1
|
Gomes BAQ, dos Santos SM, Gato LDS, Espíndola KMM, da Silva RKM, Davis K, Navegantes-Lima KC, Burbano RMR, Romao PRT, Coleman MD, Monteiro MC. Alpha-Lipoic Acid Reduces Neuroinflammation and Oxidative Stress Induced by Dapsone in an Animal Model. Nutrients 2025; 17:791. [PMID: 40077661 PMCID: PMC11901491 DOI: 10.3390/nu17050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Chronic treatment with dapsone (DDS) has been linked to adverse reactions involving all organ systems, such as dapsone hypersensitivity syndrome, methemoglobinemia and hemolytic anemia, besides neuroinflammation and neurodegeneration due to iron accumulation and oxidative stress. These effects probably occur due to the presence of its toxic metabolite DDS-NOH, which can generate reactive oxygen species (ROS) and iron overload. In this sense, antioxidant compounds with chelating properties, such as alpha-lipoic acid (ALA), may be an interesting adjuvant therapy strategy in treating or preventing these effects. Thus, the aim of this study was to evaluate the effects of ALA on oxidative and neuroinflammatory changes caused by DDS treatment in the prefrontal cortex and hippocampus of mice. Materials and Methods:Mus musculus male mice that were pre-treated with DDS (40 mg/kg) and post-treated with ALA (25 mg/kg) underwent analyses for oxidative stress, antioxidant capacity, cytokine expression and microglial/astrocytic activity. Results: DDS did not activate macrophages/microglia or astrocytes in the prefrontal cortex but induced their activation in the hippocampus. ALA stimulated a protective microglial profile and reduced astrocyte reactivity, especially in the hippocampus. DDS increased the pro-inflammatory cytokine IL-1β and reduced brain-derived neurotrophic factor (BDNF), effects reversed by ALA. DDS also reduced antioxidant capacity (TEAC, GSH, SOD, CAT) and increased oxidative damage (lipid peroxidation, iron accumulation), while ALA restored antioxidant levels and reduced oxidative stress. Conclusions: ALA was able to reduce the effects of DDS, such as reducing microglial and astrocytic activation, as well as to decrease the levels of pro-inflammatory cytokines and increase BDNF, in addition to increasing antioxidant capacity and reducing oxidative damage caused by iron accumulation. Therefore, ALA is considered a useful and promising therapeutic alternative for the treatment of diseases related to oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Bruno Alexandre Quadros Gomes
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Savio Monteiro dos Santos
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Lucas da Silva Gato
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Rana Karen Mesquita da Silva
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Kelly Davis
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Kely Campos Navegantes-Lima
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | | | - Pedro Roosevelt Torres Romao
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil;
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| |
Collapse
|
2
|
Chen SM, Wang MH, Chang KC, Fang CH, Lin YW, Tseng HC. Vitexin Mitigates Haloperidol-Induced Orofacial Dyskinesia in Rats through Activation of the Nrf2 Pathway. Int J Mol Sci 2024; 25:10206. [PMID: 39337691 PMCID: PMC11431968 DOI: 10.3390/ijms251810206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Vitexin (VTX), a C-glycosylated flavone found in various medicinal herbs, is known for its antioxidant, anti-inflammatory, and neuroprotective properties. This study investigated the protective effects of VTX against orofacial dyskinesia (OD) in rats, induced by haloperidol (HPD), along with the neuroprotective mechanisms underlying these effects. OD was induced by administering HPD (1 mg/kg i.p.) to rats for 21 days, which led to an increase in the frequency of vacuous chewing movements (VCMs) and tongue protrusion (TP). VTX (10 and 30 mg/kg) was given intraperitoneally 60 min after each HPD injection during the same period. On the 21st day, following assessments of OD, the rats were sacrificed, and nitrosative and oxidative stress, antioxidant capacity, mitochondrial function, neuroinflammation, and apoptosis markers in the striatum were measured. HPD effectively induced OD, while VTX significantly reduced HPD-induced OD, decreased oxidative stress, enhanced antioxidant capacity, prevented mitochondrial dysfunction, and reduced neuroinflammatory and apoptotic markers in the striatum, and the protective effects of VTX on both behavioral and biochemical aspects of HPD-induced OD were significantly reduced when trigonelline (TGN), an inhibitor of the nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated pathway, was administered. These findings suggest that VTX provides neuroprotection against HPD-induced OD, potentially through the Nrf2 pathway, indicating its potential as a therapeutic candidate for the prevention or treatment of tardive dyskinesia (TD) in clinical settings. However, further detailed research is required to confirm these preclinical findings and fully elucidate VTX's therapeutic potential in human studies.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan;
| | - Kuo-Chi Chang
- Institute of Taiwan Instrument Research, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chih-Hsiang Fang
- Department of Orthopedics, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan;
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
3
|
Kirss S, Reinapu A, Kabin E, Smirnova J, Tõugu V, Palumaa P. α-Lipoic acid: a potential regulator of copper metabolism in Alzheimer's disease. Front Mol Biosci 2024; 11:1451536. [PMID: 39290994 PMCID: PMC11405343 DOI: 10.3389/fmolb.2024.1451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by classic hallmarks such as amyloid plaques and neurofibrillary tangles, however, intensive research has broadened its scope to explore additional underlying mechanisms. Notably, disruptions in metal homeostasis, particularly involving copper, have gained significant attention. In AD pathology, an imbalance is evident: there is an excess of extracellular copper alongside a deficiency in intracellular copper in brain tissue. Our previous work demonstrated that α-lipoic acid (LA) can effectively shift copper from the extracellular space to the intracellular environment in a neuronal cell model. However, the precise mechanism of action and role of LA in copper metabolism remained elusive. In this study, we compared the cellular effects of LA with those of different synthetic copper-binding ligands: diethyldithiocarbamate (DETC), clioquinol (CQ), D-penicillamine (D-PA) and elesclomol (ES). Using differentiated SH-SY5Y cell culture as a neuronal model, we found that, unlike other synthetic compounds, natural ligand LA is not toxic in the presence of extracellular copper, even at high doses. LA gradually increased intracellular copper levels over 24 h. In contrast, DETC, CQ, and ES acted as fast copper ionophores, potentially explaining their higher toxicity compared to LA. D-PA did not facilitate copper uptake into cells. We demonstrated that a slow increase of LA inside the cells is enhanced in the presence of copper. Furthermore, the ability of LA to modulate the equilibrium of extra- and intracellular copper was evident when we added copper isotope 65Cu. The ratio of copper isotopes changed rapidly, reflecting the impact of LA on the equilibrium of copper distribution without affecting the copper transport network. Our results provide compelling evidence that α-lipoic acid holds promise as a non-toxic agent capable of normalizing copper metabolism in Alzheimer's disease.
