras K. Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cereb Cortex 2023; 33:1263-1276. [PMID: 35368053 PMCID: PMC9930632 DOI: 10.1093/cercor/bhac134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is linked to increased levels of amyloid beta (Aβ) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aβ. Using an optical readout method in cultured hippocampal neurons, we show that acute Aβ42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aβ transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aβ is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aβ-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- National Physical Laboratory, Middlesex, TW11 0LW, United Kingdom
| | - Milena Fowler
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Arjuna Ratnayaka
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- Faculty of Medicine, University of Southampton, SO17 1BJ, United Kingdom
| | - Kate Fennell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
6
|
The formation of small aggregates contributes to the neurotoxic effects of tau 45-230. Neurochem Int 2022; 152:105252. [PMID: 34856321 PMCID: PMC8712401 DOI: 10.1016/j.neuint.2021.105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023]
Abstract
Intracellular deposits of hyperphosphorylated tau are commonly detected in tauopathies. Furthermore, these aggregates seem to play an important role in the pathobiology of these diseases. In the present study, we determined whether the recently identified neurotoxic tau45-230 fragment also formed aggregates in neurodegenerative disorders. The presence of such aggregates was examined in brain samples obtained from Alzheimer's disease (AD) subjects by means of Western blot analysis performed under non-denaturing conditions. Our results showed that a mixture of tau45-230 oligomers of different sizes was easily detectable in brain samples obtained from AD subjects. Our data also suggested that tau45-230 oligomers could be internalized by cultured hippocampal neurons, mainly through a clathrin-mediated mechanism, triggering their degeneration. In addition, in vitro aggregation studies showed that tau45-230 modulated full-length tau aggregation thereby inducing the formation of smaller, and potentially more toxic, aggregates of this microtubule-associated protein. Together, these data identified alternative mechanisms underlying the toxic effects of tau45-230.
Collapse
|
7
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
8
|
Dey S, Das A, Dey A, Maiti S. Membrane affinity of individual toxic protein oligomers determined at the single-molecule level. Phys Chem Chem Phys 2020; 22:14613-14620. [PMID: 32483579 DOI: 10.1039/d0cp00450b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oligomers are the key suspects in protein aggregation-linked diseases, such as Alzheimer's and Type II diabetes, and most likely exert their toxicity by interacting with lipid membranes. However, the "which oligomer" question remains an obstacle in understanding the disease mechanism, as the exact identity of the toxic oligomer(s) is not yet known. Oligomers exist as a mixture of species of different sizes (i.e. as different 'n-mers') in a physiological solution, making it difficult to determine the properties of individual species. Here we demonstrate a method based on single-molecule photo-bleaching (smPB) which can provide an answer to the "which oligomer" question, at least as far as membrane affinity is concerned. We calculate the ratio of the oligomer size distribution of human Islet Amyloid Polypeptide (IAPP) in the aqueous phase and that on a coexisting artificial lipid bilayer, and this measures the relative membrane affinity of individual oligomeric species. A problem with smPB measurements is that they can be very sensitive to pre-measurement bleaching. Here we correct for pre-bleaching using a covalently linked multimeric peptide as a bleaching standard. We find that the order of membrane affinity for IAPP n-mers is trimer > dimer > tetramer ≫ monomer. Our results agree well with the average membrane affinity values of oligomeric and monomeric solutions previously measured with Fluorescence Correlation Spectroscopy. The "which oligomer" question, in the context of membrane affinity, can therefore, be solved quantitatively for any membrane-active toxic protein aggregate.
Collapse
Affiliation(s)
- Simli Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|
9
|
Fagiani F, Lanni C, Racchi M, Pascale A, Govoni S. Amyloid-β and Synaptic Vesicle Dynamics: A Cacophonic Orchestra. J Alzheimers Dis 2020; 72:1-14. [PMID: 31561377 DOI: 10.3233/jad-190771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now more than two decades since amyloid-β (Aβ), the proteolytic product of the amyloid-β protein precursor (AβPP), was first demonstrated to be a normal and soluble product of neuronal metabolism. To date, despite a growing body of evidence suggests its regulatory role on synaptic function, the exact cellular and molecular pathways involved in Aβ-driven synaptic effects remain elusive. This review provides an overview of the mounting evidence showing Aβ-mediated effects on presynaptic functions and neurotransmitter release from axon terminals, focusing on its interaction with synaptic vesicle cycle. Indeed, Aβ peptides have been found to interact with key presynaptic scaffold proteins and kinases affecting the consequential steps of the synaptic vesicle dynamics (e.g., synaptic vesicles exocytosis, endocytosis, and trafficking). Defects in the fine-tuning of synaptic vesicle cycle by Aβ and deregulation of key molecules and kinases, which orchestrate synaptic vesicle availability, may alter synaptic homeostasis, possibly contributing to synaptic loss and cognitive decline. Elucidating the presynaptic mechanisms by which Aβ regulate synaptic transmission is fundamental for a deeper comprehension of the biology of presynaptic terminals as well as of Aβ-driven early synaptic defects occurring in prodromal stage of AD. Moreover, a better understating of Aβ involvement in cellular signal pathways may allow to set up more effective therapeutic interventions by detecting relevant molecular mechanisms, whose imbalance might ultimately lead to synaptic impairment in AD.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| |
Collapse
|
10
|
Kilinc D, Vreulx AC, Mendes T, Flaig A, Marques-Coelho D, Verschoore M, Demiautte F, Amouyel P, Eysert F, Dourlen P, Chapuis J, Costa MR, Malmanche N, Checler F, Lambert JC. Pyk2 overexpression in postsynaptic neurons blocks amyloid β 1-42-induced synaptotoxicity in microfluidic co-cultures. Brain Commun 2020; 2:fcaa139. [PMID: 33718872 PMCID: PMC7941669 DOI: 10.1093/braincomms/fcaa139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/12/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid β peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid β1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid β suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid β1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- Devrim Kilinc
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Anaïs-Camille Vreulx
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Tiago Mendes
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Amandine Flaig
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Diego Marques-Coelho
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59056-450, Brazil
| | - Maxime Verschoore
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Florie Demiautte
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Philippe Amouyel
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | | | - Fanny Eysert
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Pierre Dourlen
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Julien Chapuis
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Marcos R Costa
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Nicolas Malmanche
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Frédéric Checler
- CNRS UMR7275 Laboratory of Excellence "Distalz", IPMC, Université Côte d'Azur, Inserm, Valbonne 06560, France
| | - Jean-Charles Lambert
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| |
Collapse
|
11
|
Zhang J, Kim EC, Chen C, Procko E, Pant S, Lam K, Patel J, Choi R, Hong M, Joshi D, Bolton E, Tajkhorshid E, Chung HJ. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep 2020; 10:4756. [PMID: 32179837 PMCID: PMC7075958 DOI: 10.1038/s41598-020-61697-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Kv7 channels are enriched at the axonal plasma membrane where their voltage-dependent potassium currents suppress neuronal excitability. Mutations in Kv7.2 and Kv7.3 subunits cause epileptic encephalopathy (EE), yet the underlying pathogenetic mechanism is unclear. Here, we used novel statistical algorithms and structural modeling to identify EE mutation hotspots in key functional domains of Kv7.2 including voltage sensing S4, the pore loop and S6 in the pore domain, and intracellular calmodulin-binding helix B and helix B-C linker. Characterization of selected EE mutations from these hotspots revealed that L203P at S4 induces a large depolarizing shift in voltage dependence of Kv7.2 channels and L268F at the pore decreases their current densities. While L268F severely reduces expression of heteromeric channels in hippocampal neurons without affecting internalization, K552T and R553L mutations at distal helix B decrease calmodulin-binding and axonal enrichment. Importantly, L268F, K552T, and R553L mutations disrupt current potentiation by increasing phosphatidylinositol 4,5-bisphosphate (PIP2), and our molecular dynamics simulation suggests PIP2 interaction with these residues. Together, these findings demonstrate that each EE variant causes a unique combination of defects in Kv7 channel function and neuronal expression, and suggest a critical need for both prediction algorithms and experimental interrogations to understand pathophysiology of Kv7-associated EE.
