1
|
Demartini C, Greco R, Zanaboni AM, Francavilla M, Facchetti S, Tassorelli C. URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia. Pharmaceuticals (Basel) 2023; 16:1626. [PMID: 38004491 PMCID: PMC10675761 DOI: 10.3390/ph16111626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cannabinoids are proposed for alleviating neuropathic pain, but their use is limited by cannabimimetic side effects. The inhibition of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide, has received attention as an alternative to cannabinoids in the treatment of neuropathic pain. Here, we investigated the effect of URB937, a blood-brain barrier impermeant FAAH inhibitor, on experimentally induced mechanical allodynia in an animal model of trigeminal neuralgia. Male Sprague-Dawley rats were subjected to chronic constriction injury of the infraorbital nerve (IoN-CCI); operated animals were treated sub-chronically with URB937 (1 mg/kg, i.p.) or vehicle before or after trigeminal mechanical allodynia establishment. We also assayed mRNA expression levels of the pain neuropeptide calcitonin gene-related peptide (CGRP) and cytokines in the medulla, cervical spinal cord, and trigeminal ganglion ipsilateral to IoN-CCI using rt-PCR. URB937 treatment prevented the development of mechanical allodynia and IoN-CCI-induced changes in mRNA expression levels of CGRP and cytokines in the evaluated areas. When administered after allodynia development, URB937 prevented IoN-CCI-induced changes in CGRP and cytokine gene expression; this was not associated with a significant abrogation of the mechanical allodynia. These findings suggest that URB937 may counteract, but not reverse, the development of allodynia in trigeminal neuralgia. Further research is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (A.M.Z.); (M.F.); (C.T.)
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| | - Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (A.M.Z.); (M.F.); (C.T.)
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (A.M.Z.); (M.F.); (C.T.)
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (A.M.Z.); (M.F.); (C.T.)
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (R.G.); (S.F.)
| |
Collapse
|
2
|
Grabon W, Bodennec J, Rheims S, Belmeguenai A, Bezin L. Update on the controversial identity of cells expressing cnr2 gene in the nervous system. CNS Neurosci Ther 2023; 29:760-770. [PMID: 36604187 PMCID: PMC9928557 DOI: 10.1111/cns.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
The function of cannabinoid receptor type 2 (CB2R), mainly expressed by leukocytes, has long been limited to its peripheral immunomodulatory role. However, the use of CB2R-specific ligands and the availability of CB2R-Knock Out mice revealed that it could play a functional role in the CNS not only under physiological but also under pathological conditions. A direct effect on the nervous system emerged when CB2R mRNA was detected in neural tissues. However, accurate mapping of CB2R protein expression in the nervous system is still lacking, partly because of the lack of specificity of antibodies available. This review examines the regions and cells of the nervous system where CB2R protein is most likely present by cross-referencing mRNA and protein data published to date. Of the many antibodies developed to target CB2R, only a few have partially passed specificity tests and detected CB2R in the CNS. Efforts must be continued to support the development of more specific and better validated antibodies in each of the species in which CB2R protein is sought or needs to be quantified.
Collapse
Affiliation(s)
- Wanda Grabon
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Jacques Bodennec
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Amor Belmeguenai
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Laurent Bezin
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| |
Collapse
|
3
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
4
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
5
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
6
|
Vasincu A, Rusu RN, Ababei DC, Larion M, Bild W, Stanciu GD, Solcan C, Bild V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. BIOLOGY 2022; 11:biology11030440. [PMID: 35336814 PMCID: PMC8945712 DOI: 10.3390/biology11030440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Neurodegenerative diseases represent an important cause of morbidity and mortality worldwide. Existing therapeutic options are limited and focus mostly on improving symptoms and reducing exacerbations. The endocannabinoid system is involved in the pathophysiology of such disorders, an idea which has been highlighted by recent scientific work. The current work focusses its attention on the importance and implications of this system and its synthetic and natural ligands in disorders such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. Abstract Neurodegenerative diseases are an increasing cause of global morbidity and mortality. They occur in the central nervous system (CNS) and lead to functional and mental impairment due to loss of neurons. Recent evidence highlights the link between neurodegenerative and inflammatory diseases of the CNS. These are typically associated with several neurological disorders. These diseases have fundamental differences regarding their underlying physiology and clinical manifestations, although there are aspects that overlap. The endocannabinoid system (ECS) is comprised of receptors (type-1 (CB1R) and type-2 (CB2R) cannabinoid-receptors, as well as transient receptor potential vanilloid 1 (TRPV1)), endogenous ligands and enzymes that synthesize and degrade endocannabinoids (ECBs). Recent studies revealed the involvement of the ECS in different pathological aspects of these neurodegenerative disorders. The present review will explore the roles of cannabinoid receptors (CBRs) and pharmacological agents that modulate CBRs or ECS activity with reference to Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Correspondence:
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Mădălina Larion
- Department of Anaesthesiology Intensive Therapy, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 19 Croitorilor Street, 400162 Cluj-Napoca, Romania;
- Department of Anaesthetics, Midland Regional Hospital, Longford Road, Mullingar, N91 NA43 Co. Westmeath, Ireland
| | - Walther Bild
- Department of Physiology, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carmen Solcan
- Preclinics Department, “Ion Ionescu de la Brad” University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania;
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
7
|
Wilkerson JL, Alberti LB, Thakur GA, Makriyannis A, Milligan ED. Peripherally administered cannabinoid receptor 2 (CB 2R) agonists lose anti-allodynic effects in TRPV1 knockout mice, while intrathecal administration leads to anti-allodynia and reduced GFAP, CCL2 and TRPV1 expression in the dorsal spinal cord and DRG. Brain Res 2022; 1774:147721. [PMID: 34774500 PMCID: PMC10763621 DOI: 10.1016/j.brainres.2021.147721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
The transient receptor potential (TRP) superfamily of cation channels, of which the TRP vanilloid type 1 (TRPV1) receptor plays a critical role in inflammatory and neuropathic pain, is expressed on nociceptors and spinal cord dorsal horn neurons. TRPV1 is also expressed on spinal astrocytes and dorsal root ganglia (DRG) satellite cells. Agonists of the cannabinoid type 2 receptor (CB2R) suppress allodynia, with some that can bind TRPV1. The neuroimmune C-C class chemokine-2 (CCL2) expressed on injured DRG nociceptor cell bodies, Schwann cells and spinal astrocytes, stimulates immune cell accumulation in DRG and spinal cord, a known critical element in chronic allodynia. The current report examined whether two CB2R agonists, AM1710 and AM1241, previously shown to reverse light touch mechanical allodynia in rodent models of sciatic neuropathy, require TRPV1 activation that leads to receptor insensitivity resulting in reversal of allodynia. Global TRPV1 knockout (KO) mice with sciatic neuropathy given intrathecal or intraperitoneal AM1710 were examined for anti-allodynia followed by immunofluorescent microscopy analysis of lumbar spinal cord and DRG of astrocyte and CCL2 markers. Additionally, immunofluorescent analysis following intrathecal AM1710 and AM1241 in rat was performed. Data reveal that intrathecal AM1710 resulted in mouse anti-allodynia, reduced spinal astrocyte activation and CCL2 expression independent of TRPV1 gene deletion. Conversely, peripheral AM1710 in TRPV1-KO mice failed to reverse allodynia. In rat, intrathecal AM1710 and AM1241 reduced spinal and DRG TRPV1 expression, with CCL2-astrocyte and -microglial co-expression. These data support that CB2R agonists can impact spinal and DRG TRPV1 expression critical for anti-allodynia.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lauren B Alberti