Collapse
Affiliation(s)
- Sigrid Kirss
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anette Reinapu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ekaterina Kabin
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Julia Smirnova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
4
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Alpha-pine self-emulsifying nano formulation attenuates rotenone and trichloroethylene-induced dopaminergic loss. Int J Neurosci 2024:1-18. [PMID: 38598315 DOI: 10.1080/00207454.2024.2341916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
AIM The current investigation's goals are to pharmacologically evaluate the neurotherapeutic role of the bioactive compound Alpha Pinene (ALP)-loaded Self-emulsifying nano-formulation (SENF) in neurotoxin (Rotenone and the Industrial Solvent Trichloroethylene)- induced dopaminergic loss. It is believed that these models simulate important aspects of the molecular pathogenesis of Parkinson's disease. MATERIAL AND METHODS The ALP-nano-formulation's anti-Parkinson's activity was compared to ALP suspension in Wistar rats after rotenone and trichloro ethylene-induced dopaminergic loss. Neurobehavioral and motor performances were measured on the 14th, 21st, and 28th day in the rotenone model. However, in the trichloroethylene model, it was measured from the 4th to the 8th week. RESULTS Significant neurobehavioral improvement has been found in ALP-SENF treated animals then untreated and animals treated with plain ALP suspension. Furthermore, biochemical tests reveal marked expression of catalase, glutathione, and superoxide dismutase, which significantly combat the (Oxidative stress) OS-induced neurodegeneration. CONCLUSION The antioxidant effect of ALP-SENF likely includes free radicals neutralization and the activation of enzymes associated with antioxidant activity, leading to the enhancement of neurobehavioral abnormalities caused by rotenone and trichloroethylene.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Pratim Kumar Choudhury
- Department of Pharmacy, Pacific Academy of Higher Education and Research University, Rajasthan, India
| | - Suresh Kumar Dev
- Department of Pharmacy, Pacific Academy of Higher Education and Research University, Rajasthan, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
5
|
Srivastava R, Chauhan K, Sharma R. Evaluating Motor Dysfunction and Oxidative Stress Induced by Trichloroethylene in Wistar Rats. Methods Mol Biol 2024; 2761:499-510. [PMID: 38427258 DOI: 10.1007/978-1-0716-3662-6_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Trichloroethylene, a chlorinated solvent widely used as a degreasing agent, is a common environmental contaminant. Emerging evidence suggests that chronic exposure to trichloroethylene (TCE) contributes to the development of Parkinson's disease (PD). TCE induced LRRK2 kinase activity in the rat brain and produced a significant dopaminergic lesion in the nigrostriatal tract with elevated oxidative stress. Here we have utilized TCE-induced PD model for the assessment of test drug. Oral gavage administration of TCE at a dose of 1000 mg/kg/day for 6 weeks was utilized to induced PD. Muscle grip strength was estimated by rotarod and grid performance test. Motor activity by actophotometer and locomotor stability were assessed by forelimb locomotor scale (FLS) and forelimb step alternation test (FSAT). However, the postural stability was assessed by postural stability test (PST). Biochemical estimation consists of determination of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), GSH level (reduced glutathione), and nitrite concentration.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Kanupriya Chauhan
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Tseng HC, Wang MH, Fang CH, Lin YW, Soung HS. Involvement of Antioxidant and Prevention of Mitochondrial Dysfunction, Anti-Neuroinflammatory Effect and Anti-Apoptotic Effect: Betaine Ameliorates Haloperidol-Induced Orofacial Dyskinesia in Rats. Brain Sci 2023; 13:1064. [PMID: 37508996 PMCID: PMC10377434 DOI: 10.3390/brainsci13071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
With its pathophysiological characteristics strongly similar to patients with tardive dyskinesia (TD), haloperidol (HP)-induced neurotoxicity and orofacial dyskinesia (OD) in animal models have long been used to study human TD. This study aimed to explore the potential protective effects of betaine (BT), a vital biochemical compound present in plants, microorganisms, animals, and various dietary sources. The study focused on investigating the impact of BT on haloperidol (HP)-induced orofacial dyskinesia (OD) in rats, as well as the underlying neuroprotective mechanisms. To induce the development of OD, which is characterized by increased vacuous chewing movement (VCM) and tongue protrusion (TP), rats were administered HP (1 mg/kg i.p.) for 21 consecutive days. BT was administered intraperitoneally (i.p.) at doses of 30 and 100 mg/kg, 60 min later, for 21 successive days. On the 21st day, after evaluating OD behavior, the rats were sacrificed, and various measurements were taken to assess the nitrosative and oxidative status, antioxidant capacity, mitochondrial function, neuroinflammation, and apoptotic markers in the striatum. The results demonstrated that (1) HP induced OD development, and (2) BT was found to prevent most of the HP-induced OD; decrease oxidative stress levels; increase anti-oxidation power; prevent mitochondrial dysfunction; and reduce the levels of neuroinflammatory and apoptotic markers in the striatum. Our results demonstrate that the neuroprotective effects of BT against HP-induced OD are credited to its antioxidant prevention of mitochondrial dysfunction, anti-neuroinflammatory effects, and anti-apoptotic effects, suggesting that BT may be a novel therapeutic candidate in delaying or treating human TD in clinical settings. However, further studies will be warranted to extrapolate preclinical findings into clinical studies for a better understanding of the role of BT.
Collapse
Affiliation(s)
- Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan
| | - Chih-Hsiang Fang
- China Medical University Hospital, Taichung 404332, Taiwan
- Trauma and Emergency Center, China Medical University Hospital, Taichung 404018, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Branch of Taipei Veteran General Hospital, Yilan 26604, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
7
|
Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metab Brain Dis 2023; 38:1513-1529. [PMID: 36847968 PMCID: PMC10185619 DOI: 10.1007/s11011-023-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.
Collapse
Affiliation(s)
- Engy K Tharwat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Amena S El-Feky
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Sakraan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hossam A Ismail
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Dokki, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Sadeghi Nejad Z, Kazemian S, Galedari A, Maneshian M, Esmaeilpour K, Kalantaripour TP, Asadi-Shekaari M. Naringenin mitigates reserpine-induced anxiety-like behavior, neurodegeneration, and oxidative stress in male rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023; 53:1-7. [PMID: 37359811 PMCID: PMC10193352 DOI: 10.1007/s11055-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Reserpine (Res) induces anxiety-like behaviors, orofacial dyskinesia, and neurodegeneration in animals, the pathophysiology of which has been related to oxidative stress. The purpose of this study was to investigate whether naringenin (NG) could prevent reserpine-induced anxiety-like behaviors, orofacial dyskinesia, and neurodegeneration in male rats. Twenty-eight male rats were distributed into different groups as follows: Control rats; vehicle rats, which received the vehicles (normal saline, orally; acetic acid, intraperitoneally); Res rats (1 mg/kg/day) every other day for 3 days; and Res + NG rats, which received NG (50 mg/kg, orally, pre-treatment for 7 days), followed by Res. Administration of Res significantly increased chewing frequency compared with the control group (P < 0.01) and NG reversed the effect of Res on this factor (P < 0.05). Res induced an anxiety-like behavior in rats in the plus maze, and pre-treatment with NG improved this behavior. In addition, Res significantly increased the level of oxidative stress markers and degenerated neurons in the striatum; NG was able to ameliorate these damages. The results of this study demonstrated that Res caused behavioral disorders and increased the levels of oxidative stress in male rats; the use of NG was effective in treating these disorders. Therefore, NG should be considered as a preventive agent for reserpine-induced brain damage in male rats.