Collapse
Affiliation(s)
- Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Congcong Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Shashank Pant
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kin Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jaimin Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rebecca Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mary Hong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dhruv Joshi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
12
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Xie A, Hou T, Xiong W, Huang H, Zheng J, Li K, Man H, Hu Y, Han Z, Zhang H, Wei N, Wang J, Liu D, Lu Y, Zhu L. Tau overexpression impairs neuronal endocytosis by decreasing the GTPase dynamin 1 through the miR-132/MeCP2 pathway. Aging Cell 2019; 18:e12929. [PMID: 30809933 PMCID: PMC6516177 DOI: 10.1111/acel.12929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases that are characterized by pathological aggregation of tau protein, which is accompanied by synaptic disorders. However, the role of tau in endocytosis, a fundamental process in synaptic transmission, remains elusive. Here, we report that forced expression of human tau (hTau) in mouse cortical neurons impairs endocytosis by decreasing the level of the GTPase dynamin 1 via disruption of the miR‐132‐MeCP2 pathway; this process can also be detected in the brains of Alzheimer's patients and hTau mice. Our results provide evidence for a novel role of tau in the regulation of presynaptic function.
Collapse
Affiliation(s)
- Ao‐Ji Xie
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tong‐Yao Hou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wan Xiong
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - He‐Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jie Zheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ke Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Heng‐Ye Man
- Department of Biology Boston University Boston Massachusetts
| | - Ya‐Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics Chinese PLA General Hospital & Chinese PLA Medical Academy Beijing China
| | - Zhi‐Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics Chinese PLA General Hospital & Chinese PLA Medical Academy Beijing China
| | - Hong‐Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics Chinese PLA General Hospital & Chinese PLA Medical Academy Beijing China
| | - Na Wei
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Jian‐Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| | - Youming Lu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
14
|
Jin Y, Seo KH, Ko HM, Jung TW, Chung YH, Lee JH, Park HH, Kim HC, Jeong JH, Lee SH. Various approaches for measurement of synaptic vesicle endocytosis at the central nerve terminal. Arch Pharm Res 2019; 42:455-465. [PMID: 31115782 DOI: 10.1007/s12272-019-01161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
At the presynaptic terminal, neurotransmitters are stored in synaptic vesicles (SVs), which are released and recycled via exo- and endocytosis. SV endocytosis is crucial for sustaining synaptic transmission by maintaining the SV pool. Many studies have shown that presynaptic dysfunction, particularly impairment of SV endocytosis, is related to neurological disorders. Notably, the presynaptic terminal is considered to be a sensitive structure because certain presynaptic dysfunctions, manifested as impaired SV endocytosis or ultrastructural changes in the presynaptic terminal, can be observed before there is a biochemical or pathological evidence of a neurological disorder. Therefore, monitoring and assessing the presynaptic function by SV endocytosis facilitates the development of early markers for neurological disorders. In this study, we reviewed the current methods for assessing and visualizing SV endocytosis at the central nerve terminal.
Collapse
Affiliation(s)
- Yeonsun Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyoung Hee Seo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon, 27841, Republic of Korea
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan, 31499, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
15
|
Vorobyeva AG, Saunders AJ. Amyloid-β interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Cilia 2018; 7:5. [PMID: 30140428 PMCID: PMC6098584 DOI: 10.1186/s13630-018-0059-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Primary cilia are small non-motile microtubule and cell membrane protrusions expressed on most vertebrate cells, including cortical and hippocampal neurons. These small organelles serve as sensory structures sampling the extracellular environment and reprogramming the transcriptional machinery in response to environmental change. Primary cilia are decorated with a variety of receptor proteins and are necessary for specific signaling cascades such as the Sonic hedgehog (Shh) pathway. Disrupting cilia structure or function results in a spectrum of diseases collectively referred to as ciliopathies. Common to human ciliopathies is cognitive impairment, a symptom also observed in Alzheimer's disease (AD). One hallmark of AD is accumulation of senile plaques composed of neurotoxic Amyloid-β (Aβ) peptide. The Aβ peptide is generated by the proteolytic cleavage of the amyloid precursor protein (APP). We set out to determine if Aβ affects primary cilia structure and the Shh signaling cascade. Methods We utilized in vitro cell-based assays in combination with fluorescent confocal microscopy to address our study goals. Shh signaling and cilia structure was studied using two different cell lines, mouse NIH3T3 and human HeLa cells. To investigate how Aβ levels affect Shh signaling and cilia structure in these cells, we utilized naturally secreted Aβ as well as synthetic Aβ. Effects on Shh signaling were assessed by luciferase activity while cilia structure was analyzed by fluorescent microscopy. Results Here, we report that APP localizes to primary cilia and Aβ treatment results in distorted primary cilia structure. In addition, we demonstrate that Aβ treatment interrupts canonical Shh signal transduction. Conclusions Overall, our study illustrates that Aβ can alter primary cilia structure suggesting that elevated Aβ levels, like those observed in AD patients, could have similar effects on neuronal primary cilia in the brain. Additionally, our study suggests that Aβ impairs the Shh signaling pathway. Together our findings shed light on two novel targets for future AD therapeutics.
