1
|
Loss of
Cntnap2
in the Rat Causes Autism‐Related Alterations in Social Interactions, Stereotypic Behavior, and Sensory Processing. Autism Res 2020; 13:1698-1717. [DOI: 10.1002/aur.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
2
|
Modifying the Adult Rat Tonotopic Map with Sound Exposure Produces Frequency Discrimination Deficits That Are Recovered with Training. J Neurosci 2020; 40:2259-2268. [PMID: 32024780 DOI: 10.1523/jneurosci.1445-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Frequency discrimination learning is often accompanied by an expansion of the functional region corresponding to the target frequency within the auditory cortex. Although the perceptual significance of this plastic functional reorganization remains debated, greater cortical representation is generally thought to improve perception for a stimulus. Recently, the ability to expand functional representations through passive sound experience has been demonstrated in adult rats, suggesting that it may be possible to design passive sound exposures to enhance specific perceptual abilities in adulthood. To test this hypothesis, we exposed adult female Long-Evans rats to 2 weeks of moderate-intensity broadband white noise followed by 1 week of 7 kHz tone pips, a paradigm that results in the functional over-representation of 7 kHz within the adult tonotopic map. We then tested the ability of exposed rats to identify 7 kHz among distractor tones on an adaptive tone discrimination task. Contrary to our expectations, we found that map expansion impaired frequency discrimination and delayed perceptual learning. Rats exposed to noise followed by 15 kHz tone pips were not impaired at the same task. Exposed rats also exhibited changes in auditory cortical responses consistent with reduced discriminability of the exposure tone. Encouragingly, these deficits were completely recovered with training. Our results provide strong evidence that map expansion alone does not imply improved perception. Rather, plastic changes in frequency representation induced by bottom-up processes can worsen perceptual faculties, but because of the very nature of plasticity these changes are inherently reversible.SIGNIFICANCE STATEMENT The potent ability of our acoustic environment to shape cortical sensory representations throughout life has led to a growing interest in harnessing both passive sound experience and operant perceptual learning to enhance mature cortical function. We use sound exposure to induce targeted expansions in the adult rat tonotopic map and find that these bottom-up changes unexpectedly impair performance on an adaptive tone discrimination task. Encouragingly, however, we also show that training promotes the recovery of electrophysiological measures of reduced neural discriminability following sound exposure. These results provide support for future neuroplasticity-based treatments that take into account both the sensory statistics of our external environment and perceptual training strategies to improve learning and memory in the adult auditory system.
Collapse
|
3
|
Rotaru DC, Mientjes EJ, Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience 2020; 445:172-189. [PMID: 32088294 DOI: 10.1016/j.neuroscience.2020.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. The pathophysiology of AS is still unclear and a treatment is lacking. Animal models of AS recapitulate the genotypic and phenotypic features observed in AS patients, and have been invaluable for understanding the disease process as well as identifying apropriate drug targets. Using these AS mouse models we have learned that loss of UBE3A probably affects many areas of the brain, leading to increased neuronal excitability and a loss of synaptic spines, along with changes in a number of distinct behaviours. Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020; 134:104622. [PMID: 31698054 DOI: 10.1016/j.nbd.2019.104622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common genetic cause of autism and intellectual disability. Fragile X mental retardation gene (Fmr1) knock-out (KO) mice display core deficits of FXS, including abnormally increased sound-evoked responses, and show a delayed development of parvalbumin (PV) cells. Here, we present the surprising result that sound exposure during early development reduces correlates of auditory hypersensitivity in Fmr1 KO mice. METHODS Fmr1 KO and wild-type (WT) mice were raised in a sound-attenuated environment (AE) or sound-exposed (SE) to 14 kHz tones (5 Hz repetition rate) from P9 until P21. At P21-P23, event-related potentials (ERPs), dendritic spine density, PV expression and phosphorylation of tropomyosin receptor kinase B (TrkB) were analyzed in the auditory cortex of AE and SE mice. RESULTS Enhanced N1 amplitude of ERPs, impaired PV cell development, and increased spine density in layers (L) 2/3 and L5/6 excitatory neurons were observed in AE Fmr1 KO compared to WT mice. In contrast, developmental sound exposure normalized ERP N1 amplitude, density of PV cells and dendritic spines in SE Fmr1 KO mice. Finally, TrkB phosphorylation was reduced in AE Fmr1 KO, but was enhanced in SE Fmr1 KO mice, suggesting that BDNF-TrkB signaling may be regulated by sound exposure to influence PV cell development. CONCLUSIONS Our results demonstrate that sound exposure, but not attenuation, during early developmental window restores molecular, cellular and functional properties in the auditory cortex of Fmr1 KO mice, and suggest this approach as a potential treatment for sensory phenotypes in FXS.