Collapse
Affiliation(s)
- Zahra Sadeghi Nejad
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Kazemian
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Galedari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Ebn Sina Avenue, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Ebn Sina Avenue, Kerman, Iran
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| | - Taj Pari Kalantaripour
- Department of Basic Sciences, School of Medicine, Branch of Kerman, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Ebn Sina Avenue, Kerman, Iran
| |
Collapse
|
9
|
Marino Y, Arangia A, Cordaro M, Siracusa R, D’Amico R, Impellizzeri D, Cupi R, Peritore AF, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Analysis of the Influence of IL-6 and the Activation of the Jak/Stat3 Pathway in Fibromyalgia. Biomedicines 2023; 11:biomedicines11030792. [PMID: 36979771 PMCID: PMC10045851 DOI: 10.3390/biomedicines11030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Fibromyalgia is a medical condition that affects a small percentage of the population, with no known effective treatment. There is evidence to suggest that inflammation is a key factor in the nerve sensitization that characterizes the disorder. Therefore, this paper concentrates on the role of IL-6 in fibromyalgia and the related pain-like symptoms. Methods: This work aimed to evaluate Sprague–Dawley rats, which were injected for three consecutive days with 1 mg/kg of reserpine; IL-6-R Ab was intraperitoneally injected at 1.5 mg/kg seven days after the first reserpine injection. Behavioral analyses were conducted at the beginning of the experiment and at seven and twenty-one days from the first reserpine injection. At this timepoint, the animals were sacrificed, and tissues were collected for molecular and histological analysis. Results: Our data showed the analgesic effect of IL-6-R-Ab administration on mechanical allodynia and thermal hyperalgesia. Additionally, the reserpine + IL-6-R-Ab group showed a reduced expression of the pain-related mediators cFOS and NFG and reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines (Cxcl5, Cxcl10 and Cx3cl1). From the molecular point of view, the IL-6-R-Ab administration reduced the gp130 phosphorylation and the activation of the Jak/STAT3 pathway. Additionally, the IL-6-R Ab reduced the activation of neuroinflammatory cells. Conclusions: Our study showed that IL-6 plays a crucial role in fibromyalgia by triggering the Jak/STAT3 pathway, leading to an increase in chemokine levels and activating glial cells.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Cupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
10
|
Basile GA, Iannuzzo F, Xerra F, Genovese G, Pandolfo G, Cedro C, Muscatello MRA, Bruno A. Cognitive and Mood Effect of Alpha-Lipoic Acid Supplementation in a Nonclinical Elder Sample: An Open-Label Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2358. [PMID: 36767724 PMCID: PMC9916195 DOI: 10.3390/ijerph20032358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Memory disorders are common among elder people, and nonclinical cognitive decline is commonly experienced with age. Preclinical investigations have explored the possible role of alpha-lipoic acid (ALA), a known antioxidant compound abundant in vegetables and animal tissues, in reducing oxidative stress in the aging brain and preventing cognitive decline. However, clinical evidence is limited, and the few existing results are contrasting. In addition, while most of the existing trials have been focused on the effects of ALA administration in Alzheimer's disease (AD) or other types of dementia, studies evaluating its effects on nonclinical elder population are still missing. METHODS In the present open-label, pilot study, fifteen elder patients (mean age: 84.5 ± 5.77) received ALA at a daily dose of 600 mg/day for 12 weeks. General cognitive function, executive function, and mood symptom assessment were carried out at baseline and at the endpoint. RESULTS Overall, ALA administration was generally well-tolerated (only one dropout due to gastrointestinal side effects). However, no statistically significant effects either on cognitive function, executive function, or mood were found. CONCLUSIONS Despite several limitations, our study found no evidence of positive effects on cognition and mood after ALA administration in elder people without the diagnosis of AD or cognitive impairment. Further clinical trials are needed to better investigate ALA effectiveness on cognition and mood in elder subjects.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Fiammetta Iannuzzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Francesco Xerra
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Giovanni Genovese
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Gianluca Pandolfo
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Clemente Cedro
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| |
Collapse
|
11
|
Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res 2022; 36:2300-2323. [PMID: 35234312 DOI: 10.1002/ptr.7406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid β-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.
Collapse
Affiliation(s)
- Nahid Najafi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Staykov H, Lazarova M, Hassanova Y, Stefanova M, Tancheva L, Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci 2022; 72:1018-1025. [PMID: 35174445 DOI: 10.1007/s12031-022-01979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.
Collapse
Affiliation(s)
- Hristian Staykov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria.
| | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Rumen Nikolov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| |
Collapse
|
13
|
Samad N, Manzoor N, Muneer Z, Bhatti SA, Imran I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab Brain Dis 2021; 36:2535-2552. [PMID: 34309746 DOI: 10.1007/s11011-021-00789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Thymoquinone (Tq), an active compound of Nigella sativa, has been known for its anti-inflammatory, antioxidant, and neuroprotective characteristics. The present study is aimed to evaluate the effect of Tq on reserpine (Rsp)-induced behavioral (anxiety and/or depression) and, memory deficit; hippocampal inflammatory markers, oxidative markers, antioxidant enzymes, acetylcholinesterase (AChE) activity and histopathology in male mice. Animals were injected with Rsp at a dose of 2 mg/ml/kg and doses of Tq (10 and 20 mg/ml/kg) for 28 days. After the treatment period, behavioral tests [Elevated plus maze (Epm); Light dark box test (Lda); Morris water maze (Mwm); Forced swim test (Fst); Tail suspension test (Tst)] were conducted. After analysis of behaviors, mice were decapitated and brain samples were collected, the hippocampus was removed from the whole-brain sample for biochemical analysis and histology. Administration of Tq at both doses prevent adverse effects of Rsp and increased time spent in open arm and lightbox in Lda and Epm respectively, decreased immobility period in Fst and Tst, decreased latency escape in Mwm, reduced lipid peroxidation (lpo) and inflammatory cytokines, increased defensive enzymes, reduced acetylcholinesterase (AChE) activity and corrected histological lines. It is concluded that Rsp-instigated behavioral and memory deficits were prevented by Tq possibly via its strong antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Muneer
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
14
|
Silva-Martins S, Beserra-Filho JIA, Maria-Macêdo A, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, Silva RH, Dos Santos JR, Gandhi SR, Quintans-Júnior LJ, Ribeiro AM. Myrtenol complexed with β-cyclodextrin ameliorates behavioural deficits and reduces oxidative stress in the reserpine-induced animal model of Parkinsonism. Clin Exp Pharmacol Physiol 2021; 48:1488-1499. [PMID: 34351001 DOI: 10.1111/1440-1681.13563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Current pharmacological approaches to treat Parkinson's disease have low long-term efficacy and important adverse side effects. The development of new pharmacological therapies has focused on novel plant-derived phytochemicals. The alcoholic monoterpene myrtenol has been isolated from several plant species, and has anxiolytic, analgesic, anti-inflammatory and antioxidant actions. Our study evaluated the neuroprotective potential of myrtenol complexed with β-cyclodextrin (MYR) on a progressive parkinsonism model induced by reserpine (RES) in mice. The complexation with cyclodextrins enhances the pharmacological action of monoterpenes. Male Swiss mice were treated daily with MYR (5 mg/kg, p.o.) and with RES (0.1 mg/kg, s.c.) every other day during 28 days. Behavioural evaluations were conducted across treatment. At the end of the treatment, immunohistochemistry for tyrosine hydroxylase (TH) and oxidative stress parameters were evaluated. Chronic MYR-treatment protected against olfactory sensibility loss, restored short-term memory and decreased RES-induced motor impairments. Moreover, this treatment prevented dopaminergic depletion and reduced the oxidative status index in the dorsal striatum. Therefore, MYR ameliorated motor and non-motor impairments in the progressive animal model of parkinsonism, possibly by an antioxidant action. Additional research is needed to investigate the mechanisms involved in this neuroprotective effect.