Collapse
|
16
|
Tanqueiro SR, Ramalho RM, Rodrigues TM, Lopes LV, Sebastião AM, Diógenes MJ. Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Front Pharmacol 2018; 9:237. [PMID: 29695962 PMCID: PMC5904251 DOI: 10.3389/fphar.2018.00237] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer’s disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca2+-dependent proteases, we hypothesized that excessive intracellular Ca2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ25–35. When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ25135. Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca2+/calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.
Collapse
Affiliation(s)
- Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita M Ramalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Synaptic vesicle cycle and amyloid β: Biting the hand that feeds. Alzheimers Dement 2018; 14:502-513. [PMID: 29494806 DOI: 10.1016/j.jalz.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid β production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aβ on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aβ interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
18
|
Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: implication for Alzheimer's disease. Arch Toxicol 2018; 92:1363-1382. [PMID: 29383422 DOI: 10.1007/s00204-018-2163-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1-42 (Aβ1-42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.
Collapse
|
19
|
Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer's disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 2018; 13:616-623. [PMID: 29722304 PMCID: PMC5950662 DOI: 10.4103/1673-5374.230276] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most prevalent form of dementia in the elderly is Alzheimer's disease. A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42 (Aβ42), a small hydrophobic peptide. Unfortunately, attempts to develop therapies targeting the accumulation of Aβ42 have not been successful to treat or even slow down the disease. It is possible that this failure is an indication that targeting downstream effects rather than the accumulation of the peptide itself might be a more effective approach. The accumulation of Aβ42 seems to affect various aspects of physiological cell functions. In this review, we provide an overview of the evidence that implicates Aβ42 in synaptic dysfunction, with a focus on how it contributes to defects in synaptic vesicle dynamics and neurotransmitter release. We discuss data that provide new insights on the Aβ42 induced pathology of Alzheimer's disease and a more detailed understanding of its contribution to the synaptic deficiencies that are associated with the early stages of the disease. Although the precise mechanisms that trigger synaptic dysfunction are still under investigation, the available data so far has enabled us to put forward a model that could be used as a guide to generate new therapeutic targets for pharmaceutical intervention.
Collapse
Affiliation(s)
- Jade Marsh
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Pavlos Alifragis
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
20
|
Accessibility of axonal G protein coupled mu-opioid receptors requires conceptual changes of axonal membrane targeting for pain modulation. J Control Release 2017; 268:352-363. [PMID: 29054370 DOI: 10.1016/j.jconrel.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
The mechanisms of axonal trafficking and membrane targeting are well established for sodium channels, which are the principle targets for perineurally applied local anaesthetics. However, they have not been thoroughly investigated for G protein coupled receptors such as mu-opioid receptors (MOR). Focusing on these axonal mechanisms, we found that axonal MOR functionality is quite distinct in two different pain states, i.e. hindpaw inflammation and nerve injury. We observed axonal membrane MOR binding and functional G protein coupling exclusively at sites of CCI nerve injury. Moreover at these axonal membrane sites, MOR exhibited extensive co-localization with the membrane proteins SNAP and Na/K-ATPase as well as NGF-dependent enhanced lipid rafts and L1CAM anchoring proteins. Silencing endogenous L1CAM with intrathecal L1CAM specific siRNA, disrupting lipid rafts with the perineurial cholesterol-sequestering agent MβCD, as well as suppressing NGF receptor activation with the perineurial NGF receptor inhibitor K252a abrogated MOR axonal membrane integration, functional coupling, and agonist-elicited antinociception at sites of nerve injury. These findings suggest that local conceptual changes resulting from nerve injury are required for the establishment of functional axonal membrane MOR. Axonal integration and subsequent accessibility of functionally coupled MOR are of great relevance particularly for patients suffering from severe pain due to nerve injury or tumour infiltration.
Collapse
|
21
|
Kling A, Jantos K, Mack H, Hornberger W, Drescher K, Nimmrich V, Relo A, Wicke K, Hutchins CW, Lao Y, Marsh K, Moeller A. Discovery of Novel and Highly Selective Inhibitors of Calpain for the Treatment of Alzheimer's Disease: 2-(3-Phenyl-1H-pyrazol-1-yl)-nicotinamides. J Med Chem 2017; 60:7123-7138. [PMID: 28759231 DOI: 10.1021/acs.jmedchem.7b00731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calpain overactivation has been implicated in a variety of pathological disorders including ischemia/reperfusion injury, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD). Herein we describe our efforts leading to the identification of ketoamide-based 2-(3-phenyl-1H-pyrazol-1-yl)nicotinamides as potent and reversible inhibitors of calpain with high selectivity versus related cysteine protease cathepsins, other proteases, and receptors. Broad efficacy in a set of preclinical models relevant to AD suggests that inhibition of calpain represents an attractive approach with potential benefit for the treatment of AD.
Collapse
Affiliation(s)
- Andreas Kling
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Katja Jantos
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Helmut Mack
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Wilfried Hornberger
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karla Drescher
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Volker Nimmrich
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Ana Relo
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karsten Wicke
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Charles W Hutchins
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Yanbin Lao
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Kennan Marsh
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Achim Moeller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
22
|
Park D, Na M, Kim JA, Lee U, Cho E, Jang M, Chang S. Activation of CaMKIV by soluble amyloid-β 1-42 impedes trafficking of axonal vesicles and impairs activity-dependent synaptogenesis. Sci Signal 2017; 10:10/487/eaam8661. [PMID: 28698220 DOI: 10.1126/scisignal.aam8661] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The prefibrillar form of soluble amyloid-β (sAβ1-42) impairs synaptic function and is associated with the early phase of Alzheimer's disease (AD). We investigated how sAβ1-42 led to presynaptic defects using a quantum dot-based, single particle-tracking method to monitor synaptic vesicle (SV) trafficking along axons. We found that sAβ1-42 prevented new synapse formation induced by chemical long-term potentiation (cLTP). In cultured rat hippocampal neurons, nanomolar amounts of sAβ1-42 impaired Ca2+ clearance from presynaptic terminals and increased the basal Ca2+ concentration. This caused an increase in the phosphorylation of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its substrate synapsin, which markedly inhibited SV trafficking along axons between synapses. Neurons derived from a transgenic AD mouse model had similar defects, which were prevented by an inhibitor of CaMK kinase (CaMKK; which activates CaMKIV), by antibodies against Aβ1-42, or by expression a phosphodeficient synapsin mutant. The CaMKK inhibitor also abolished the defects in activity-dependent synaptogenesis caused by sAβ1-42 Our results suggest that by disrupting SV reallocation between synapses, sAβ1-42 prevents neurons from forming new synapses or adjusting strength and activity among neighboring synapses. Targeting this mechanism might prevent synaptic dysfunction in AD patients.