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ganesh A Thakur
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Erin D Milligan
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
8
|
Jain S, Bisht A, Verma K, Negi S, Paliwal S, Sharma S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer's disease. Cell Biochem Funct 2021; 40:106-117. [PMID: 34931308 DOI: 10.1002/cbf.3680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a prominent enzyme of the endocannabinoid system that degrades endogenous cannabinoid anandamide and oleamide. These lipid amides are involved in reducing neuroinflammation, pain and regulation of other neurological-related activities including feeding behaviours, sleep patterns, body temperature, memory processes and locomotory activity. Many of these activities are affected in most neurological disorders. Increased levels of brain FAAH expressions are speculated to correlate with decreased levels of lipid amides and increased AD-related symptoms. Thus, inhibition of FAAH shows promising potential in amelioration of symptoms associated with Alzheimer's disease (AD). The review aims at establishing the detrimental role of increased FAAH expression in AD and highlights the translational potential and therapeutic application of FAAH inhibitors in AD.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swarnima Negi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
9
|
Swinton MK, Sundermann EE, Pedersen L, Nguyen JD, Grelotti DJ, Taffe MA, Iudicello JE, Fields JA. Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System. Viruses 2021; 13:v13091742. [PMID: 34578323 PMCID: PMC8473156 DOI: 10.3390/v13091742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.
Collapse
|
10
|
Zhang XB, Li J, Gu J, Zeng YQ. Roles of Cannabidiol in the treatment and prevention of Alzheimer's disease by multi-target actions. Mini Rev Med Chem 2021; 22:43-51. [PMID: 33797364 DOI: 10.2174/1389557521666210331162857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol(CBD) possesses various pharmacological activities including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system(eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome proliferator-activated receptor (PPAR) receptor.
Collapse
Affiliation(s)
- Xiao-Bei Zhang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Jintao Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500. China
| | - Juanhua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Yue-Qin Zeng
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| |
Collapse
|
11
|
Spyridakos D, Papadogkonaki S, Dionysopoulou S, Mastrodimou N, Polioudaki H, Thermos K. Effect of acute and subchronic administration of (R)-WIN55,212-2 induced neuroprotection and anti inflammatory actions in rat retina: CB1 and CB2 receptor involvement. Neurochem Int 2020; 142:104907. [PMID: 33220388 DOI: 10.1016/j.neuint.2020.104907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
Cannabinoids have been shown to protect the retina from ischemic/excitotoxic insults. The aim of the present study was to investigate the neuroprotective and anti-inflammatory properties of the synthetic cannabinoid (R)-WIN55,212-2 (CB1/CB2 receptor agonist) when administered acutely or subchronically in control and AMPA treated retinas. Sprague-Dawley rats were intravitreally administered (acutely) with vehicle or AMPA, in the absence or presence of (R)-WIN55,212-2 (10-7-10-4M) alone or in combination with AM251 [CB1 receptor antagonist/inverse agonist,10-4M] and AM630 (CB2 receptor antagonist,10-4M). In addition, AMPA was co-administered with the racemic (R,S)-WIN55,212 (10-4Μ). (R)-WIN55,212-2 was also administered subchronically (25,100 μg/kg,i.p.,4d) in control and AMPA treated rats. Immunohistochemical studies were performed using antibodies against the CB1R, and retinal markers for retinal neurons (brain nitric oxide synthetase, bNOS) and microglia (ionized calcium binding adaptor molecule 1, Iba1). ELISA assay was employed to assess TNFα levels in AMPA treated retinas. Intravitreal administration of (R)-WIN55,212-2 reversed the AMPA induced loss of bNOS expressing amacrine cells, an effect that was blocked by both AM251 and AM630. (R,S)WIN55,212 had no effect. (R)-WIN55,212-2 also reduced a) the AMPA induced activation of microglia, by activating CB2 receptors that were shown to be colocalized with Iba1+ reactive microglial cells, and b) TNFα levels in retina. (R)-WIN55,212-2 administered subchronically led to the downregulation of CB1 receptors at the high dose of 100 μg/kg(i.p.), and to the attenuation of the WIN55,212-2 induced neuroprotection of amacrine cells. At the same dose, (R)-WIN55,212-2 did not attenuate the AMPA induced increase in the number of reactive microglia cells, suggesting CB2 receptor downregulation under subchronic conditions. This study provides new findings regarding the role of CB1 and CB2 receptor activation by the synthetic cannabinoid (R)-WIN55,212-2, administered acutely or sub-chronically, on neuron viability and microglia activation in healthy and diseased retina.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Benzoxazines/administration & dosage
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Female
- Male
- Morpholines/administration & dosage
- Naphthalenes/administration & dosage
- Neuroprotective Agents/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Retina/drug effects
- Retina/metabolism
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
Collapse
Affiliation(s)
- Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Stavroula Dionysopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Niki Mastrodimou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| |
Collapse
|
12
|
Cooray R, Gupta V, Suphioglu C. Current Aspects of the Endocannabinoid System and Targeted THC and CBD Phytocannabinoids as Potential Therapeutics for Parkinson's and Alzheimer's Diseases: a Review. Mol Neurobiol 2020; 57:4878-4890. [PMID: 32813239 PMCID: PMC7515854 DOI: 10.1007/s12035-020-02054-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Neurodegeneration leading to Parkinson's disease (PD) and Alzheimer's disease (AD) has become a major health burden globally. Current treatments mainly target controlling symptoms and there are no therapeutics available in clinical practice to preventing the neurodegeneration or inducing neuronal repairing. Thus, the demand of novel research for the two disorders is imperative. This literature review aims to provide a collection of published work on PD and AD and current uses of endocannabinoid system (ECS) as a potential drug target for neurodegeneration. PD is frequently treated with L-DOPA and deep brain stimulation. Recent gene modification and remodelling techniques, such as CRISPR through human embryonic stem cells and induced pluripotent stem cells, have shown promising strategy for personalised medicine. AD characterised by extracellular deposits of amyloid β-senile plaques and neurofibrillary tangles of tau protein commonly uses choline acetyltransferase enhancers as therapeutics. The ECS is currently being studied as PD and AD drug targets where overexpression of ECS receptors exerted neuroprotection against PD and reduced neuroinflammation in AD. The delta-9-tetrahydrocannabinoid (Δ9-THC) and cannabidiol (CBD) cannabinoids of plant Cannabis sativa have shown neuroprotection upon PD and AD animal models yet triggered toxic effects on patients when administered directly. Therefore, understanding the precise molecular cascade following cannabinoid treatment is suggested, focusing especially on gene expression to identify drug targets for preventing and repairing neurodegeneration.