Collapse
Affiliation(s)
| | | | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | - Regina Helena Silva
- Departament of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
16
|
Schossler Garcia C, Garcia PR, da Silva Espíndola CN, Nunes GD, Jardim NS, Müller SG, Bortolatto CF, Brüning CA. Effect of m-Trifluoromethyl-diphenyl diselenide on the Pain-Depression Dyad Induced by Reserpine: Insights on Oxidative Stress, Apoptotic, and Glucocorticoid Receptor Modulation. Mol Neurobiol 2021; 58:5078-5089. [PMID: 34245440 DOI: 10.1007/s12035-021-02483-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Chronic pain and depression often coexist sharing common pathological mechanisms, and available analgesics and antidepressants have demonstrated limited clinical efficacy. Evidence has demonstrated that neuronal oxidative stress, apoptosis, and also glucocorticoid receptor dysregulation facilitate the occurrence and development of both chronic pain and depression. This study evaluated the effect of the organoselenium compound m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] in the pain-depression comorbidity induced by reserpine. Mice were treated with reserpine 0.5 mg/kg for 3 days (intraperitoneal, once a day), and in the next 2 days, they were treated with (m-CF3-PhSe)2 10 mg/kg (intragastric, once a day). Thirty minutes after the last administration of (m-CF3-PhSe)2, mice were subjected to the behavioral testing. (m-CF3-PhSe)2 treatment reverted the reserpine-increased thermal hyperalgesia and depressive-like behavior observed in the hot-plate test and forced swimming test, respectively. Reserpine provoked a decrease of crossings and rearings in the open-field test, while (m-CF3-PhSe)2 presented a tendency to normalize these parameters. Reserpine and/or (m-CF3-PhSe)2 treatments did not alter the locomotor activity of mice observed in the rota-rod test. These effects could be related to modulation of oxidative stress, apoptotic pathway, and glucocorticoid receptors, once (m-CF3-PhSe)2 normalized thiobarbituric acid reactive substances and 4-hydroxynonenal modified protein levels, markers of lipoperoxidation, poly(ADP-ribose) polymerase cleaved/total ratio, and glucocorticoid receptor levels increased by reserpine in the hippocampus. Considering that pain-depression dyad is a complex state of difficult treatment, this organoselenium compound could raise as an interesting alternative to treat pain-depression condition.
Collapse
Affiliation(s)
- Cleisson Schossler Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil
| | - Pabliane Rodrigues Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil
| | - Carlos Natã da Silva Espíndola
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil
| | - Natália Silva Jardim
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organochalcogens, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Grendene Müller
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organochalcogens, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
17
|
Wang MH, Yang CC, Tseng HC, Fang CH, Lin YW, Soung HS. Naringin Ameliorates Haloperidol-Induced Neurotoxicity and Orofacial Dyskinesia in a Rat Model of Human Tardive Dyskinesia. Neurotox Res 2021; 39:774-786. [PMID: 33523404 DOI: 10.1007/s12640-021-00333-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Animal models of haloperidol (HAL)-induced neurotoxicity and orofacial dyskinesia (OD) have long been used to study human tardive dyskinesia (TD). Similar to patients with TD, these models show strong pathophysiological characteristics such as striatal oxidative stress and neural cytoarchitecture alteration. Naringin (NAR), a bioflavonoid commonly found in citrus fruits, has potent antioxidative, anti-inflammatory, antiapoptotic, and neuroprotective properties. The present study evaluated the potential protective effects of NAR against HAL-induced OD in rats and the neuroprotective mechanisms underlying these effects. HAL treatment (1 mg/kg i.p. for 21 successive days) induced OD development, characterized by increased vacuous chewing movement (VCM) and tongue protrusion (TP), which were recorded on the 7th, 14th, and 21st day of drug treatment. NAR (30, 100, and 300 mg/kg) was administered orally 60 min before HAL injection for 21 successive days. On the 21st day, after behavioral testing, the rats were sacrificed, and the nitrosative and oxidative status, antioxidation power, neurotransmitter levels, neuroinflammation, and apoptotic markers in the striatum were measured. HAL induced OD development, with significant increases in the frequency of VCM and TP. NAR treatment (100 and 300 mg/kg) prevented HAL-induced OD significantly. Additionally, NAR treatment reduced the HAL-induced nitric oxide and lipid peroxide production, increased the antioxidation power and neurotransmitter levels in the striatum, and significantly reduced the levels of neuroinflammatory and apoptotic markers. Our results first demonstrate the neuroprotective effects of NAR against HAL-induced OD, suggesting that NAR may help in delaying or treating human TD in clinical settings.
Collapse
Affiliation(s)
- Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, 23702, New Taipei City, Taiwan, Republic of China
| | - Chih-Chuan Yang
- Department of Neurosurgery, Mackay Memorial Hospital, 10449, Taipei, Taiwan, Republic of China
- Department of Medicine, Mackay Medical College, 252, New Taipei City, Taiwan, Republic of China
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Su Memorial Hospital, Shin Kong Wu Ho, 11101, Taipei, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, 24205, New Taipei City, Taiwan, Republic of China
| | - Chih-Hsiang Fang
- Institute of Biomedical Engineering, National Taiwan University, 10051, Taipei, Taiwan, Republic of China
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, 10051, Taipei, Taiwan, Republic of China
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Br. of Taipei Veteran General Hospital, 26604, Yilan County, Taiwan, Republic of China.
- Department of Biomedical Engineering, National Defense Medical Center, 11490, Taipei, Taiwan, Republic of China.
| |
Collapse
|
18
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
19
|
Yao X, Li L, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp Ther Med 2019; 19:1343-1355. [PMID: 32010308 PMCID: PMC6966137 DOI: 10.3892/etm.2019.8328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fibromyalgia (FM) is a chronic complex musculoskeletal disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep disturbance, memory defects and mood changes. Fisetin, a plant flavonoid polyphenol, has been reported to possess potent antioxidant, antinociceptive and neuroprotective activities. The present study aimed to evaluate the efficacy of fisetin against reserpine-induced FM (RIF) in rats. RIF was induced in male Wistar rats (180–220 gm) using reserpine (1 mg/kg; subcutaneous; once daily for 3 consecutive days) and the rats were treated with fisetin (5, 10 and 25 mg/kg) for 21 days. Various behavioral, biochemical and molecular parameters were evaluated. Administration of reserpine induced allodynia, hyperalgesia and depression, which were significantly ameliorated (P<0.05) by fisetin (10 and 25 mg/kg), as reflected by an increase in paw and tail withdrawal latency, increased paw withdrawal threshold, and decreased immobility time. Reserpine led to decreased biogenic amine levels [5-hydroxytryptamine (5-HT), noradrenaline (NA) and dopamine (DA)] and increased the ratio to their metabolite 3,4-dihydroxyphenylacetic acid. 5-hydroxyindoleacetic acid in the spinal cord, thalamus and prefrontal cortex was significantly decreased (P<0.05) by fisetin. Immunohistological analysis of brain tissue revealed that fisetin significantly inhibited (P<0.05) reserpine-induced depletion of 5-HT. It also significantly inhibited (P<0.05) elevated oxido-nitrosative stress and reactive oxygen species (ROS) levels, as analyzed by flow cytometry in RIF rats. Fisetin exerts its antinociceptive and anti-depressive potential via modulation of decreased levels of biogenic amines (5-HT, NA and DA), elevated oxido-nitrosative stress and ROS to ameliorate allodynia, hyperalgesia, and depression in experimental RIF.
Collapse
Affiliation(s)
- Xianli Yao
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Li Li
- Encephalopathy Department, The Traditional Chinese Medicine Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Anwesha A Mukherjee-Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| |
Collapse
|
20
|
Inactivation of Aldehyde Dehydrogenase by Disulfiram in the Presence and Absence of Lipoic Acid or Dihydrolipoic Acid: An in Vitro Study. Biomolecules 2019; 9:biom9080375. [PMID: 31426424 PMCID: PMC6723463 DOI: 10.3390/biom9080375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023] Open
Abstract
The inhibition of aldehyde dehydrogenase (ALDH) by disulfiram (DSF) in vitro can be prevented and/or reversed by dithiothreitol (DTT), which is a well-known low molecular weight non-physiological redox reagent commonly used in laboratory experiments. These observations inspired us to ask the question whether the inhibition of ALDH by DSF can be preserved or abolished also by dihydrolipoic acid (DHLA), which is the only currently known low molecular weight physiological dithiol in the body of humans and other animals. It can even be metaphorized that DHLA is an "endogenous DTT". Lipoic acid (LA) is the oxidized form of DHLA. We investigated the inactivation of ALDH derived from yeast and rat liver by DSF in the presence or absence of LA or DHLA. The results clearly show that DHLA is able both to restore and protect ALDH activity blocked by DSF. The proposed mechanism is discussed.