Collapse
Affiliation(s)
- Daehun Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jung Ah Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea.,Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Unghwi Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Eunji Cho
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Mirye Jang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea.,Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea. .,Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea.,Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| |
Collapse
|
23
|
Marsh J, Bagol SH, Williams RSB, Dickson G, Alifragis P. Synapsin I phosphorylation is dysregulated by beta-amyloid oligomers and restored by valproic acid. Neurobiol Dis 2017. [PMID: 28647556 DOI: 10.1016/j.nbd.2017.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is the most prevalent form of dementia in the elderly but the precise causal mechanisms are still not fully understood. Growing evidence supports a significant role for Aβ42 oligomers in the development and progression of Alzheimer's. For example, intracellular soluble Aβ oligomers are thought to contribute to the early synaptic dysfunction associated with Alzheimer's disease, but the molecular mechanisms underlying this effect are still unclear. Here, we identify a novel mechanism that contributes to our understanding of the reported synaptic dysfunction. Using primary rat hippocampal neurons exposed for a short period of time to Aβ42 oligomers, we show a disruption in the activity-dependent phosphorylation cycle of SynapsinI at Ser9. SynapsinI is a pre-synaptic protein that responds to neuronal activity and regulates the availability of synaptic vesicles to participate in neurotransmitter release. Phosphorylation of SynapsinI at Ser9, modulates its distribution and interaction with synaptic vesicles. Our results show that in neurons exposed to Aβ42 oligomers, the levels of phosphorylated Ser9 of SynapsinI remain elevated during the recovery period following neuronal activity. We then investigated if this effect could be targeted by a putative therapeutic regime using valproic acid (a short branch-chained fatty acid) that has been proposed as a treatment for Alzheimer's disease. Exposure of Aβ42 treated neurons to valproic acid, showed that it restores the physiological regulation of SynapsinI after depolarisation. Our data provide a new insight on Aβ42-mediated pathology in Alzheimer's disease and supports the use of Valproic acid as a possible pharmaceutical intervention for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jade Marsh
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Saifuddien Haji Bagol
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - George Dickson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Pavlos Alifragis
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
24
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 2016; 54:6697-6722. [PMID: 27744571 DOI: 10.1007/s12035-016-0184-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.
Collapse
|
26
|
Vintilescu CR, Afreen S, Rubino AE, Ferreira A. The Neurotoxic TAU 45-230 Fragment Accumulates in Upper and Lower Motor Neurons in Amyotrophic Lateral Sclerosis Subjects. Mol Med 2016; 22:477-486. [PMID: 27496042 PMCID: PMC5072411 DOI: 10.2119/molmed.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative disease characterized by the loss of upper and lower motor neurons leading to muscle paralysis in affected individuals. Numerous mechanisms have been implicated in the death of these neurons. However, the pathobiology of this disease has not been completely elucidated. In the present study, we investigated to what extent tau cleavage and the generation of the neurotoxic tau45-230 fragment is associated with ALS. Quantitative Western blot analysis indicated that high levels of tau45-230 accumulated in lumbar and cervical spinal cord specimens obtained from ALS subjects. This neurotoxic tau fragment was also detected in ALS upper motor neurons located in the precentral gyrus. Our results also showed that tau45-230 aggregates were present in the spinal cord of ALS patients. On the other hand, this neurotoxic fragment was not generated in a mouse model of a familial form of this disease. Together, these results suggest a potential role for this neurotoxic tau fragment in the mechanisms leading to the degeneration of motor neurons in the context of sporadic ALS.
Collapse
Affiliation(s)
- Claudia R Vintilescu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Ashlee E Rubino
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| |
Collapse
|
27
|
Adams SL, Tilton K, Kozubek JA, Seshadri S, Delalle I. Subcellular Changes in Bridging Integrator 1 Protein Expression in the Cerebral Cortex During the Progression of Alzheimer Disease Pathology. J Neuropathol Exp Neurol 2016; 75:779-790. [PMID: 27346750 DOI: 10.1093/jnen/nlw056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome-wide association studies have established BIN1 (Bridging Integrator 1) as the most significant late-onset Alzheimer disease (AD) susceptibility locus after APOE We analyzed BIN1 protein expression using automated immunohistochemistry on the hippocampal CA1 region in 19 patients with either no, mild, or moderate-to-marked AD pathology, who had been assessed by Clinical Dementia Rating and CERAD scores. We also examined the amygdala, prefrontal, temporal, and occipital regions in a subset of these patients. In non-demented controls without AD pathology, BIN1 protein was expressed in white matter, glia, particularly oligodendrocytes, and in the neuropil in which the BIN1 signal decorated axons. With increasing severity of AD, BIN1 in the CA1 region showed: 1) sustained expression in glial cells, 2) decreased areas of neuropil expression, and 3) increased cytoplasmic neuronal expression that did not correlate with neurofibrillary tangle load. In patients with AD, both the prefrontal cortex and CA1 showed a decrease in BIN1-immunoreactive (BIN1-ir) neuropil areas and increases in numbers of BIN1-ir neurons. The numbers of CA1 BIN1-ir pyramidal neurons correlated with hippocampal CERAD neuritic plaque scores; BIN1 neuropil signal was absent in neuritic plaques. Our data provide novel insight into the relationship between BIN1 protein expression and the progression of AD-associated pathology and its diagnostic hallmarks.