Collapse
Affiliation(s)
- Anna O Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Sarah M Reinhard
- Psychology Department, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | | | - Veronica Scott
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Psychology Department, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
López Ramón y Cajal C. Antenatal study of the Heschl’s gyrus: The first step to understanding prenatal learning. Med Hypotheses 2019; 130:109290. [DOI: 10.1016/j.mehy.2019.109290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
|
6
|
Reinhard SM, Abundez-Toledo M, Espinoza K, Razak KA. Effects of developmental noise exposure on inhibitory cell densities and perineuronal nets in A1 and AAF of mice. Hear Res 2019; 381:107781. [DOI: 10.1016/j.heares.2019.107781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
7
|
Stem Cells: A New Hope for Hearing Loss Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:165-180. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.
Collapse
|
8
|
Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat. Neural Plast 2018; 2018:5903720. [PMID: 30002673 PMCID: PMC5998158 DOI: 10.1155/2018/5903720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.
Collapse
|
9
|
Takesian AE, Bogart LJ, Lichtman JW, Hensch TK. Inhibitory circuit gating of auditory critical-period plasticity. Nat Neurosci 2018; 21:218-227. [PMID: 29358666 PMCID: PMC5978727 DOI: 10.1038/s41593-017-0064-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Cortical sensory maps are remodeled during early life to adapt to the surrounding environment. Both sensory and contextual signals are important for induction of this plasticity, but how these signals converge to sculpt developing thalamocortical circuits remains largely unknown. Here we show that layer 1 (L1) of primary auditory cortex (A1) is a key hub where neuromodulatory and topographically organized thalamic inputs meet to tune the cortical layers below. Inhibitory interneurons in L1 send narrowly descending projections to differentially modulate thalamic drive to pyramidal and parvalbumin-expressing (PV) cells in L4, creating brief windows of intracolumnar activation. Silencing of L1 (but not VIP-expressing) cells abolishes map plasticity during the tonotopic critical period. Developmental transitions in nicotinic acetylcholine receptor (nAChR) sensitivity in these cells caused by Lynx1 protein can be overridden to extend critical-period closure. Notably, thalamocortical maps in L1 are themselves stable, and serve as a scaffold for cortical plasticity throughout life.
Collapse
Affiliation(s)
- Anne E Takesian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Luke J Bogart
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Thomas ME, Friedman NHM, Cisneros-Franco JM, Ouellet L, de Villers-Sidani É. The Prolonged Masking of Temporal Acoustic Inputs with Noise Drives Plasticity in the Adult Rat Auditory Cortex. Cereb Cortex 2018; 29:1032-1046. [DOI: 10.1093/cercor/bhy009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Nathan H M Friedman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Miguel Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Lydia Ouellet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
11
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Abstract
Over the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
13
|
The effect of noise exposure during the developmental period on the function of the auditory system. Hear Res 2017; 352:1-11. [DOI: 10.1016/j.heares.2016.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
|
14
|
Bao S. Perceptual learning in the developing auditory cortex. Eur J Neurosci 2015; 41:718-24. [PMID: 25728188 DOI: 10.1111/ejn.12826] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant. How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the most important classes of sounds, animal vocalizations? How does naturalistic acoustic experience shape cortical sound representation and perception? To answer these questions, we need to consider an unusual strategy, statistical learning, where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain statistical structures of natural animal vocalizations shape auditory cortical acoustic representations, and how cortical plasticity may underlie learned categorical sound perception. These results will be discussed in the context of human speech perception.