Collapse
|
21
|
de Sousa CNS, da Silva Leite CMG, da Silva Medeiros I, Vasconcelos LC, Cabral LM, Patrocínio CFV, Patrocínio MLV, Mouaffak F, Kebir O, Macedo D, Patrocínio MCA, Vasconcelos SMM. Alpha-lipoic acid in the treatment of psychiatric and neurological disorders: a systematic review. Metab Brain Dis 2019; 34:39-52. [PMID: 30467770 DOI: 10.1007/s11011-018-0344-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023]
Abstract
Despite the existence of many preclinical studies, scientific evidence is lacking on the clinical use of alpha-lipoic acid (ALA) for central nervous system disorders. Therefore, we aimed at revising the literature concerning the use of ALA for the treatment of psychiatric and neurological conditions and to point out what is missing for the introduction of this antioxidant to this purpose. For this systematic review we performed a search using PubMed and SCOPUS databases with the following keywords: "alpha-Lipoic Acid AND central nervous system OR psychiatric disorders OR neurological disorders OR mood disorders OR anxiety OR psychosis OR Alzheimer OR Parkinson OR stroke". The total number of references found after automatically and manually excluding duplicates was 1061. After primary and secondary screening 32 articles were selected. Regarding psychiatric disorders, the studies of ALA in schizophrenia are advanced being ALA administration related to the improvement of schizophrenia symptoms and side effects of antipsychotic medication. In neurological disorders, ALA as a supplement was effective in the prevention of Alzheimer disease progression. For stroke, the use of the supplement ALAnerv® (containing 300 mg ALA) presented important results, since it was observed a reversal of clinical parameters and oxidative imbalance in these patients. For other neurological conditions, such as encephalopathy, multiple sclerosis, traumatic brain injury, mitochondrial disorders and migraine, the results are still preliminary. Overall, there is a need of well-designed clinical trials to enhance the clinical evidences of ALA effects for the treatment of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Caren Nádia Soares de Sousa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | - Cláudio Manuel Gonçalves da Silva Leite
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | - Ingridy da Silva Medeiros
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | - Luna Costa Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | - Lucas Moraes Cabral
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | | | | | - Fayçal Mouaffak
- Department of Seine Saint Denis, Ville Evrard Psychiatric Hospital, Paris, France
| | - Oussama Kebir
- Laboratory of Pathophysiology of Psychiatric Diseases, Center for Psychiatry and Neurosciences, INSERM U894, University Paris Descartes, Paris, France
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil
| | - Manoel Cláudio Azevedo Patrocínio
- School of Medicine, University Center Christus-Unichristus, Fortaleza, Ceará, Brazil
- Department of Anesthesiology, Dr. Jose Frota Institute Hospital/IJF, Fortaleza, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Coronel Nunes de Melo Street, 1127, Fortaleza, CE, 60431-270, Brazil.
| |
Collapse
|
22
|
Beserra-Filho JIA, de Macêdo AM, Leão AHFF, Bispo JMM, Santos JR, de Oliveira-Melo AJ, Menezes PDP, Duarte MC, de Souza Araújo AA, Silva RH, Quintans-Júnior LJ, Ribeiro AM. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson's disease. Food Chem Toxicol 2018; 124:17-29. [PMID: 30481574 DOI: 10.1016/j.fct.2018.11.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022]
Abstract
Evidence indicates that oxidative stress has an important role in the onset and progression of Parkinson's disease (PD). Antioxidant agents from natural products have shown neuroprotective effects in animal models of PD. Eplingiella fruticosa is an aromatic and medicinal plant of the Lamiaceae family that include culinary herbs. The essential oil (EPL) has anti-inflammatory and antioxidant activities. Cyclodextrins are used to enhances pharmacological profile of essential oil. We obtained the EPL from leaves and complexed with β-cyclodextrin (EPL-βCD). Phytochemical analysis showed as main constituents: β-caryophyllene, bicyclogermacrene and 1,8-cineole. We evaluated the effects of EPL and EPL-βCD (5 mg/kg, p.o. for 40 days) on male mice submitted to the progressive reserpine PD model. Behavioral evaluations, lipid peroxidation quantification and immunohistochemistry for tyrosine hydroxylase were conducted. EPL delayed the onset of catalepsy and decreased membrane lipid peroxides levels in the striatum. EPL-βCD also delayed the onset of catalepsy, reduced the frequency of oral diskynesia, restored memory deficit, produced anxiolytic activity and protected against dopaminergic depletion in the striatum and SNpc. These findings showed that EPL has a potential neuroprotective effect in a progressive PD animal model. Further, EPL-βCD enhanced this protective effects, suggesting a novel therapeutic approach to ameliorate the symptoms of PD.
Collapse
Affiliation(s)
- Jose I A Beserra-Filho
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Amanda M de Macêdo
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Jose Marcos M Bispo
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - José R Santos
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - Allan John de Oliveira-Melo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Paula Dos Passos Menezes
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Marcelo C Duarte
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Adriano A de Souza Araújo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Alessandra M Ribeiro
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil.
| |
Collapse
|
23
|
α- (phenylselanyl) acetophenone mitigates reserpine-induced pain–depression dyad: Behavioral, biochemical and molecular docking evidences. Brain Res Bull 2018; 142:129-137. [DOI: 10.1016/j.brainresbull.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
|
24
|
Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:803-817. [DOI: 10.1007/s00210-018-1509-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
|
25
|
L-Theanine Decreases Orofacial Dyskinesia Induced by Reserpine in Rats. Neurotox Res 2018; 34:375-387. [DOI: 10.1007/s12640-018-9897-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 01/13/2023]
|
26
|
Evaluation the Effects of Foeniculum vulgare Essence on Behavioral-Motor Disorders of Parkinson’s Disease induced by Reserpine in Ovariectomized and Non Ovariectomized Rats. Jundishapur J Nat Pharm Prod 2018. [DOI: 10.5812/jjnpp.67391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
28
|
Passiflora cincinnata Extract Delays the Development of Motor Signs and Prevents Dopaminergic Loss in a Mice Model of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8429290. [PMID: 28835767 PMCID: PMC5556616 DOI: 10.1155/2017/8429290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 02/02/2023]
Abstract
Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson's disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD.