Collapse
Affiliation(s)
- Stephanie L Adams
- From the Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (SLA, KT, ID); Broad Institute, Cambridge, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts (JAK) Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (SS)
| | - Kathy Tilton
- From the Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (SLA, KT, ID); Broad Institute, Cambridge, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts (JAK) Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (SS)
| | - James A Kozubek
- From the Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (SLA, KT, ID); Broad Institute, Cambridge, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts (JAK) Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (SS)
| | - Sudha Seshadri
- From the Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (SLA, KT, ID); Broad Institute, Cambridge, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts (JAK) Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (SS)
| | - Ivana Delalle
- From the Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (SLA, KT, ID); Broad Institute, Cambridge, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts (JAK) Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (SS).
| |
Collapse
|
28
|
Pannuzzo M. On the physiological/pathological link between Aβ peptide, cholesterol, calcium ions and membrane deformation: A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1380-9. [DOI: 10.1016/j.bbamem.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
|
29
|
Das AK, Pandit R, Maiti S. Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0187. [PMID: 26009766 DOI: 10.1098/rstb.2014.0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Certain neurodegenerative diseases are thought to be initiated by the aggregation of amyloidogenic proteins. However, the mechanism underlying toxicity remains obscure. Most of the suggested mechanisms are generic in nature and do not directly explain the neuron-type specific lesions observed in many of these diseases. Some recent reports suggest that the toxic aggregates impair the synaptic vesicular machinery. This may lead to an understanding of the neuron-type specificity observed in these diseases. A disruption of the vesicular machinery can also be deleterious for extra-synaptic, especially somatic, neurotransmission (common in serotonergic and dopaminergic systems which are specifically affected in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively), though this relationship has remained unexplored. In this review, we discuss amyloid-induced damage to the neurotransmitter vesicular machinery, with an eye on the possible implications for somatic exocytosis. We argue that the larger size of the system, and the availability of multi-photon microscopy techniques for directly visualizing monoamines, make the somatic exocytosis machinery a more tractable model for understanding the effect of amyloids on all types of vesicular neurotransmission. Indeed, exploring this neglected connection may not just be important, it may be a more fruitful route for understanding AD and PD.
Collapse
Affiliation(s)
- Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Rucha Pandit
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| |
Collapse
|
30
|
Fernández-Fernández D, Dorner-Ciossek C, Kroker KS, Rosenbrock H. Age-related synaptic dysfunction in Tg2576 mice starts as a failure in early long-term potentiation which develops into a full abolishment of late long-term potentiation. J Neurosci Res 2015; 94:266-81. [PMID: 26629777 DOI: 10.1002/jnr.23701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 11/12/2022]
Abstract
Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The present study uses hippocampal slices from 3-, 10-, and 15-month-old wild-type (WT) and Tg2576 mice to evaluate synaptic function in each group, including experiments to investigate basal synaptic transmission, short- and long-term plasticity by inducing paired-pulse facilitation, and both early and late LTP. We show that synaptic function remains intact in hippocampal slices from Tg2576 mice at 3 months of age. However, both early and late LTP decline progressively during aging in these mice. This deterioration of synaptic plasticity starts affecting early LTP, ultimately leading to the abolishment of both forms of LTP in 15-month-old animals. In comparison, WT littermates display normal synaptic parameters during aging. Additional pharmacological investigation into the involvement of NMDA receptors and L-type voltage-gated calcium channels in LTP suggests a distinct mechanism of induction among age groups, demonstrating that both early and late LTP are differentially affected by these channels in Tg2576 mice during aging.
Collapse
Affiliation(s)
- Diego Fernández-Fernández
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Cornelia Dorner-Ciossek
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Katja S Kroker
- Deptartment of Drug Discovery Support, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Holger Rosenbrock
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| |
Collapse
|
31
|
Neuronal Network Oscillations in Neurodegenerative Diseases. Neuromolecular Med 2015; 17:270-84. [PMID: 25920466 DOI: 10.1007/s12017-015-8355-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying "oscillopathy" concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer's disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson's disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker.
Collapse
|
32
|
Lack of synaptic vesicle protein SV2B protects against amyloid-β25–35-induced oxidative stress, cholinergic deficit and cognitive impairment in mice. Behav Brain Res 2014; 271:277-85. [DOI: 10.1016/j.bbr.2014.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
|
33
|
Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, Kukreti R. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease. BMC Genomics 2014; 15:199. [PMID: 24628925 PMCID: PMC4028079 DOI: 10.1186/1471-2164-15-199] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/21/2014] [Indexed: 01/28/2023] Open
Abstract
Background Alzheimer’s disease (AD) is one of the leading genetically complex and heterogeneous disorder that is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis (GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the identification of several candidate genes associated with AD. However, due to lack of consistency within their findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling. Results Our approach employs integration of three different AD datasets- GWL,GWA and GWE to identify overlapping candidate genes ranked using a novel cumulative rank score (SR) based method followed by prioritization using clusters derived from PPI network. SR for each gene is calculated by addition of rank assigned to individual gene based on either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins. Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion, endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two most significant AD risk genes. Conclusions With the assumption that common genetic signals obtained from different methodological platforms might serve as robust AD risk markers than candidates identified using single dimension approach, here we demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from heterogeneous data sources linked to AD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-199) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110 007, India.
| |
Collapse
|
34
|
Morita M, Hamada T, Vestergaard MC, Takagi M. Endo- and exocytic budding transformation of slow-diffusing membrane domains induced by Alzheimer's amyloid beta. Phys Chem Chem Phys 2014; 16:8773-7. [DOI: 10.1039/c4cp00434e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-sized liposomes are a powerful tool for clarifying physicochemical mechanisms that govern molecular interactions.
Collapse
Affiliation(s)
- Masamune Morita
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City, Japan
| | - Tsutomu Hamada
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City, Japan
| | | | - Masahiro Takagi
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City, Japan
| |
Collapse
|
35
|
Gordon SL, Cousin MA. The Sybtraps: control of synaptobrevin traffic by synaptophysin, α-synuclein and AP-180. Traffic 2013; 15:245-54. [PMID: 24279465 PMCID: PMC3992847 DOI: 10.1111/tra.12140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
Synaptobrevin II (sybII) is a key fusogenic molecule on synaptic vesicles (SVs) therefore the active maintenance of both its conformation and location in sufficient numbers on this organelle is critical in both mediating and sustaining neurotransmitter release. Recently three proteins have been identified having key roles in the presentation, trafficking and retrieval of sybII during the fusion and endocytosis of SVs. The nerve terminal protein α-synuclein catalyses sybII entry into SNARE complexes, whereas the monomeric adaptor protein AP-180 is required for sybII retrieval during SV endocytosis. Overarching these events is the tetraspan SV protein synaptophysin, which is a major sybII interaction partner on the SV. This review will evaluate recent studies to propose working models for the control of sybII traffic by synaptophysin and other Sybtraps (sybII trafficking partners) and suggest how dysfunction in sybII traffic may contribute to human disease.