Collapse
Affiliation(s)
- R Cooray
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Section of Genetics, Institute for Research & Development in Health & Social Care, Colombo, Sri Lanka.
| | - V Gupta
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - C Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
13
|
Kelly R, Joers V, Tansey MG, McKernan DP, Dowd E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules 2020; 25:molecules25030453. [PMID: 31973235 PMCID: PMC7037317 DOI: 10.3390/molecules25030453] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration. Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death. Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system—particularly an upregulation in the immunomodulatory CB2 receptor—have been demonstrated to be related to the microglial activation state and hence the microglial phenotype. This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.
Collapse
Affiliation(s)
- Rachel Kelly
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
| | - Malú G. Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
- Center for Translation Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Declan P. McKernan
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
- Correspondence:
| |
Collapse
|
14
|
Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:229-257. [PMID: 31349929 DOI: 10.1016/bs.irn.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basal ganglia (BG), an organized network of nuclei that integrates cortical information, play a crucial role in controlling motor function. In fact, movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD) are caused by the degeneration of specific structures within the BG. There is substantial evidence supporting the idea that cannabinoids may constitute novel promising compounds for the treatment of movement disorders as neuroprotective and anti-inflammatory agents. This potential therapeutic role of cannabinoids is based, among other qualities, on their capacity to reduce oxidative injury and excitotoxicity, control calcium influx and limit the toxicity of reactive microglia. The mechanisms involved in these effects are related to CB1 and CB2 receptor activation, although some of the effects are CB receptor independent. Thus, taking into account the aforementioned properties, compounds that act on the endocannabinoid system could be useful as a basis for developing disease-modifying therapies for PD and HD.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María Botta
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
15
|
Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, Fernández N, Barroso M, Gallardo E, Duarte AP. Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E31. [PMID: 30813390 PMCID: PMC6473697 DOI: 10.3390/medicines6010031] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses - Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|
16
|
Parfieniuk E, Samczuk P, Kowalczyk T, Pietrowska K, Niemira M, Paczkowska-Abdulsalam M, Wolczynski S, Kretowski A, Ciborowski M, Zbucka-Kretowska M. Maternal plasma metabolic fingerprint indicative for fetal Down syndrome. Prenat Diagn 2018; 38:876-882. [PMID: 30094843 DOI: 10.1002/pd.5345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The objective of the study was to perform maternal plasma metabolic fingerprinting to evaluate differences in plasma metabolites between healthy and Down syndrome (DS) pregnancies and to indicate novel non-invasive markers for DS prenatal diagnostics. METHODS This was a case-control study of pregnancies between 15th and 18th gestational week. LC-MS-based metabolic fingerprinting of plasma samples was performed. RESULTS Levels of five metabolites were significantly lower in the plasma of DS pregnancies. The majority of the statistically significant metabolites may be connected with fetal brain and central nervous system development (eg, fatty acid amides). According to the receiver operating characteristic (ROC), the combination of linoleamide and piperine has the highest diagnostic potential: area under the curve (AUC) = 0.878, sensitivity of 100%, and specificity of 73.3%. CONCLUSIONS The study indicates disturbances in maternal metabolic pathways evoked by fetal DS. Novel potential maternal plasma metabolomic markers for non-invasive prenatal diagnostics of fetal DS are proposed.
Collapse
Affiliation(s)
- Ewa Parfieniuk
- Clinical Research Centre, Medical University of Bialystok, Poland
| | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Poland
| | | | | | | | - Slawomir Wolczynski
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Poland
| | | | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| |
Collapse
|
18
|
Heimann D, Börgel F, de Vries H, Bachmann K, Rose VE, Frehland B, Schepmann D, Heitman LH, Wünsch B. Optimization of pharmacokinetic properties by modification of a carbazole-based cannabinoid receptor subtype 2 (CB2) ligand. Eur J Med Chem 2018; 143:1436-1447. [DOI: 10.1016/j.ejmech.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
|
19
|
Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front Neurosci 2017; 11:30. [PMID: 28210207 PMCID: PMC5288380 DOI: 10.3389/fnins.2017.00030] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Federico De Marco
- Laboratory of Virology, The Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| |
Collapse
|
20
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
21
|
Moldovan RP, Teodoro R, Gao Y, Deuther-Conrad W, Kranz M, Wang Y, Kuwabara H, Nakano M, Valentine H, Fischer S, Pomper MG, Wong DF, Dannals RF, Brust P, Horti AG. Development of a High-Affinity PET Radioligand for Imaging Cannabinoid Subtype 2 Receptor. J Med Chem 2016; 59:7840-55. [PMID: 27500461 DOI: 10.1021/acs.jmedchem.6b00554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid receptors type 2 (CB2) represent a target with increasing importance for neuroimaging due to its upregulation under various pathological conditions. Encouraged by preliminary results obtained with [(11)C](Z)-N-(3-(2-methoxyethyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethyl-cyclopropanecarboxamide ([(11)C]A-836339, [(11)C]1) in a mouse model of acute neuroinflammation (induced by lipopolysaccharide, LPS), we designed a library of fluorinated analogues aiming for an [(18)F]-labeled radiotracer with improved CB2 binding affinity and selectivity. Compound (Z)-N-(3-(4-fluorobutyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethyl-cyclopropanecarboxamide (29) was selected as the ligand with the highest CB2 affinity (Ki = 0.39 nM) and selectivity over those of CB1 (factor of 1000). [(18)F]29 was prepared starting from the bromo precursor (53). Specific binding was shown in vitro, whereas fast metabolism was observed in vivo in CD-1 mice. Animal PET revealed a brain uptake comparable to that of [(11)C]1. In the LPS-treated mice, a 20-30% higher uptake in brain was found in comparison to that in nontreated mice (n = 3, P < 0.05).