Collapse
|
29
|
Namazi N, Larijani B, Azadbakht L. Alpha-lipoic acid supplement in obesity treatment: A systematic review and meta-analysis of clinical trials. Clin Nutr 2017. [PMID: 28629898 DOI: 10.1016/j.clnu.2017.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Previous studies have supported positive roles of antioxidant supplements on weight-loss. One antioxidant supplement is Alpha-lipoic acid. However, recommending ALA as an anti-obesity supplement remains controversial. Accordingly, the purpose of the present study was to perform a meta-analysis on the effects of ALA supplement on anthropometric indices among adult subjects. METHODS We searched five electronic databases till September 2016. Placebo-controlled clinical trials were included. Weighted Mean Difference (WMD) was pooled using a random-effects model. RESULTS Findings of 12 included trials indicated that ALA supplement reduced body weight (WMD: -0.69 kg; 95% CI: -1.27, -0.10; I2 = 0%) and BMI (WMD: -0.38 kg/m2; 95% CI: -0.53, -0.24; I2 = 0%) significantly compared to the placebo group. However, its effects on Waist Circumference (WC) was not significant (WMD: -0.30 cm; 95% CI: -1.18, 0.58; I2 = 17.8%). Stratification by health status indicated that ALA decreased WC in unhealthy subjects (WMD: -2.00 cm; 95% CI: -4.19, 0.19; I2 = 1.3%) more than healthy individuals (0.03 cm; 95% CI: -0.69, 0.75; I2 = 0%). CONCLUSIONS The present study revealed that supplementation with ALA slightly but significantly decreased body weight and BMI. Safe dosage for ALA is up to 1200 mg/day. However, it seems that ALA cannot be cost-effective. Further studies are needed to clarify the effects of ALA on metabolic parameter in unhealthy obese individuals.
Collapse
Affiliation(s)
- Nazli Namazi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Leila Azadbakht
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Cui R, Kang Y, Wang L, Li S, Ji X, Yan W, Zhang G, Cui H, Shi G. Testosterone Propionate Exacerbates the Deficits of Nigrostriatal Dopaminergic System and Downregulates Nrf2 Expression in Reserpine-Treated Aged Male Rats. Front Aging Neurosci 2017; 9:172. [PMID: 28620296 PMCID: PMC5449473 DOI: 10.3389/fnagi.2017.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
There is a controversy over the effects of testosterone supplements on dopaminergic function. Both neuroprotective and toxic effects of testosterone supplements are reported. The status of oxidative stress seems to explain the neuroprotective or toxic properties of testosterone. To determine the efficacy of testosterone supplements in different status of oxidative stress, the present studies analyzed the dopamine (DA)-related behaviors and neurochemical indices, as well as markers of nigrostriatal dopaminergic (NSDA) system in reserpine-treated aged male rats followed by testosterone propionate (TP) supplements. The status of oxidative stress of experimental animals was evaluated by analyzing oxidative stress parameters and nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway in substantia nigra (SN). Consistent with our previous studies, TP supplements to 21-month old aged male rats had the beneficial effects on NSDA system and DA-related behaviors and enhanced the antioxidative capabilities in SN. However, the beneficial effects of TP supplements on NSDA system and DA-related behaviors in aged male rats were reversed by reserpine pretreatment to them. Reserpine treatment induced the severe oxidative stress and reduced the expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1) in the SN of aged male rats. The TP supplements to reserpine-pretreated aged male rats exacerbated the defects in NSDA system and DA-related behaviors, aggravated oxidative damages and downregulated the expression of Nrf2, HO-1 and NQO1 in the SN. These results suggested that the efficacy of TP supplements on impaired NSDA system was related to the status of oxidative stress in experimental rats.
Collapse
Affiliation(s)
- Rui Cui
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China.,Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Li Wang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Shuangcheng Li
- Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Wensheng Yan
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Guoliang Zhang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China.,Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|
31
|
Bilska-Wilkosz A, Iciek M, Kowalczyk-Pachel D, Górny M, Sokołowska-Jeżewicz M, Włodek L. Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur. Molecules 2017; 22:molecules22030388. [PMID: 28257119 PMCID: PMC6155427 DOI: 10.3390/molecules22030388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 02/03/2023] Open
Abstract
The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H2S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H2S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H2S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H2S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H2S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H2S/sulfane sulfur.
Collapse
Affiliation(s)
- Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Danuta Kowalczyk-Pachel
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Magdalena Górny
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Maria Sokołowska-Jeżewicz
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Lidia Włodek
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| |
Collapse
|
32
|
Shibrya EE, Radwan RR, Abd El Fattah MA, Shabaan EA, Kenawy SA. Evidences for amelioration of reserpine-induced fibromyalgia in rat by low dose of gamma irradiation and duloxetine. Int J Radiat Biol 2017; 93:553-560. [DOI: 10.1080/09553002.2017.1270475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eman E. Shibrya
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Rasha R. Radwan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mai A. Abd El Fattah
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Esmat A. Shabaan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Sanaa A. Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Cunha AS, Matheus FC, Moretti M, Sampaio TB, Poli A, Santos DB, Colle D, Cunha MP, Blum-Silva CH, Sandjo LP, Reginatto FH, Rodrigues ALS, Farina M, Prediger RD. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors. Behav Brain Res 2016; 312:64-76. [DOI: 10.1016/j.bbr.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
|
34
|
(-)Epigallocatechin-3-gallate prevents the reserpine-induced impairment of short-term social memory in rats. Behav Pharmacol 2016. [PMID: 26196076 DOI: 10.1097/fbp.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction.
Collapse
|
35
|
Li YX, Lim ST. Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch. Carbohydr Polym 2016; 140:253-9. [DOI: 10.1016/j.carbpol.2015.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
|
36
|
Abstract
The effects of Hypericum perforatum, a plant with antidepressant action, were evaluated in models of abnormal movements in rats, brought about by administration of fluphenazine or reserpine. The number of vacuous chewing movements (VCMs) and locomotor activity (the number of crossings and rears in the open field test) were measured. In experiment 1, rats received a single administration of fluphenazine enanthate (25 mg/kg, intramuscular) and/or daily treatment with H. perforatum (300 mg/kg, in place of drinking water) for 7 days. Fluphenazine increased VCMs and decreased locomotor activity. H. perforatum had no effect on either the number of VCMs or the locomotor activity. In experiment 2, rats received reserpine every 2 days for 6 days (0.5 mg/kg, subcutaneous) and/or H. perforatum (300 mg/kg, in place of drinking water) daily for 16 days beginning 10 days before the first administration of reserpine. Reserpine treatment increased VCMs and decreased locomotor activity. H. perforatum had no effect on either the number of VCMs or the number of rears but did prevent the effect of reserpine on the number of crossings. In conclusion, H. perforatum failed to protect against orofacial movements induced by fluphenazine or reserpine in rats.
Collapse
|
37
|
Chen CN, Chang KC, Lin RF, Wang MH, Shih RL, Tseng HC, Soung HS, Tsai CC. Nitric oxide pathway activity modulation alters the protective effects of (-)Epigallocatechin-3-gallate on reserpine-induced impairment in rats. Behav Brain Res 2016; 305:198-211. [PMID: 26944334 DOI: 10.1016/j.bbr.2016.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/29/2022]
Abstract
Reserpine (RES) has been reported to increase the brain's neural oxidative stress and cause cognitive dysfunction. Having powerful antioxidative properties, green tea catechins, especially (-)epigallocatechin-3-gallate (EGCG), are able to protect against many oxidative injuries. In this study, we examined the protecting properties of EGCG on RES-induced impairment of short-term memory in three-month-old male Wistar rats. RES (1mg/kg i.p.) induced memory impairment (p<0.001) as evaluated by the social recognition task. EGCG treatment (100mg/kg i.p. for 7days, starting 6days before RES injection) was able to improve the impaired memory caused by RES. RES treatment increased the nitric oxide (NO) level and lipid peroxidation (LPO) production, and decreased the antioxidation power in hippocampi. EGCG treatment was able to counteract the RES-induced NO level and LPO production, as well as enhanced the hippocampal antioxidation power in RES-treated rats. In order to examine the implication of NO pathway activity in RES treatment, either NO precursor (L-arginine; L-A) or NO synthase inhibitor (L-NAME; L-N) was co-pretreated with EGCG; NO precursor treatment eliminated the protective effect of EGCG, in contrast to that NO synthase inhibitor treatment significantly increased the EGCG effects on cognitive and biochemical protection in RES-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the RES-induced impairment, as well as in the protective effect of EGCG in treating RES-induced impairment of memory. The above evidence provides a clinically relevant value for EGCG in preventing RES-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Cheng-Neng Chen
- Division of Neurosurgery, Department of Surgery, Taitung br. of Mackay Memorial Hospital, Taitung 95054, Taiwan, ROC
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Rui-Feng Lin
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan, ROC
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan, ROC; Department of Optometry, Yuanpei University, Hsinchu 30015, Taiwan, ROC
| | - Ruoh-Lan Shih
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan, ROC
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan, ROC; School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan br. of Taipei Veteran General Hospital, Yilan County 26604, Taiwan, ROC
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan, ROC; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
38
|
Kowalczyk-Pachel D, Iciek M, Wydra K, Nowak E, Górny M, Filip M, Włodek L, Lorenc-Koci E. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment. PLoS One 2016; 11:e0147238. [PMID: 26808533 PMCID: PMC4726505 DOI: 10.1371/journal.pone.0147238] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase in MDA level was visible. The repeated cocaine decreased 3-MST and increased γ-GT activities in both organs but reduced GST in the kidney. Our results show that cocaine administered at a relatively low dose shifts Cys metabolism towards the formation of sulfane sulfur compounds which possess antioxidant and redox regulatory properties and are a source of H2S which can support mitochondrial bioenergetics.