Collapse
Affiliation(s)
- Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
15
|
Tomková M, Tomek J, Novák O, Zelenka O, Syka J, Brom C. Formation and disruption of tonotopy in a large-scale model of the auditory cortex. J Comput Neurosci 2015; 39:131-53. [PMID: 26344164 DOI: 10.1007/s10827-015-0568-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
Collapse
Affiliation(s)
- Markéta Tomková
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. .,Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK.
| | - Jakub Tomek
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.,Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK
| | - Ondřej Novák
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Ondřej Zelenka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Cyril Brom
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
16
|
Frequency discrimination in rats exposed to noise as juveniles. Physiol Behav 2015; 144:60-5. [DOI: 10.1016/j.physbeh.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/18/2022]
|
17
|
Ouda L, Burianová J, Balogová Z, Lu HP, Syka J. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure. Brain Struct Funct 2014; 221:617-29. [PMID: 25408549 DOI: 10.1007/s00429-014-0929-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. In addition, the numerical density of dendritic spines was decreased on the branches of neurons in the ventral division of the MGB in noise-exposed animals. In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.
Collapse
Affiliation(s)
- Ladislav Ouda
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Jana Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Balogová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hui Pin Lu
- Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
18
|
Auditory neuroplasticity, hearing loss and cochlear implants. Cell Tissue Res 2014; 361:251-69. [DOI: 10.1007/s00441-014-2004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
19
|
Bureš Z, Bartošová J, Lindovský J, Chumak T, Popelář J, Syka J. Acoustical enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. Eur J Neurosci 2014; 40:3674-83. [PMID: 25224160 DOI: 10.1111/ejn.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/29/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
Abstract
The structure and function of the auditory system may be influenced by acoustic stimulation, especially during the early postnatal period. This study explores the effects of an acoustically enriched environment applied during the third and fourth week of life on the responsiveness of inferior colliculus neurons in rats. The enrichment comprised a spectrally and temporally modulated complex sound reinforced with several target acoustic stimuli, one of which triggered a reward release. The exposure permanently influenced neuronal representation of the sound frequency and intensity, resulting in lower excitatory thresholds at neuronal characteristic frequency, an increased frequency selectivity, larger response magnitudes, steeper rate-intensity functions and an increased spontaneous activity. The effect was general and non-specific, spanning the entire hearing range - no changes specific to the frequency band of the target stimuli were found. The alterations depended on the activity of animals during the enrichment - a higher activity of rats in the stimulus-reward paradigm led to more profound changes compared with the treatment when the stimulus-reward paradigm was not used. Furthermore, the exposure in early life led to permanent changes in response parameters, whereas the application of the same environment in adulthood influenced only a subset of the examined parameters and had only a temporary effect. These findings indicate that a rich and stimulating acoustic environment during early development, particularly when reinforced by positive feedback, may permanently affect signal processing in the subcortical auditory nuclei, including the excitatory thresholds of neurons and their frequency and intensity resolution.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic; Department of Electrical Engineering and Computer Science, College of Polytechnics, Jihlava, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Keating P, King AJ. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 2013; 7:123. [PMID: 24409125 PMCID: PMC3873525 DOI: 10.3389/fnsys.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022] Open
Abstract
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
21
|
Kamal B, Holman C, de Villers-Sidani E. Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments. Front Syst Neurosci 2013; 7:52. [PMID: 24062649 PMCID: PMC3775538 DOI: 10.3389/fnsys.2013.00052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/27/2013] [Indexed: 12/19/2022] Open
Abstract
Age-related impairments in the primary auditory cortex (A1) include poor tuning selectivity, neural desynchronization, and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.