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Yongjun Gao
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Yuchuan Wang
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Hiroto Kuwabara
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Masayoshi Nakano
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Heather Valentine
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Martin G Pomper
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Dean F Wong
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Robert F Dannals
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Andrew G Horti
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| |
Collapse
|
22
|
Tomasini MC, Borelli AC, Beggiato S, Ferraro L, Cassano T, Tanganelli S, Antonelli T. Differential Effects of Palmitoylethanolamide against Amyloid-β Induced Toxicity in Cortical Neuronal and Astrocytic Primary Cultures from Wild-Type and 3xTg-AD Mice. J Alzheimers Dis 2016; 46:407-21. [PMID: 25765918 DOI: 10.3233/jad-143039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Considering the heterogeneity of pathological changes occurring in Alzheimer's disease (AD), a therapeutic approach aimed both to neuroprotection and to neuroinflammation reduction may prove effective. Palmitoylethanolamide (PEA) has attracted attention for its anti-inflammatory/neuroprotective properties observed in AD animal models. OBJECTIVE AND METHODS We evaluated the protective role of PEA against amyloid-β₄₂ (Aβ₄₂) toxicity on cell viability and glutamatergic transmission in primary cultures of cerebral cortex neurons and astrocytes from the triple-transgenic murine model of AD (3xTg-AD) and their wild-type littermates (non-Tg) mice. RESULTS Aβ₄₂ (0.5 μM; 24 h) affects the cell viability in cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. These effects were counteracted by the pretreatment with PEA (0.1 μM). Basal glutamate levels in cultured neurons and astrocytes from 3xTg-AD mice were lower than those observed in cultured cells from non-Tg mice. Aβ₄₂-exposure reduced and increased glutamate levels in non-Tg mouse cortical neurons and astrocytes, respectively. These effects were counteracted by the pretreatment with PEA. By itself, PEA did not affect cell viability and glutamate levels in cultured cortical neurons and astrocytes from non-Tg or 3xTg-AD mice. CONCLUSION The exposure to Aβ₄₂ induced toxic effects on cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. Furthermore, PEA exerts differential effects against Aβ₄₂-induced toxicity in primary cultures of cortical neurons and astrocytes from non-Tg and 3xTg-AD mice. In particular, PEA displays protective properties in non-Tg but not in 3xTg-AD mouse neuronal cultured cells overexpressing Aβ.
Collapse
Affiliation(s)
- Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | | | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Sergio Tanganelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tiziana Antonelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| |
Collapse
|
23
|
A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol 2016; 263:1390-400. [DOI: 10.1007/s00415-016-8145-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
24
|
Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M. Toward more predictive genetic mouse models of Alzheimer's disease. Brain Res Bull 2015; 122:1-11. [PMID: 26708939 DOI: 10.1016/j.brainresbull.2015.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
Genetic mouse models for Alzheimer's disease (AD) have been widely used to understand aspects of the biology of the disease, but have had limited success in translating these findings to the clinic. In this review, we discuss the benefits and limitations of existing genetic models and recent advances in technologies (including high throughput sequencing and genome editing) that promise more predictive models. We summarize widely used biomarkers and behavioral tests for mouse models of AD and highlight best practices that will maximize translatability of preclinical findings.
Collapse
Affiliation(s)
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, United States.
| | | |
Collapse
|
25
|
Fernández-Ruiz J, Romero J, Ramos JA. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handb Exp Pharmacol 2015; 231:233-59. [PMID: 26408163 DOI: 10.1007/978-3-319-20825-1_8] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
- Departamento de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - José A Ramos
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
26
|
Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, Lee D, Pletnikova O, Cho E, Sayyida N, Hiatt A, Troncoso J, Davies P, Dannals RF, Pomper MG, Horti AG. Cannabinoid CB2 Receptors in a Mouse Model of Aβ Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS One 2015; 10:e0129618. [PMID: 26086915 PMCID: PMC4472959 DOI: 10.1371/journal.pone.0129618] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease (AD), one of the early responses to Aβ amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aβ-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1ΔE9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1ΔE9 mice were used in small animal PET with a CB2-targeting radiotracer, [11C]A836339. These studies revealed increased binding of [11C]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with Aβ plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that Aβ amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed.
Collapse
Affiliation(s)
- Alena V. Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hayden Ravert
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew Hiatt
- MAPP Biopharmaceutical Inc, San-Diego, CA, United States of America
| | - Juan Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Robert F. Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| |
Collapse
|
27
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
28
|
Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015; 30:313-27. [PMID: 25649017 DOI: 10.1002/mds.26142] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.