Collapse
Affiliation(s)
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Ewa Nowak
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Lidia Włodek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
- * E-mail:
| |
Collapse
|
39
|
Silva MCC, de Sousa CNS, Gomes PXL, de Oliveira GV, Araújo FYR, Ximenes NC, da Silva JC, Vasconcelos GS, Leal LKAM, Macêdo D, Vasconcelos SMM. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:142-8. [PMID: 26265141 DOI: 10.1016/j.pnpbp.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
Abstract
Oxidative stress is implicated in the neurobiology of depression. Here we investigated oxidative alterations in brain areas of animals submitted to the model of depression induced by corticosterone (CORT) and the effects of the antioxidant compound alpha-lipoic acid (ALA) alone or associated with the antidepressant desvenlafaxine (DVS) in these alterations. Female mice received vehicle or CORT (20 mg/kg) during 14 days. From the 15th to 21st days different animals received further administrations of: vehicle, DVS (10 or 20 mg/kg), ALA (100 or 200 mg/kg), or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Twenty-four hours after the last drug administration prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were dissected for the determination of the activity of superoxide dismutase (SOD), reduced glutathione (GSH) and lipid peroxidation (LP) levels. CORT significantly increased SOD activity in the PFC and HC, decreased GSH levels in the HC and increased LP in all brain areas studied when compared to saline-treated animals. Decrements of SOD activity were observed in all groups and brain areas studied when compared to controls and CORT. The hippocampal decrease in GSH was reversed by ALA100, DVS10+ALA100, DVS20+ALA100 and DVS20+ALA200. The same DVS+ALA combination groups presented increased levels of GSH in the PFC and ST. The greater GSH levels were observed in the PFC, HC and ST of DVS20+ALA200 mice. LP was reversed in the groups ALA200 (PFC), DVS10+ALA100, DVS20+ALA100 (PFC, HC and ST), and DVS20+ALA200 (PFC, HC). Our findings contribute to the previous preclinical evidences implicating ALA as a promising agent for augmentation therapy in depression.
Collapse
Affiliation(s)
- Márcia Calheiros Chaves Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Caren Nádia Soares de Sousa
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Patrícia Xavier Lima Gomes
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Gersilene Valente de Oliveira
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Fernanda Yvelize Ramos Araújo
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Naiara Coelho Ximenes
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Jéssica Calheiros da Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | | | - Danielle Macêdo
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil.
| |
Collapse
|
40
|
Kronbauer M, Segat HJ, De David Antoniazzi CT, Roversi K, Roversi K, Pase CS, Barcelos RCS, Burger ME. Magnesium Supplementation Prevents and Reverses Experimentally Induced Movement Disturbances in Rats: Biochemical and Behavioral Parameters. Biol Trace Elem Res 2015; 166:163-72. [PMID: 25686766 DOI: 10.1007/s12011-015-0268-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Reserpine administration results in a predictable animal model of orofacial dyskinesia (OD) that has been largely used to access movement disturbances related to extrapyramidal oxidative damage. Here, OD was acutely induced by reserpine (two doses of 0.7 mg/kg subcutaneous (s.c.)), every other day for 3 days), which was administered after (experiment 1) and before (experiment 2) magnesium (Mg) supplementation (40 mg/kg/mL, peroral (p.o.)). In experiment 1, Mg was administered for 28 days before reserpine treatment, while in experiment 2, it was initiated 24 h after the last reserpine administration and was maintained for 10 consecutive days. Experiment 1 (prevention) showed that Mg supplementation was able to prevent reserpine-induced OD and catalepsy development. Mg was also able to prevent reactive species (RS) generation, thus preventing increase of protein carbonyl (PC) levels in both cortex and substantia nigra, but not in striatum. Experiment 2 (reversion) showed that Mg was able to decrease OD and catalepsy at all times assessed. In addition, Mg was able to decrease RS generation, with lower levels of PC in both cortex and striatum, but not in substantia nigra. These outcomes indicate that Mg is an important metal that should be present in the diet, since its intake is able to prevent and minimize the development of movement disorders closely related to oxidative damage in the extrapyramidal brain areas, such as OD.
Collapse
Affiliation(s)
- Maikel Kronbauer
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Polymorphism in the Vesicular Monoamine Transporter 2 Gene Decreases the Risk of Parkinson's Disease in Han Chinese Men. PARKINSONS DISEASE 2015; 2015:903164. [PMID: 26246935 PMCID: PMC4515295 DOI: 10.1155/2015/903164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 02/05/2023]
Abstract
Background. Polymorphisms rs363371 and rs363324 in the vesicular monoamine transporter 2 (VMAT2) gene have been associated with risk of PD in an Italian population, and our aim is to investigate the association between the two single-nucleotide polymorphisms and PD in Han Chinese. Methods. 561 Han Chinese PD patients and 491 healthy age- and gender-matched controls were genotyped using Ligase detection reaction (LDR) method. Result. Both of patient and control groups showed similar genotype frequencies between patients and controls at both rs363371 and rs363324, as well as similar minor A allele frequencies at rs363371 (P = 0.452) and rs363324 (P = 0.413). None of the observed haplotypes showed a significant association with PD. Subgroup analysis by gender and age at onset revealed a significant association between the A allele of rs363371 and PD in Han Chinese males relative to healthy controls (OR 0.799, 95% CI 0.665 to 0.959, P = 0.016), and this association remained significant after adjusting for age (OR 0.785, 95% CI 0.652 to 0.945, P = 0.011). Conclusion. These results suggest that polymorphism of VMAT2 locus is associated with risk of PD in Han Chinese overall but that the A allele at rs363371 may protect against PD in Han Chinese males.
Collapse
|
42
|
Leão AH, Sarmento‐Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson's Disease: New Perspectives to a Long-Standing Model. Brain Pathol 2015; 25:377-90. [PMID: 25726735 PMCID: PMC8029054 DOI: 10.1111/bpa.12253] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
The administration of reserpine to rodents was one of the first models used to investigate the pathophysiology and screening for potential treatments of Parkinson's disease (PD). The reserpine model was critical to the understanding of the role of monoamine system in the regulation of motor and affective disorders, as well as the efficacy of current PD treatments, such as L-DOPA and dopamine agonists. Nevertheless, with the introduction of toxin-induced and genetic models of PD, reserpine became underused. The main rationale to this drawback was the supposed absence of reserpine construct validity with PD. Here, we highlight classical and recent experimental findings that support the face, pharmacological, and construct validity of reserpine PD model and reason against the current rationale for its underuse. We also aim to shed a new perspective upon the model by discussing the main challenges and potentials for the reserpine model of PD.