Collapse
Affiliation(s)
- Sarah L Gordon
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Scotland, EH8 9XD, UK
| | | |
Collapse
|
36
|
Wang Y, Zhou TH, Zhi Z, Barakat A, Hlatky L, Querfurth H. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC. Front Cell Neurosci 2013; 7:129. [PMID: 24027495 PMCID: PMC3759796 DOI: 10.3389/fncel.2013.00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/29/2013] [Indexed: 01/09/2023] Open
Abstract
Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1-200 nM vs. 0.3-1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment.
Collapse
Affiliation(s)
- Yun Wang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University Wenzhou, Zhejiang, China ; Steward St. Elizabeth's Medical Center, Tufts Medical School, Tufts University Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol Med 2013; 19:594-603. [PMID: 23871436 DOI: 10.1016/j.molmed.2013.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
The bridging integrator 1 (BIN1) gene, also known as amphiphysin 2, has recently been identified as the most important risk locus for late onset Alzheimer's disease (LOAD), after apolipoprotein E (APOE). Here, we summarize the known functions of BIN1 and discuss the polymorphisms associated with LOAD, as well as their possible physiological effects. Emerging data suggest that BIN1 affects AD risk primarily by modulating tau pathology, but other affected cellular functions are discussed, including endocytosis/trafficking, inflammation, calcium homeostasis, and apoptosis. Epigenetic modifications are important for AD pathogenesis, and we review data that suggests the possible DNA methylation of the BIN1 promoter. Finally, given the potential contributions of BIN1 to AD pathogenesis, targeting BIN1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Meng-Shan Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | | | | |
Collapse
|
38
|
Han HY, Zhang JP, Ji SQ, Liang QM, Kang HC, Tang RH, Zhu SQ, Xue Z. αν and β1 Integrins mediate Aβ-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway. PLoS One 2013; 8:e64839. [PMID: 23755149 PMCID: PMC3670848 DOI: 10.1371/journal.pone.0064839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
αν and β1 integrins mediate Aβ-induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Han
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jin-Ping Zhang
- Department of Neurology, Qianfoshan Hospital, Shan Dong University, Jinan, Shandong Province, China
| | - Su-Qiong Ji
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi-Ming Liang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong-Hua Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sui-Qiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
39
|
Park J, Jang M, Chang S. Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking. Neurobiol Dis 2013; 55:129-39. [PMID: 23523634 DOI: 10.1016/j.nbd.2013.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 01/02/2023] Open
Abstract
Growing evidence supports a role for soluble amyloid-β oligomer intermediates in the synaptic dysfunction associated with Alzheimer's disease (AD), but the molecular mechanisms underlying this effect remain unclear. We found that acute treatment of cultured rat hippocampal neurons with nanomolar concentrations of Aβ oligomers reduced the recycling pool and increased the resting pool of synaptic vesicles. Endocytosis of synaptic vesicles and the regeneration of fusion-competent vesicles were also severely impaired. Furthermore, the release probability of the readily-releasable pool (RRP) was increased, and recovery of the RRP was delayed. All these effects were prevented by antibody against Aβ. Moreover reduction of the pool size was prevented by inhibiting calpain or CDK5, while the defects in endocytosis were averted by overexpressing phosphatidylinositol-4-phosphate-5-kinase type I-γ, indicating that these two downstream pathways are involved in Aβ oligomers-induced presynaptic dysfunction.
Collapse
Affiliation(s)
- Joohyun Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
40
|
Holton P, Ryten M, Nalls M, Trabzuni D, Weale ME, Hernandez D, Crehan H, Gibbs JR, Mayeux R, Haines JL, Farrer LA, Pericak-Vance MA, Schellenberg GD, Ramirez-Restrepo M, Engel A, Myers AJ, Corneveaux JJ, Huentelman MJ, Dillman A, Cookson MR, Reiman EM, Singleton A, Hardy J, Guerreiro R. Initial assessment of the pathogenic mechanisms of the recently identified Alzheimer risk Loci. Ann Hum Genet 2013; 77:85-105. [PMID: 23360175 PMCID: PMC3578142 DOI: 10.1111/ahg.12000] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 12/27/2022]
Abstract
Recent genome wide association studies have identified CLU, CR1, ABCA7 BIN1, PICALM and MS4A6A/MS4A6E in addition to the long established APOE, as loci for Alzheimer's disease. We have systematically examined each of these loci to assess whether common coding variability contributes to the risk of disease. We have also assessed the regional expression of all the genes in the brain and whether there is evidence of an eQTL explaining the risk. In agreement with other studies we find that coding variability may explain the ABCA7 association, but common coding variability does not explain any of the other loci. We were not able to show that any of the loci had eQTLs within the power of this study. Furthermore the regional expression of each of the loci did not match the pattern of brain regional distribution in Alzheimer pathology. Although these results are mainly negative, they allow us to start defining more realistic alternative approaches to determine the role of all the genetic loci involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick Holton
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Michael Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Michael E. Weale
- Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, UK
| | - Dena Hernandez
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Helen Crehan
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J. Raphael Gibbs
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Richard Mayeux
- Gertrude H. Sergievsky Center and Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY
| | - Jonathan L. Haines
- Department of Molecular Physiology and Biophysics and Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Biostatistics, Ophthalmology, Epidemiology, and Neurology, Boston University Schools of Medicine and Public Health, Boston, MA
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Manuel Ramirez-Restrepo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL
- Johnnie B. Byrd Sr. Alzheimer's Center and Research Institute, Tampa, FL
| | - Anzhelika Engel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL
- Johnnie B. Byrd Sr. Alzheimer's Center and Research Institute, Tampa, FL
| | - Amanda J. Myers
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL
- Johnnie B. Byrd Sr. Alzheimer's Center and Research Institute, Tampa, FL
| | - Jason J. Corneveaux