Collapse
Affiliation(s)
- Benzi Kluger
- Movement Disorders Center, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
29
|
Dowie MJ, Grimsey NL, Hoffman T, Faull RL, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat 2014; 59-60:62-71. [DOI: 10.1016/j.jchemneu.2014.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
|
30
|
Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 2014; 171:1347-60. [PMID: 24172185 PMCID: PMC3954477 DOI: 10.1111/bph.12492] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca(2+) homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- S G Fagan
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| | - V A Campbell
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| |
Collapse
|
31
|
Rodríguez-Cueto C, Benito C, Fernández-Ruiz J, Romero J, Hernández-Gálvez M, Gómez-Ruiz M. Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br J Pharmacol 2014; 171:1472-89. [PMID: 23808969 PMCID: PMC3954486 DOI: 10.1111/bph.12283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/05/2013] [Accepted: 06/16/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinocerebellar ataxias (SCAs) are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. EXPERIMENTAL APPROACH The status of cannabinoid receptor type 1 (CB1 ) and cannabinoid receptor type 2 (CB2 ) receptors in the post-mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. KEY RESULTS Immunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad ComplutenseMadrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Cristina Benito
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad ComplutenseMadrid, Spain
- Laboratorio de Apoyo a la Investigación, Fundación Hospital AlcorcónMadrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad ComplutenseMadrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Fundación Hospital AlcorcónMadrid, Spain
| | - Mariluz Hernández-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad ComplutenseMadrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad ComplutenseMadrid, Spain
| | - María Gómez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad ComplutenseMadrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
32
|
Benito C, Tolón RM, Castillo AI, Ruiz-Valdepeñas L, Martínez-Orgado JA, Fernández-Sánchez FJ, Vázquez C, Cravatt BF, Romero J. β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB₁ or CB₂ receptors. Br J Pharmacol 2012; 166:1474-89. [PMID: 22321194 DOI: 10.1111/j.1476-5381.2012.01889.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system may regulate glial cell functions and their responses to pathological stimuli, specifically, Alzheimer's disease. One experimental approach is the enhancement of endocannabinoid tone by blocking the activity of degradative enzymes, such as fatty acid amide hydrolase (FAAH). EXPERIMENTAL APPROACH We examined the role of FAAH in the response of astrocytes to the pathologic form of β-amyloid (Aβ). Astrocytes from wild-type mice (WT) and from mice lacking FAAH (FAAH-KO) were incubated with Aβ for 8, 24 and 48 h, and their inflammatory responses were quantified by elisa, western-blotting and real-time quantitative-PCR. KEY RESULTS FAAH-KO astrocytes were significantly more responsive to Aβ than WT astrocytes, as shown by the higher production of pro-inflammatory cytokines. Expression of COX-2, inducible NOS and TNF-α was also increased in Aβ-exposed KO astrocytes compared with that in WTs. These effects were accompanied by a differential pattern of activation of signalling cascades involved in mediating inflammatory responses, such as ERK1/2, p38MAPK and NFκB. PPAR-α and PPAR-γ as well as transient receptor potential vanilloid-1 (TRPV1), but not cannabinoid CB₁ or CB₂ receptors, mediate some of the differential changes observed in Aβ-exposed FAAH-KO astrocytes. The pharmacological blockade of FAAH did not render astrocytes more sensitive to Aβ. In contrast, exogenous addition of several acylethanolamides (anandamide, palmitoylethanolamide and oleoylethanolamide) induced an antiinflammatory response. CONCLUSIONS The genetic deletion of FAAH in astrocytes exacerbated their inflammatory phenotype against Aβ in a process involving PPAR-α, PPAR-γ and TRPV1 receptors.
Collapse
Affiliation(s)
- Cristina Benito
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Lago E, Gómez-Ruiz M, Moreno-Martet M, Fernández-Ruiz J. Cannabinoids, multiple sclerosis and neuroprotection. Expert Rev Clin Pharmacol 2012; 2:645-60. [PMID: 22112258 DOI: 10.1586/ecp.09.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cannabinoid signaling system participates in the control of cell homeostasis in the CNS, which explains why, in different neurodegenerative diseases including multiple sclerosis (MS), alterations in this system have been found to serve both as a pathogenic factor (malfunctioning of this system has been found at early phases of these diseases) and as a therapeutic target (the management of this system has beneficial effects). MS is an autoimmune disease that affects the CNS and it is characterized by inflammation, demyelination, remyelination, gliosis and axonal damage. Although it has been considered mainly as an inflammatory disorder, recent studies have recognized the importance of axonal loss both in the progression of the disorder and in the appearance of neurological disability, even in early stages of the disease. In recent years, several laboratories have addressed the therapeutic potential of cannabinoids in MS, given the experience reported by some MS patients who self-medicated with marijuana. Most of these studies focused on the alleviation of symptoms (spasticity, tremor, anxiety and pain) or on the inflammatory component of the disease. However, recent data also revealed the important neuroprotective action that could be exerted by cannabinoids in this disorder. The present review will be precisely centered on this neuroprotective potential, which is based mainly on antioxidant, anti-inflammatory and anti-excitotoxic properties, exerted through the activation of CB1 or CB2 receptors or other unknown mechanisms.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
34
|
D'Addario C, Di Francesco A, Arosio B, Gussago C, Dell'Osso B, Bari M, Galimberti D, Scarpini E, Altamura AC, Mari D, Maccarrone M. Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS One 2012; 7:e39186. [PMID: 22720070 PMCID: PMC3373611 DOI: 10.1371/journal.pone.0039186] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/21/2012] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Alzheimer disease (AD) is a progressive, degenerative and irreversible neurological disorder with few therapies available. In search for new potential targets, increasing evidence suggests a role for the endocannabinoid system (ECS) in the regulation of neurodegenerative processes. METHODS We have studied the gene expression status and the epigenetic regulation of ECS components in peripheral blood mononuclear cells (PBMCs) of subjects with late-onset AD (LOAD) and age-matched controls (CT). RESULTS We found an increase in fatty acid amide hydrolase (faah) gene expression in LOAD subjects (2.30 ± 0.48) when compared to CT (1.00 ± 0.14; *p<0.05) and no changes in the mRNA levels of any other gene of ECS elements. Consistently, we also observed in LOAD subjects an increase in FAAH protein levels (CT: 0.75 ± 0.04; LOAD: 1.11 ± 0.15; *p<0.05) and activity (pmol/min per mg protein CT: 103.80 ± 8.73; LOAD: 125.10 ± 4.00; *p<0.05), as well as a reduction in DNA methylation at faah gene promoter (CT: 55.90 ± 4.60%; LOAD: 41.20 ± 4.90%; *p<0.05). CONCLUSIONS Present findings suggest the involvement of FAAH in the pathogenesis of AD, highlighting the importance of epigenetic mechanisms in enzyme regulation; they also point to FAAH as a new potential biomarker for AD in easily accessible peripheral cells.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Gussago
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Bari
- Department of Experimental Medicine and Biochemical Sciences, Tor Vergata University, Rome, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Neurological Sciences, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
35
|
Update on the role of cannabinoid receptors after ischemic stroke. Mediators Inflamm 2012; 2012:824093. [PMID: 22577257 PMCID: PMC3337695 DOI: 10.1155/2012/824093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 01/22/2023] Open
Abstract
Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.