Collapse
Affiliation(s)
- Anderson H.F.F. Leão
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
| | - Aldair J. Sarmento‐Silva
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
| | - José R. Santos
- Biology DepartmentUniversidade Federal de SergipeSão CristóvãoSEBrazil
| | - Alessandra M. Ribeiro
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Department of BiosciencesUniversidade Federal de São PauloSantosSPBrazil
| | - Regina H. Silva
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Behavioral Neuroscience LaboratoryDepartment of PharmacologyUniversidade Federal de São PauloSão PauloSPBrazil
| |
Collapse
|
43
|
Wang MH, Lin RF, Tseng HC, Soung HS, Chang KC, Tsai CC. (-) Epigallocatechin-3-gallate attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Pharmacol Biochem Behav 2015; 131:71-6. [PMID: 25668129 DOI: 10.1016/j.pbb.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
Reserpine-induced orofacial dyskinesia (OD) has been used for decades as an animal model for human tardive dyskinesia (TD) because both of them have pathophysiology strongly associated with striatal oxidative stress. Green tea catechins, especially (-) epigallocatechin-3-gallate (EGCG), have potent antioxidative effects and are able to protect against various oxidative injuries. In this study, we examined the potential protective effects of EGCG on reserpine-induced behavioral and neurochemical dysfunction in rats. Reserpine treatment (1mg/kgs.c. one injection every other day, three injections total) induced significant increases (p<0.001) in the frequency of vacuous chewing movement (VCM) and tongue protrusion (TP) as well as the duration of facial twitching (FT). EGCG treatment (100mg/kgi.p. for 11days, starting 7days before the reserpine injections) was able to prevent most of the reserpine-induced OD. Also, EGCG treatment was able to reduce the reserpine-induced lipid peroxidation (LPO) production, and enhances the antioxidation power in the striatum of reserpine-treated rats. The above results indicate that EGCG has a protective role against reserpine-induced OD, probably via its powerful antioxidative properties. Thus, EGCG may possible have a clinically relevant therapeutic effect in preventing, delaying or even treating TD.
Collapse
Affiliation(s)
- Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan, ROC; Department of Optometry, Yuanpei University, Hsinchu 30015, Taiwan, ROC
| | - Rui-Feng Lin
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan, ROC
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan, ROC; School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan br. of Taipei Veteran General Hospital, Yilan County 26604, Taiwan, ROC
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan, ROC; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
44
|
Rashed ER, Abd El‐Rehim HA, El‐Ghazaly MA. Potential efficacy of dopamine loaded‐PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. J Biomed Mater Res A 2014; 103:1713-20. [DOI: 10.1002/jbm.a.35312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/22/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Engy R. Rashed
- Department of Drug Radiation ResearchNational Center for Radiation Research and Technology, Egyptian Atomic Energy AuthorityNasr City Cairo Egypt
| | - Hassan A. Abd El‐Rehim
- Department of PolymersNational Center for Radiation Research and Technology, Egyptian Atomic Energy AuthorityNasr City Cairo Egypt
| | - Mona A. El‐Ghazaly
- Department of Drug Radiation ResearchNational Center for Radiation Research and Technology, Egyptian Atomic Energy AuthorityNasr City Cairo Egypt
| |
Collapse
|
45
|
Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin. Antimicrob Agents Chemother 2014; 58:5964-75. [PMID: 25070093 DOI: 10.1128/aac.03683-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stationary-phase bacteria are important in disease. The σ(s)-regulated general stress response helps them become resistant to disinfectants, but the role of σ(s) in bacterial antibiotic resistance has not been elucidated. Loss of σ(s) rendered stationary-phase Escherichia coli more sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiA genetic reporter, 3'-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidant N-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case also in vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense of E. coli can enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.
Collapse
|
46
|
Pifl C, Rajput A, Reither H, Blesa J, Cavada C, Obeso JA, Rajput AH, Hornykiewicz O. Is Parkinson's disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 2014; 34:8210-8. [PMID: 24920625 PMCID: PMC6608236 DOI: 10.1523/jneurosci.5456-13.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson's disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [(3)H]dihydrotetrabenazine were profoundly reduced in PD by 87-90% and 71-80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in PD.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria,
| | - Alex Rajput
- Movement Disorders Program Saskatchewan, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N OW8, Canada
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Javier Blesa
- Movement Disorders Group, Neurosciences Division, CIMA, and Department of Neurology and Neurosurgery, Clinica Universidad de Navarra, E31008 Pamplona, Spain, and
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - José A Obeso
- Movement Disorders Group, Neurosciences Division, CIMA, and Department of Neurology and Neurosurgery, Clinica Universidad de Navarra, E31008 Pamplona, Spain, and
| | - Ali H Rajput
- Movement Disorders Program Saskatchewan, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N OW8, Canada
| | - Oleh Hornykiewicz
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
47
|
|
48
|
Anderson G, Maes M. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 2013; 49:771-83. [PMID: 24085563 DOI: 10.1007/s12035-013-8554-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.
Collapse
|
49
|
Santos JR, Cunha JA, Dierschnabel AL, Campêlo CL, Leão AH, Silva AF, Engelberth RC, Izídio GS, Cavalcante JS, Abílio VC, Ribeiro AM, Silva RH. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav Brain Res 2013; 253:68-77. [DOI: 10.1016/j.bbr.2013.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022]
|
50
|
Ledesma JC, Baliño P, Aragon CMG. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: a role for the brain catalase-H2O2 system in alcohol binge drinking. Alcohol Clin Exp Res 2013; 38:60-7. [PMID: 24033657 DOI: 10.1111/acer.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is the cosubstrate used by the enzyme catalase to form Compound I (the catalase-H2 O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This centrally formed acetaldehyde has been shown to be involved in some of the psychopharmacological effects induced by EtOH in rodents, including voluntary alcohol intake. It has been observed that different levels of this enzyme in the central nervous system (CNS) result in variations in the amount of EtOH consumed. This has been interpreted to mean that the brain catalase-H2 O2 system, by determining EtOH metabolism, mediates alcohol self-administration. To date, however, the role of H2 O2 in voluntary EtOH drinking has not been investigated. METHODS In the present study, we explored the consequence of a reduction in cerebral H2 O2 levels in volitional EtOH ingestion. With this end in mind, we injected mice of the C57BL/6J strain intraperitoneally with the H2 O2 scavengers alpha-lipoic acid (LA; 0 to 50 mg/kg) or ebselen (Ebs; 0 to 25 mg/kg) 15 or 60 minutes, respectively, prior to offering them an EtOH (10%) solution following a drinking-in-the-dark procedure. The same procedure was followed to assess the selectivity of these compounds in altering EtOH intake by presenting mice with a (0.1%) solution of saccharin. In addition, we indirectly tested the ability of LA and Ebs to reduce brain H2 O2 availability. RESULTS The results showed that both LA and Ebs dose-dependently reduced voluntary EtOH intake, without altering saccharin consumption. Moreover, we demonstrated that these treatments decreased the central H2 O2 levels available to catalase. CONCLUSIONS Therefore, we propose that the amount of H2 O2 present in the CNS, by determining brain acetaldehyde formation by the catalase-H2 O2 system, could be a factor that determines an animal's propensity to consume EtOH.
Collapse
|