Collapse
Affiliation(s)
- Brishna Kamal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute Montreal, QC, Canada
| | | | | |
Collapse
|
22
|
Alfano C, Studer M. Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013; 73:411-47. [PMID: 23239642 DOI: 10.1002/dneu.22067] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022]
Abstract
The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, Nice, F-06108, France.
| | | |
Collapse
|
23
|
Yang S, Zhang LS, Gibboni R, Weiner B, Bao S. Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-α-deficient mice. Cereb Cortex 2013; 24:1956-65. [PMID: 23448874 DOI: 10.1093/cercor/bht053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Early experience shapes sensory representations in a critical period of heightened plasticity. This adaptive process is thought to involve both Hebbian and homeostatic synaptic plasticity. Although Hebbian plasticity has been investigated as a mechanism for cortical map reorganization, less is known about the contribution of homeostatic plasticity. We investigated the role of homeostatic synaptic plasticity in the development and refinement of frequency representations in the primary auditory cortex using the tumor necrosis factor-α (TNF-α) knockout (KO), a mutant mouse with impaired homeostatic but normal Hebbian plasticity. Our results indicate that these mice develop weaker tonal responses and incomplete frequency representations. Rearing in a single-frequency revealed a normal expansion of cortical representations in KO mice. However, TNF-α KOs lacked homeostatic adjustments of cortical responses following exposure to multiple frequencies. Specifically, while this sensory over-stimulation resulted in competitive refinement of frequency tuning in wild-type controls, it broadened frequency tuning in TNF-α KOs. Our results suggest that homeostatic plasticity plays an important role in gain control and competitive interaction in sensory cortical development.
Collapse
Affiliation(s)
- Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Li S Zhang
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Robert Gibboni
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Benjamin Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Shaowen Bao
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Profant O, Burianová J, Syka J. The response properties of neurons in different fields of the auditory cortex in the rat. Hear Res 2013; 296:51-9. [DOI: 10.1016/j.heares.2012.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
|
25
|
Zheng W. Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise. Front Syst Neurosci 2012; 6:65. [PMID: 22973201 PMCID: PMC3438459 DOI: 10.3389/fnsys.2012.00065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/27/2012] [Indexed: 12/11/2022] Open
Abstract
Behavioral adaption to a changing environment is critical for an animal's survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.
Collapse
|
26
|
Takesian AE, Kotak VC, Sanes DH. Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol 2011; 107:937-47. [PMID: 22090457 DOI: 10.1152/jn.00515.2011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The developmental plasticity of excitatory synapses is well established, particularly as a function of age. If similar principles apply to inhibitory synapses, then we would expect manipulations during juvenile development to produce a greater effect and experience-dependent changes to persist into adulthood. In this study, we first characterized the maturation of cortical inhibitory synapse function from just before the onset of hearing through adulthood. We then examined the long-term effects of developmental conductive hearing loss (CHL). Whole cell recordings from gerbil thalamocortical brain slices revealed a significant decrease in the decay time of inhibitory currents during the first 3 mo of normal development. When assessed in adults, developmental CHL led to an enduring decrease of inhibitory synaptic strength, whereas the maturation of synaptic decay time was only delayed. Early CHL also depressed the maximum discharge rate of fast-spiking, but not low-threshold-spiking, inhibitory interneurons. We then asked whether adult onset CHL had a similar effect, but neither inhibitory current amplitude nor decay time was altered. Thus inhibitory synapse function displays a protracted development during which deficits can be induced by juvenile, but not adult, hearing loss. These long-lasting changes to inhibitory function may contribute to the auditory processing deficits associated with early hearing loss.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | |
Collapse
|
27
|
Froemke RC, Martins ARO. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity. Hear Res 2011; 279:149-61. [PMID: 21426927 PMCID: PMC3138852 DOI: 10.1016/j.heares.2011.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/07/2011] [Accepted: 03/15/2011] [Indexed: 01/10/2023]
Abstract
The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans.