- Neurogenomics Division, Translational Genomics Research Institute and Arizona Alzheimer's Consortium, Phoenix, AZ
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute and Arizona Alzheimer's Consortium, Phoenix, AZ
| | - Allissa Dillman
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Eric M. Reiman
- Neurogenomics Division, Translational Genomics Research Institute and Arizona Alzheimer's Consortium, Phoenix, AZ
- Banner Alzheimer's Institute and Department of Psychiatry, University of Arizona, Phoenix, AZ
- Department of Psychiatry, University of Arizona, Tucson, AZ
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
41
|
Hermann D, Mezler M, Müller MK, Wicke K, Gross G, Draguhn A, Bruehl C, Nimmrich V. Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers. Eur J Pharmacol 2013; 702:44-55. [PMID: 23376566 DOI: 10.1016/j.ejphar.2013.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- David Hermann
- Neuroscience Research, GPRD, Abbott, 67061 Ludwigshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferreira A. Calpain dysregulation in Alzheimer's disease. ISRN BIOCHEMISTRY 2012; 2012:728571. [PMID: 25969760 PMCID: PMC4393001 DOI: 10.5402/2012/728571] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques and neurofibrillary tangles in the neocortex and hippocampus of AD patients. In addition, a marked decrease in synaptic contacts has been detected in these affected brain areas. Due to its prevalence in the aging population, this disease has been the focus of numerous studies. The data obtained from those studies suggest that the mechanisms leading to the formation of the hallmark lesions of AD might be linked. One of such mechanisms seems to be the dysregulation of calcium homeostasis that results in the abnormal activation of calpains. Calpains are a family of Ca(2+)-dependent cysteine proteases that play a key role in multiple cell functions including cell development, differentiation and proliferation, axonal guidance, growth cone motility, and cell death, among others. In this paper, we briefly reviewed data on the structure of these proteases and their regulation under normal conditions. We also summarized data underscoring the participation of calpains in the neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 8-140, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Mezler M, Barghorn S, Schoemaker H, Gross G, Nimmrich V. A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. Br J Pharmacol 2012; 165:1572-83. [PMID: 21883149 DOI: 10.1111/j.1476-5381.2011.01646.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE β-amyloid (Aβ) oligomers have been implicated in the early pathophysiology of Alzheimer's disease (AD). While the precise nature of the molecular target has not been fully revealed, a number of studies have indicated that Aβ oligomers modulate neuron-specific ion channels. We recently provided evidence that Aβ oligomers suppress isolated P/Q-type calcium currents in cultured nerve cells. Using a heterologous expression system, we aimed to prove a direct effect on the membrane channel mediating such current. EXPERIMENTAL APPROACH The effects of a synthetically generated Aβ oligomer, Aβ globulomer, were investigated on P/Q-type currents recorded from Xenopus laevis oocytes expressing the full P/Q-type calcium channel or the pore-forming subunit only. We also examined the effects of Aβ globulomer on recombinant NMDA receptor currents. Finally, we compared the modulation by Aβ globulomer with that induced by a synthetic monomeric Aβ. KEY RESULTS Aβ globulomer directly and dose-dependently modulated P/Q-type calcium channels. A leftward shift of the current-voltage curve indicated that the threshold for channel opening was reduced. The effect of Aβ globulomer was also present when only the α1A subunit of the normally tripartite channel was expressed. In contrast, the monomeric Aβ had no effect on P/Q current. Also globulomer Aβ had no effect on glutamate-induced NMDA currents. CONCLUSIONS AND IMPLICATIONS The α1A subunit of the P/Q-type calcium channel is directly modulated by oligomeric Aβ. Threshold reduction as well as an increase in current at synaptic terminals may facilitate vesicle release and could trigger excitotoxic events in the brains of patients with AD.
Collapse
Affiliation(s)
- M Mezler
- Neuroscience Research, GPRD, Abbott, Ludwigshafen, Germany.
| | | | | | | | | |
Collapse
|
44
|
Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P. Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One 2012; 7:e43201. [PMID: 22905234 PMCID: PMC3419646 DOI: 10.1371/journal.pone.0043201] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/18/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD) are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42). However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we provide evidence of a mechanism by which Aβ42 affects synaptic transmission regulating neurotransmitter release. METHODOLOGY/FINDINGS We first showed that application of 50 nM Aβ42 in cultured neurones is followed by its internalisation and translocation to synaptic contacts. Interestingly, our results demonstrate that with time, Aβ42 can be detected at the presynaptic terminals where it interacts with Synaptophysin. Furthermore, data from dissociated hippocampal neurons as well as biochemical data provide evidence that Aβ42 disrupts the complex formed between Synaptophysin and VAMP2 increasing the amount of primed vesicles and exocytosis. Finally, electrophysiology recordings in brain slices confirmed that Aβ42 affects baseline transmission. CONCLUSIONS/SIGNIFICANCE Our observations provide a necessary and timely insight into cellular mechanisms that underlie the initial pathological events that lead to synaptic dysfunction in Alzheimer's disease. Our results demonstrate a new mechanism by which Aβ42 affects synaptic activity.
Collapse
Affiliation(s)
- Claire L. Russell
- School of Biological Sciences, Royal Holloway University London, Surrey, United Kingdom
| | - Sophia Semerdjieva
- School of Biological Sciences, Royal Holloway University London, Surrey, United Kingdom
| | - Ruth M. Empson
- School of Biological Sciences, Royal Holloway University London, Surrey, United Kingdom
- Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Brian M. Austen
- Neurodegeneration Unit, Basic Medical Sciences, St George’s, University of London, Cranmer Terrace, London, United Kingdom
| | - Philip W. Beesley
- School of Biological Sciences, Royal Holloway University London, Surrey, United Kingdom
| | - Pavlos Alifragis
- School of Biological Sciences, Royal Holloway University London, Surrey, United Kingdom
| |
Collapse
|
45
|
Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity. Neural Plast 2012; 2012:272374. [PMID: 22792491 PMCID: PMC3390164 DOI: 10.1155/2012/272374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/22/2012] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.