Collapse
|
36
|
Karl T, Cheng D, Garner B, Arnold JC. The therapeutic potential of the endocannabinoid system for Alzheimer's disease. Expert Opin Ther Targets 2012; 16:407-20. [PMID: 22448595 DOI: 10.1517/14728222.2012.671812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dementia currently affects over 35 million people worldwide. The most common form of dementia is Alzheimer's disease (AD). Currently, treatments for AD do not stop or reverse the progression of the disease and they are accompanied by side effects. AREAS COVERED The main features of AD pathology, treatment options currently available, the endocannabinoid system and its functionality in general and its role in AD pathology in detail will be outlined. A particular focus will be on the therapeutic potential of the phytocannabinoid cannabidiol. EXPERT OPINION Based on the complex pathology of AD, a preventative, multimodal drug approach targeting a combination of pathological AD symptoms appears ideal. Importantly, cannabinoids show anti-inflammatory, neuroprotective and antioxidant properties and have immunosuppressive effects. Thus, the cannabinoid system should be a prime target for AD therapy. The cannabinoid receptor 2 appears to be a promising candidate but its role in AD has to be investigated cautiously. Furthermore, the phytocannabinoid cannabidiol is of particular interest as it lacks the psychoactive and cognition-impairing properties of other cannabinoids. In conclusion, future research should focus on the evaluation of the effects of manipulations to the endocannabinoid system in established animal models for AD, combined with early-phase studies in humans.
Collapse
Affiliation(s)
- Tim Karl
- Neuroscience Research Australia, Randwick, NSW, Australia.
| | | | | | | |
Collapse
|
37
|
Kallendrusch S, Hobusch C, Ehrlich A, Ziebell S, Ueda N, Geisslinger G, Koch M, Dehghani F. Site-specific and time-dependent activation of the endocannabinoid system after transection of long-range projections. PLoS One 2012; 7:e33537. [PMID: 22457773 PMCID: PMC3310878 DOI: 10.1371/journal.pone.0033537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background After focal neuronal injury the endocannabinioid system becomes activated and protects or harms neurons depending on cannabinoid derivates and receptor subtypes. Endocannabinoids (eCBs) play a central role in controlling local responses and influencing neural plasticity and survival. However, little is known about the functional relevance of eCBs in long-range projection damage as observed in stroke or spinal cord injury (SCI). Methods In rat organotypic entorhino-hippocampal slice cultures (OHSC) as a relevant and suitable model for investigating projection fibers in the CNS we performed perforant pathway transection (PPT) and subsequently analyzed the spatial and temporal dynamics of eCB levels. This approach allows proper distinction of responses in originating neurons (entorhinal cortex), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus) and putative changes in more distant but synaptically connected subfields (cornu ammonis (CA) 1 region). Results Using LC-MS/MS, we measured a strong increase in arachidonoylethanolamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels in the denervation zone (dentate gyrus) 24 hours post lesion (hpl), whereas entorhinal cortex and CA1 region exhibited little if any changes. NAPE-PLD, responsible for biosynthesis of eCBs, was increased early, whereas FAAH, a catabolizing enzyme, was up-regulated 48hpl. Conclusion Neuronal damage as assessed by transection of long-range projections apparently provides a strong time-dependent and area-confined signal for de novo synthesis of eCB, presumably to restrict neuronal damage. The present data underlines the importance of activation of the eCB system in CNS pathologies and identifies a novel site-specific intrinsic regulation of eCBs after long-range projection damage.
Collapse
Affiliation(s)
- Sonja Kallendrusch
- Institute for Anatomy, Leipzig University, Leipzig, Germany
- Lipid Signaling Forschungszentrum, Frankfurt, Germany
| | | | - Angela Ehrlich
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | - Simone Ziebell
- Institute for Pharmacology, Goethe University, Frankfurt, Germany
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University, School of Medicine, Kagawa, Japan
| | - Gerd Geisslinger
- Institute for Pharmacology, Goethe University, Frankfurt, Germany
| | - Marco Koch
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | - Faramarz Dehghani
- Institute for Anatomy, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
38
|
Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Kuhn MN, Zvonok AM, Thakur GA, Makriyannis A, Milligan ED. Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia. Brain Behav 2012; 2:155-77. [PMID: 22574283 PMCID: PMC3345359 DOI: 10.1002/brb3.44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/30/2012] [Indexed: 12/30/2022] Open
Abstract
During pathological pain, the actions of the endocannabinoid system, including the cannabinoid 2 receptor (CB(2)R), leads to effective anti-allodynia and modifies a variety of spinal microglial and astrocyte responses. Here, following spinal administration of the CB(2)R compound, AM1241, we examined immunoreactive alterations in markers for activated p38 mitogen-activated protein kinase, interleukin-1β (IL-1β), the anti-inflammatory cytokine, interleukin-10 (IL-10) as well as degradative endocannabinoid enzymes, and markers for altered glial responses in neuropathic rats. In these studies, the dorsal horn of the spinal cord and dorsal root ganglia were examined. AM1241 produced profound anti-allodynia with corresponding immunoreactive levels of p38 mitogen-activated kinase, IL-1β, IL-10, the endocannabinoid enzyme monoacylglycerol lipase, and astrocyte activation markers that were similar to nonneuropathic controls. In contrast, spinal AM1241 did not suppress the increased microglial responses observed in neuropathic rats. The differences in fluorescent markers were determined within discrete anatomical regions by applying spectral analysis methods, which virtually eliminated nonspecific signal during the quantification of specific immunofluorescent intensity. These data reveal expression profiles that support the actions of intrathecal AM1241 control pathological pain through anti-inflammatory mechanisms by modulating critical glial factors, and additionally decrease expression levels of endocannabinoid degradative enzymes.