Collapse
Affiliation(s)
- Robert C Froemke
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
28
|
O’Neil JN, Connelly CJ, Limb CJ, Ryugo DK. Synaptic morphology and the influence of auditory experience. Hear Res 2011; 279:118-30. [PMID: 21310226 PMCID: PMC3116016 DOI: 10.1016/j.heares.2011.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 11/27/2022]
Abstract
The auditory experience is crucial for the normal development and maturation of brain structure and the maintenance of the auditory pathways. The specific aims of this review are (i) to provide a brief background of the synaptic morphology of the endbulb of Held in hearing and deaf animals; (ii) to argue the importance of this large synaptic ending in linking neural activity along ascending pathways to environmental acoustic events; (iii) to describe how the re-introduction of electrical activity changes this synapse; and (iv) to examine how changes at the endbulb synapse initiate trans-synaptic changes in ascending auditory projections to the superior olivary complex, the inferior complex, and the auditory cortex.
Collapse
Affiliation(s)
- Jahn N. O’Neil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Catherine J. Connelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Charles J. Limb
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David K. Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Program in Neuroscience, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
29
|
A critical period for auditory thalamocortical connectivity. Nat Neurosci 2011; 14:1189-94. [PMID: 21804538 PMCID: PMC3419581 DOI: 10.1038/nn.2882] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/06/2011] [Indexed: 11/08/2022]
Abstract
Neural circuits are shaped by experience during periods of heightened brain plasticity in early postnatal life. Exposure to acoustic features produces age-dependent changes through largely unresolved cellular mechanisms and sites of origin. We isolated the refinement of auditory thalamocortical connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary locus of change for the tonotopic plasticity. The evolving postnatal connectivity between thalamus and cortex in the days following hearing onset may therefore determine a critical period for auditory processing.
Collapse
|
30
|
Pienkowski M, Eggermont JJ. Cortical tonotopic map plasticity and behavior. Neurosci Biobehav Rev 2011; 35:2117-28. [PMID: 21315757 DOI: 10.1016/j.neubiorev.2011.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
Abstract
Central topographic representations of sensory epithelia have a genetic basis, but are refined by patterns of afferent input and by behavioral demands. Here we review such experience-driven map development and plasticity, focusing on the auditory system, and giving particular consideration to its adaptive value and to the putative mechanisms involved. Recent data have challenged the widely held notion that only the developing auditory brain can be influenced by changes to the prevailing acoustic environment, unless those changes convey information of behavioral relevance. Specifically, it has been shown that persistent exposure of adult animals to random, bandlimited, moderately loud sounds can lead to a reorganization of auditory cortex not unlike that following restricted hearing loss. The mature auditory brain is thus more plastic than previously supposed, with potentially troubling consequences for those working or living in noisy environments, even at exposure levels considerably below those presently considered just-acceptable.
Collapse
Affiliation(s)
- Martin Pienkowski
- Hotchkiss Brain Institute, Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
31
|
Froemke RC, Jones BJ. Development of auditory cortical synaptic receptive fields. Neurosci Biobehav Rev 2011; 35:2105-13. [PMID: 21329722 DOI: 10.1016/j.neubiorev.2011.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control cortical receptive field plasticity are beginning to be described, particularly for frequency tuning in rodent primary auditory cortex. Inhibitory circuitry plays a major role in critical period regulation, and new evidence suggests that the formation of excitatory-inhibitory balance determines the duration of critical period plasticity for auditory cortical frequency tuning. Cortical inhibition is poorly tuned in the infant brain, but becomes co-tuned with excitation in an experience-dependent manner over the first postnatal month. We discuss evidence suggesting that this may be a general feature of the developing cortex, and describe the functional implications of such transient excitatory-inhibitory imbalance.
Collapse
Affiliation(s)
- Robert C Froemke
- Molecular Neurobiology Program, the Helen and Martin Kimmel Center for Biology and Medicine/Skirball Institute for Biomolecular Medicine, Departments of Otolaryngology, Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
32
|
Cortical Function in Children Receiving Bilateral Cochlear Implants Simultaneously or After a Period of Interimplant Delay. Otol Neurotol 2010; 31:1293-9. [DOI: 10.1097/mao.0b013e3181e8f965] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
O'Neil JN, Limb CJ, Baker CA, Ryugo DK. Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. J Comp Neurol 2010; 518:2382-404. [PMID: 20437534 DOI: 10.1002/cne.22339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6-month-old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10-19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, postsynaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age-dependent fashion.