Collapse
|
46
|
Andreyeva A, Nieweg K, Horstmann K, Klapper S, Müller-Schiffmann A, Korth C, Gottmann K. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. Brain 2012; 135:2140-54. [DOI: 10.1093/brain/aws120] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
47
|
Nicholson AM, Wold LA, Walsh DM, Ferreira A. β-Amyloid carrying the Dutch mutation has diverse effects on calpain-mediated toxicity in hippocampal neurons. Mol Med 2012; 18:178-85. [PMID: 22160219 DOI: 10.2119/molmed.2011.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/28/2011] [Indexed: 11/06/2022] Open
Abstract
Hereditary cerebral hemorrhage with amyloidosis-Dutch type is a disorder associated with a missense mutation (E693Q) in the β-amyloid (Aβ)-coding region of the amyloid precursor protein (APP). This familial disease is characterized by cognitive deficits secondary to intracerebral hemorrhage and, in some cases, progressive Alzheimer's disease (AD)-like dementia. Although this mutation was the first ever reported in the human APP gene, little is known about the molecular mechanisms underlying the direct toxic effects of this mutated Aβ on central neurons. In the present study, we assessed the role of calpain-mediated toxicity in such effects using an AD primary culture model system. Our results showed that Dutch mutant Aβ (E22Q) induced calpain-mediated cleavage of dynamin 1 and a significant decrease in synaptic contacts in mature hippocampal cultures. These synaptic deficits were similar to those induced by wild-type (WT) Aβ. In contrast, calpain-mediated tau cleavage leading to the generation of a 17-kDa neurotoxic fragment, as well as neuronal death, were significantly reduced in E22Q Aβ-treated neurons when compared with WT Aβ-treated ones. This complex regulation of the calpain-mediated toxicity pathway by E22Q Aβ could have some bearing in the pathobiology of this familial AD form.
Collapse
Affiliation(s)
- Alexandra M Nicholson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | | | | |
Collapse
|
48
|
Sen A, Alkon DL, Nelson TJ. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J Biol Chem 2012; 287:15947-58. [PMID: 22427674 DOI: 10.1074/jbc.m111.312710] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic loss is the earliest pathological change in Alzheimer disease (AD) and is the pathological change most directly correlated with the degree of dementia. ApoE4 is the major genetic risk factor for the age-dependent form of AD, which accounts for 95% of cases. Here we show that in synaptic networks formed from primary hippocampal neurons in culture, apoE3, but not apoE4, prevents the loss of synaptic networks produced by amyloid β oligomers (amylospheroids). Specific activators of PKCε, such as 8-(2-(2-pentyl-cyclopropylmethyl)-cyclopropyl)-octanoic acid methyl ester and bryostatin 1, protected against synaptic loss by amylospheroids, whereas PKCε inhibitors blocked this synaptic protection and also blocked the protection by apoE3. Blocking LRP1, an apoE receptor on the neuronal membrane, also blocked the protection by apoE. ApoE3, but not apoE4, induced the synthesis of PKCε mRNA and expression of the PKCε protein. Amyloid β specifically blocked the expression of PKCε but had no effect on other isoforms. These results suggest that protection against synaptic loss by apoE is mediated by a novel intracellular PKCε pathway. This apoE pathway may account for much of the protective effect of apoE and reduced risk for the age-dependent form of AD. This finding supports the potential efficacy of newly developed therapeutics for AD.
Collapse
Affiliation(s)
- Abhik Sen
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505, USA
| | | | | |
Collapse
|
49
|
Sabuncu MR, Buckner RL, Smoller JW, Lee PH, Fischl B, Sperling RA. The association between a polygenic Alzheimer score and cortical thickness in clinically normal subjects. ACTA ACUST UNITED AC 2011; 22:2653-61. [PMID: 22169231 DOI: 10.1093/cercor/bhr348] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Late-onset Alzheimer's disease (AD) is 50-70% heritable with complex genetic underpinnings. In addition to Apoliprotein E (APOE) ε4, the major genetic risk factor, recent genome-wide association studies (GWAS) have identified a growing list of sequence variations associated with the disease. Building on a prior large-scale AD GWAS, we used a recently developed analytic method to compute a polygenic score that involves up to 26 independent common sequence variants and is associated with AD dementia, above and beyond APOE. We then examined the associations between the polygenic score and the magnetic resonance imaging-derived thickness measurements across AD-vulnerable cortex in clinically normal (CN) human subjects (N = 104). AD-specific cortical thickness was correlated with the polygenic risk score, even after controlling for APOE genotype and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ(1-42)). Furthermore, the association remained significant in CN subjects with levels of CSF Aβ(1-)(42) in the normal range and in APOE ε3 homozygotes. The observation that genetic risk variants are associated with thickness across AD-vulnerable regions of interest in CN older individuals, suggests that the combination of polygenic risk profile, neuroimaging, and CSF biomarkers may hold synergistic potential to aid in the prediction of future cognitive decline.
Collapse
Affiliation(s)
- Mert R Sabuncu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bucciantini M, Nosi D, Forzan M, Russo E, Calamai M, Pieri L, Formigli L, Quercioli F, Soria S, Pavone F, Savistchenko J, Melki R, Stefani> M. Toxic effects of amyloid fibrils on cell membranes: the importance of ganglioside GM1. FASEB J 2011; 26:818-31. [DOI: 10.1096/fj.11-189381] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Bucciantini
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
- Research Centre on the Molecular Basis of Neurodegeneration, and Forensic MedicineUniversity of Florence Florence Italy
| | - Daniele Nosi
- Department of Anatomy, Histology, and Forensic MedicineUniversity of Florence Florence Italy
| | - Mario Forzan
- Department of Animal Pathology, Food Prophylaxis, and HygieneUniversity of Pisa Pisa Italy
| | - Edda Russo
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
| | - Martino Calamai
- European Laboratory for Nonlinear Spectroscopy (LENS)University of Florence Florence Italy
| | - Laura Pieri
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Lucia Formigli
- Department of Anatomy, Histology, and Forensic MedicineUniversity of Florence Florence Italy
| | - Franco Quercioli
- National Institute of OpticsConsiglio Nazionale delle Ricerche Florence Research Area Florence Italy
| | - Silvia Soria
- Nello Carrara Institute of Applied PhysicsConsiglio Nazionale delle Ricerche Florence Research Area Florence Italy
| | - Francesco Pavone
- European Laboratory for Nonlinear Spectroscopy (LENS)University of Florence Florence Italy
| | - Jimmy Savistchenko
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Ronald Melki
- Department of Animal Pathology, Food Prophylaxis, and HygieneUniversity of Pisa Pisa Italy
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Massimo Stefani>
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
- Research Centre on the Molecular Basis of Neurodegeneration, and Forensic MedicineUniversity of Florence Florence Italy
| |
Collapse
|