Collapse
Affiliation(s)
- Jenny L. Wilkerson
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - Katherine R. Gentry
- Department of Anesthesiology and Critical Care Medicine, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - Ellen C. Dengler
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - James A. Wallace
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - Audra A. Kerwin
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - Megan N. Kuhn
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alexander M. Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Ganesh A. Thakur
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | | | - Erin D. Milligan
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
39
|
Fernández-Ruiz J, Moreno-Martet M, Rodríguez-Cueto C, Palomo-Garo C, Gómez-Cañas M, Valdeolivas S, Guaza C, Romero J, Guzmán M, Mechoulam R, Ramos JA. Prospects for cannabinoid therapies in basal ganglia disorders. Br J Pharmacol 2012; 163:1365-78. [PMID: 21545415 DOI: 10.1111/j.1476-5381.2011.01365.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ(9) -tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB(1) and CB(2) receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB(2) receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB(2) receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB(2) receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB(2) receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB(2) receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gowran A, Noonan J, Campbell VA. The multiplicity of action of cannabinoids: implications for treating neurodegeneration. CNS Neurosci Ther 2011; 17:637-44. [PMID: 20875047 PMCID: PMC6493861 DOI: 10.1111/j.1755-5949.2010.00195.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cannabinoid (CB) system is widespread in the central nervous system and is crucial for controlling a range of neurophysiological processes such as pain, appetite, and cognition. The endogenous CB molecules, anandamide, and 2-arachidonoyl glycerol, interact with the G-protein coupled CB receptors, CB(1) and CB(2). These receptors are also targets for the phytocannabinoids isolated from the cannabis plant and synthetic CB receptor ligands. The CB system is emerging as a key regulator of neuronal cell fate and is capable of conferring neuroprotection by the direct engagement of prosurvival pathways and the control of neurogenesis. Many neurological conditions feature a neurodegenerative component that is associated with excitotoxicity, oxidative stress, and neuroinflammation, and certain CB molecules have been demonstrated to inhibit these events to halt the progression of neurodegeneration. Such properties are attractive in the development of new strategies to treat neurodegenerative conditions of diverse etiology, such as Alzheimer's disease, multiple sclerosis, and cerebral ischemia. This article will discuss the experimental and clinical evidence supporting a potential role for CB-based therapies in the treatment of certain neurological diseases that feature a neurodegenerative component.
Collapse
MESH Headings
- Aged
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Alzheimer Disease/psychology
- Brain Ischemia/drug therapy
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Humans
- Huntington Disease/drug therapy
- Multiple Sclerosis/drug therapy
- Neurodegenerative Diseases/drug therapy
- Parkinson Disease/drug therapy
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/physiology
Collapse
Affiliation(s)
- Aoife Gowran
- Department of Physiology, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
41
|
Cosenza-Nashat MA, Bauman A, Zhao ML, Morgello S, Suh HS, Lee SC. Cannabinoid receptor expression in HIV encephalitis and HIV-associated neuropathologic comorbidities. Neuropathol Appl Neurobiol 2011; 37:464-83. [PMID: 21450051 DOI: 10.1111/j.1365-2990.2011.01177.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Cannabinoids have been proposed for treating various neurodegenerative disorders and as adjunct therapy for HIV+ patients with neurologic sequelae. The expression of cannabinoid receptors (CB1 and CB2) has been reported in neurodegenerative diseases and in simian immunodeficiency virus encephalitis, yet the receptor expression in the central nervous system of HIV+ individuals is not known. METHODS An anti-CB1 antibody and two anti-CB2 antibodies were employed for immunohistochemistry in the cerebral cortex and white matter of HIV encephalitis (HIVE) and HIV-associated comorbidities, as well as control brains (HIV- and HIV+). RESULTS By quantitative image analysis, we observed that CB1 was increased in HIVE brains and those with comorbidities, while CB2 was significantly increased in the white matter of HIVE. Morphologically, CB1 was present in neurones, and both CB1 and CB2 were present in meningeal macrophages and subpial glia in all brains. In HIVE, CB1 was found in white matter microglia and perivascular cells, while CB2 was increased in microglia, astrocytes and perivascular macrophages. Double immunofluorescence with cell-specific markers and immunoblots on primary cultured microglia and astrocytes substantiated the glial localization of the cannabinoid receptors and specificity of the antibodies. CONCLUSIONS Our study indicates that cannabinoid receptor expression occurs in glia in HIVE brains, and this may have ramifications for the potential use of cannabinoid ligands in HIV-infected patients.
Collapse
Affiliation(s)
- M A Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx Department of Pathology, Mt Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
42
|
Mulder J, Zilberter M, Pasquaré SJ, Alpár A, Schulte G, Ferreira SG, Köfalvi A, Martín-Moreno AM, Keimpema E, Tanila H, Watanabe M, Mackie K, Hortobágyi T, de Ceballos ML, Harkany T. Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. ACTA ACUST UNITED AC 2011; 134:1041-60. [PMID: 21459826 DOI: 10.1093/brain/awr046] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retrograde messengers adjust the precise timing of neurotransmitter release from the presynapse, thus modulating synaptic efficacy and neuronal activity. 2-Arachidonoyl glycerol, an endocannabinoid, is one such messenger produced in the postsynapse that inhibits neurotransmitter release upon activating presynaptic CB(1) cannabinoid receptors. Cognitive decline in Alzheimer's disease is due to synaptic failure in hippocampal neuronal networks. We hypothesized that errant retrograde 2-arachidonoyl glycerol signalling impairs synaptic neurotransmission in Alzheimer's disease. Comparative protein profiling and quantitative morphometry showed that overall CB(1) cannabinoid receptor protein levels in the hippocampi of patients with Alzheimer's disease remain unchanged relative to age-matched controls, and CB(1) cannabinoid receptor-positive presynapses engulf amyloid-β-containing senile plaques. Hippocampal protein concentrations for the sn-1-diacylglycerol lipase α and β isoforms, synthesizing 2-arachidonoyl glycerol, significantly increased in definite Alzheimer's (Braak stage VI), with ectopic sn-1-diacylglycerol lipase β expression found in microglia accumulating near senile plaques and apposing CB(1) cannabinoid receptor-positive presynapses. We found that microglia, expressing two 2-arachidonoyl glycerol-degrading enzymes, serine hydrolase α/β-hydrolase domain-containing 6 and monoacylglycerol lipase, begin to surround senile plaques in probable Alzheimer's disease (Braak stage III). However, Alzheimer's pathology differentially impacts serine hydrolase α/β-hydrolase domain-containing 6 and monoacylglycerol lipase in hippocampal neurons: serine hydrolase α/β-hydrolase domain-containing 6 expression ceases in neurofibrillary tangle-bearing pyramidal cells. In contrast, pyramidal cells containing hyperphosphorylated tau retain monoacylglycerol lipase expression, although at levels significantly lower than in neurons lacking neurofibrillary pathology. Here, monoacylglycerol lipase accumulates in CB(1) cannabinoid receptor-positive presynapses. Subcellular fractionation revealed impaired monoacylglycerol lipase recruitment to biological membranes in post-mortem Alzheimer's tissues, suggesting that disease progression slows the termination of 2-arachidonoyl glycerol signalling. We have experimentally confirmed that altered 2-arachidonoyl glycerol signalling could contribute to synapse silencing in Alzheimer's disease by demonstrating significantly prolonged depolarization-induced suppression of inhibition when superfusing mouse hippocampi with amyloid-β. We propose that the temporal dynamics and cellular specificity of molecular rearrangements impairing 2-arachidonoyl glycerol availability and actions may differ from those of anandamide. Thus, enhanced endocannabinoid signalling, particularly around senile plaques, can exacerbate synaptic failure in Alzheimer's disease.