Collapse
Affiliation(s)
- Jahn N O'Neil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
34
|
Bureš Z, Grécová J, Popelář J, Syka J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Eur J Neurosci 2010; 32:155-64. [DOI: 10.1111/j.1460-9568.2010.07280.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Popescu MV, Polley DB. Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron 2010; 65:718-31. [PMID: 20223206 DOI: 10.1016/j.neuron.2010.02.019] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
Abstract
Degraded sensory experience during critical periods of development can have adverse effects on brain function. In the auditory system, conductive hearing loss associated with childhood ear infections can produce long-lasting deficits in auditory perceptual acuity, much like amblyopia in the visual system. Here we explore the neural mechanisms that may underlie "amblyaudio" by inducing reversible monaural deprivation (MD) in infant, juvenile, and adult rats. MD distorted tonotopic maps, weakened the deprived ear's representation, strengthened the open ear's representation, and disrupted binaural integration of interaural level differences (ILD). Bidirectional plasticity effects were strictly governed by critical periods, were more strongly expressed in primary auditory cortex than inferior colliculus, and directly impacted neural coding accuracy. These findings highlight a remarkable degree of competitive plasticity between aural representations and suggest that the enduring perceptual sequelae of childhood hearing loss might be traced to maladaptive plasticity during critical periods of auditory cortex development.
Collapse
Affiliation(s)
- Maria V Popescu
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
36
|
Pienkowski M, Eggermont JJ. Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hear Res 2009; 257:24-40. [DOI: 10.1016/j.heares.2009.07.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/10/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
|
37
|
Ceponiene R, Cummings A, Wulfeck B, Ballantyne A, Townsend J. Spectral vs. temporal auditory processing in specific language impairment: a developmental ERP study. BRAIN AND LANGUAGE 2009; 110:107-120. [PMID: 19457549 PMCID: PMC2731814 DOI: 10.1016/j.bandl.2009.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 04/01/2009] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
Pre-linguistic sensory deficits, especially in "temporal" processing, have been implicated in developmental language impairment (LI). However, recent evidence has been equivocal with data suggesting problems in the spectral domain. The present study examined event-related potential (ERP) measures of auditory sensory temporal and spectral processing, and their interaction, in typical children and those with LI (7-17 years; n=25 per group). The stimuli were three CV syllables and three consonant-to-vowel transitions (spectral sweeps) isolated from the syllables. Each of these six stimuli appeared in three durations (transitions: 20, 50, and 80 ms; syllables: 120, 150, and 180 ms). Behaviorally, the group with LIs showed inferior syllable discrimination both with long and short stimuli. In ERPs, trends were observed in the group with LI for diminished long-latency negativities (the N2-N4 peaks) and a developmentally transient enhancement of the P2 peak. Some, but not all, ERP indices of spectral processing also showed trends to be diminished in the group with LI specifically in responses to syllables. Importantly, measures of the transition N2-N4 peaks correlated with expressive language abilities in the LI children. None of the group differences depended on stimulus duration. Therefore, sound brevity did not account for the diminished spectral resolution in these LI children. Rather, the results suggest a deficit in acoustic feature integration at higher levels of auditory sensory processing. The observed maturational trajectory suggests a non-linear developmental deviance rather than simple delay.
Collapse
Affiliation(s)
- R Ceponiene
- Project in Neural and Cognitive Development, University of California, San Diego, La Jolla, CA 92093-0113, United States.
| | | | | | | | | |
Collapse
|
38
|
Hogsden JL, Dringenberg HC. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life. Eur J Neurosci 2009; 30:376-84. [PMID: 19656178 DOI: 10.1111/j.1460-9568.2009.06835.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The composition of N-methyl-D-aspartate (NMDA) receptor subunits influences the degree of synaptic plasticity expressed during development and into adulthood. Here, we show that theta-burst stimulation of the medial geniculate nucleus reliably induced NMDA receptor-dependent long-term potentiation (LTP) of field postsynaptic potentials recorded in the primary auditory cortex (A1) of urethane-anesthetized rats. Furthermore, substantially greater levels of LTP were elicited in juvenile animals (30-37 days old; approximately 55% maximal potentiation) than in adult animals (approximately 30% potentiation). Masking patterned sound via continuous white noise exposure during early postnatal life (from postnatal day 5 to postnatal day 50-60) resulted in enhanced, juvenile-like levels of LTP (approximately 70% maximal potentiation) relative to age-matched controls reared in unaltered acoustic environments (approximately 30%). Rats reared in white noise and then placed in unaltered acoustic environments for 40-50 days showed levels of LTP comparable to those of adult controls, indicating that white noise rearing results in a form of developmental arrest that can be overcome by subsequent patterned sound exposure. We explored the mechanisms mediating white noise-induced plasticity enhancements by local NR2B subunit antagonist application in A1. NR2B subunit antagonists (Ro 25-6981 or ifenprodil) completely reversed white noise-induced LTP enhancement at concentrations that did not affect LTP in adult or age-matched controls. We conclude that white noise exposure during early postnatal life results in the maintenance of juvenile-like, higher levels of plasticity in A1, an effect that appears to be critically dependent on NR2B subunit activation.
Collapse
Affiliation(s)
- Jennifer L Hogsden
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
39
|
Sanes DH, Bao S. Tuning up the developing auditory CNS. Curr Opin Neurobiol 2009; 19:188-99. [PMID: 19535241 DOI: 10.1016/j.conb.2009.05.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 01/05/2023]
Abstract
Although the auditory system has limited information processing resources, the acoustic environment is infinitely variable. To properly encode the natural environment, the developing central auditory system becomes somewhat specialized through experience-dependent adaptive mechanisms that operate during a sensitive time window. Recent studies have demonstrated that cellular and synaptic plasticity occurs throughout the central auditory pathway. Acoustic-rearing experiments can lead to an over-representation of the exposed sound frequency, and this is associated with specific changes in frequency discrimination. These forms of cellular plasticity are manifest in brain regions, such as midbrain and cortex, which interact through feed-forward and feedback pathways. Hearing loss leads to a profound re-weighting of excitatory and inhibitory synaptic gain throughout the auditory CNS, and this is associated with an over-excitability that is observed in vivo. Further behavioral and computational analyses may provide insights into how theses cellular and systems plasticity effects underlie the development of cognitive functions such as speech perception.
Collapse
Affiliation(s)
- Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, United States.
| | | |
Collapse
|
40
|
Abstract
Exposure to sounds during early development causes enlarged cortical representations of those sounds, leading to the commonly held view that the size of stimulus representations increases with stimulus exposure. However, representing stimuli based solely on their prevalence may be inefficient, because many frequent environmental sounds are behaviorally irrelevant. Here, we show that cortical plasticity depends not only on exposure time but also on the temporal modulation rate of the stimulus set. We examined cortical plasticity induced by early exposure to 7 kHz tone pips repeated at a slow (2 Hz), fast (15 Hz), or ethological (6 Hz) rate. Certain rat calls are modulated near 6 Hz. We found that spectral representation of 7 kHz increased only in the ethological-rate-reared animals, whereas improved entrainment of cortical neurons was seen in animals reared in the slow- and fast-rate condition. This temporal rate dependence of spectral plasticity may serve as a filtering mechanism to selectively enlarge representations of species-specific vocalizations. Furthermore, our results indicate that spectral and temporal plasticity can be separately engaged depending on the statistical properties of the input stimuli.
Collapse
|
41
|
Abstract
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience and Department of Psychology, University of California-Davis, Davis, California 95618, USA.
| |
Collapse
|
42
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|