Collapse
Affiliation(s)
- Jan Mulder
- European Neuroscience Institute at Aberdeen, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jung KM, Astarita G, Yasar S, Vasilevko V, Cribbs DH, Head E, Cotman CW, Piomelli D. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. Neurobiol Aging 2011; 33:1522-32. [PMID: 21546126 DOI: 10.1016/j.neurobiolaging.2011.03.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/14/2010] [Accepted: 03/15/2011] [Indexed: 01/24/2023]
Abstract
The endocannabinoids and their attending cannabinoid (CB)(1) receptors have been implicated in the control of cognition, but their possible roles in dementias are still unclear. In the present study, we used liquid chromatography/mass spectrometry to conduct an endocannabinoid-targeted lipidomic analysis of postmortem brain samples from 38 Alzheimer's disease (AD) patients and 17 control subjects, matched for age and postmortem interval. The analysis revealed that midfrontal and temporal cortex tissue from AD patients contains, relative to control subjects, significantly lower levels of the endocannabinoid anandamide and its precursor 1-stearoyl, 2-docosahexaenoyl-sn-glycero-phosphoethanolamine-N-arachidonoyl (NArPE). No such difference was observed with the endocannabinoid 2-arachidonoyl-sn-glycerol or 15 additional lipid species. In AD patients, but not in control subjects, statistically detectable positive correlations were found between (1) anandamide content in midfrontal cortex and scores of the Kendrick's Digit Copy test (p = 0.004, r = 0.81; n = 10), which measures speed of information processing; and (2) anandamide content in temporal cortex and scores of the Boston Naming test (p = 0.027, r = 0.52; n = 18), which assesses language facility. Furthermore, anandamide and NArPE levels in midfrontal cortex of the study subjects inversely correlated with levels of the neurotoxic amyloid peptide, amyloid β-protein (Aβ)(42), while showing no association with Aβ(40) levels, amyloid plaque load or tau protein phosphorylation. Finally, high endogenous levels of Aβ(42) in Swedish mutant form of amyloid precursor protein (APP(SWE))/Neuro-2a cells directly reduced anandamide and NArPE concentrations in cells lysates. The results suggest that an Aβ(42)-dependent impairment in brain anandamide mobilization contributes to cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697-4625, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 2011; 50:193-211. [PMID: 21295074 DOI: 10.1016/j.plipres.2011.01.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/19/2022]
Abstract
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects.
Collapse
|
45
|
Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 2010; 160:480-98. [PMID: 20590559 DOI: 10.1111/j.1476-5381.2010.00735.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years. Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis. Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar. The discovery of the psychoactive component of cannabis resin, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) occurred long before the serendipitous identification of a G-protein coupled receptor at which Delta(9)-THC is active in the brain. The subsequent finding of endogenous cannabinoid compounds, the synthesis of which is directed by neuronal excitability and which in turn served to regulate that excitability, further widened the range of potential drug targets through which the endocannabinoid system can be manipulated. As a result of this, alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders. In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.
Collapse
Affiliation(s)
- Emma L Scotter
- Centre for Brain Research and Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
46
|
Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2010; 3:2517-2553. [PMID: 27713365 PMCID: PMC4033937 DOI: 10.3390/ph3082517] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 12/26/2022] Open
Abstract
Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.
Collapse
|
47
|
wyffels L, Muccioli GG, Kapanda CN, Labar G, De Bruyne S, De Vos F, Lambert DM. PET imaging of fatty acid amide hydrolase in the brain: synthesis and biological evaluation of an 11C-labelled URB597 analogue. Nucl Med Biol 2010; 37:665-75. [DOI: 10.1016/j.nucmedbio.2010.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 11/27/2022]
|
48
|
Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M. Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 2010; 23:25-34. [PMID: 20377992 DOI: 10.1177/039463201002300103] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is commonly accepted from gene expression studies that the CB2 receptor is expressed by most cell types of the rodent and human immune system. However, the exact identity of cells expressing CB2 receptor protein in human blood or the abundance of receptors expressed by each immune subset is not well characterised. We conducted a detailed analysis of CB2 protein levels expressed by blood-derived immune cells from healthy human donors. Flow-cytometry was conducted using 4 commercially available anti-CB2 polyclonal antibodies in conjunction with a selection of immune cell specific markers. Across multiple healthy subjects we observed that NK cells, B-lymphocytes and monocytes expressed a higher level of CB2 receptor than CD4+ or CD8+ T-lymphocytes. Neutrophils also expressed a low level of CB2 receptor. NK cells had the greatest variation in CB2 expression levels, whereas for each of the other cell types CB2 levels were relatively similar between subjects. In contrast to other methods, the high sensitivity of flow-cytometry revealed that CB2 receptors are present on resting T-lymphocytes at low abundance in some healthy subjects. These data provide the first detailed analysis of CB2 protein levels in blood leukocyte subsets from healthy donors and identifies the cell types which could be targeted with CB-mimetic drugs in humans.
Collapse
Affiliation(s)
- E S Graham
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
49
|
Abstract
There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).
Collapse
|
50
|
Fernández-Ruiz J, García C, Sagredo O, Gómez-Ruiz M, de Lago E. The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 2010; 14:387-404. [DOI: 10.1517/14728221003709792] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|