1
|
Tan HT, Smith PF, Zheng Y. Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats. Hear Res 2024; 443:108948. [PMID: 38219615 DOI: 10.1016/j.heares.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using in vivo microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.
Collapse
Affiliation(s)
- Huey Tieng Tan
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand.
| |
Collapse
|
2
|
Asim SA, Tran S, Reynolds N, Sauve O, Zhang H. Spatial-dependent suppressive aftereffect produced by a sound in the rat’s inferior colliculus is partially dependent on local inhibition. Front Neurosci 2023; 17:1130892. [PMID: 37021140 PMCID: PMC10069703 DOI: 10.3389/fnins.2023.1130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/22/2023] Open
Abstract
In a natural acoustic environment, a preceding sound can suppress the perception of a succeeding sound which can lead to auditory phenomena such as forward masking and the precedence effect. The degree of suppression is dependent on the relationship between the sounds in sound quality, timing, and location. Correlates of such phenomena exist in sound-elicited activities of neurons in hearing-related brain structures. The present study recorded responses to pairs of leading-trailing sounds from ensembles of neurons in the rat’s inferior colliculus. Results indicated that a leading sound produced a suppressive aftereffect on the response to a trailing sound when the two sounds were colocalized at the ear contralateral to the site of recording (i.e., the ear that drives excitatory inputs to the inferior colliculus). The degree of suppression was reduced when the time gap between the two sounds was increased or when the leading sound was relocated to an azimuth at or close to the ipsilateral ear. Local blockage of the type-A γ-aminobutyric acid receptor partially reduced the suppressive aftereffect when a leading sound was at the contralateral ear but not at the ipsilateral ear. Local blockage of the glycine receptor partially reduced the suppressive aftereffect regardless of the location of the leading sound. Results suggest that a sound-elicited suppressive aftereffect in the inferior colliculus is partly dependent on local interaction between excitatory and inhibitory inputs which likely involves those from brainstem structures such as the superior paraolivary nucleus. These results are important for understanding neural mechanisms underlying hearing in a multiple-sound environment.
Collapse
|
3
|
Excitatory cholecystokinin neurons of the midbrain integrate diverse temporal responses and drive auditory thalamic subdomains. Proc Natl Acad Sci U S A 2021; 118:2007724118. [PMID: 33658359 PMCID: PMC7958253 DOI: 10.1073/pnas.2007724118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our ability to identify sounds and understand communication signals depends upon our brains’ capacity to combine information about diverse sound features, including temporal patterns. The central nucleus of the inferior colliculus (ICC) performs an initial stage of this integration, but a circuit-based understanding of these processes has been hampered by difficulties in separating clearly defined functional cell types. Here we identify and characterize a major excitatory projection neuron of the ICC. These neurons show uniform intrinsic firing patterns and tuning to frequency, but strikingly diverse temporal responses to sound. Our results suggest that diversity in temporal coding is represented even within a single cell class and is likely primarily driven by differences in circuit connectivity. The central nucleus of the inferior colliculus (ICC) integrates information about different features of sound and then distributes this information to thalamocortical circuits. However, the lack of clear definitions of circuit elements in the ICC has limited our understanding of the nature of these circuit transformations. Here, we combine virus-based genetic access with electrophysiological and optogenetic approaches to identify a large family of excitatory, cholecystokinin-expressing thalamic projection neurons in the ICC of the Mongolian gerbil. We show that these neurons form a distinct cell type, displaying uniform morphology and intrinsic firing features, and provide powerful, spatially restricted excitation exclusively to the ventral auditory thalamus. In vivo, these neurons consistently exhibit V-shaped receptive field properties but strikingly diverse temporal responses to sound. Our results indicate that temporal response diversity is maintained within this population of otherwise uniform cells in the ICC and then relayed to cortex through spatially restricted thalamic subdomains.
Collapse
|
4
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
5
|
Egorova MA, Akimov AG, Khorunzhii GD, Ehret G. Frequency response areas of neurons in the mouse inferior colliculus. III. Time-domain responses: Constancy, dynamics, and precision in relation to spectral resolution, and perception in the time domain. PLoS One 2020; 15:e0240853. [PMID: 33104718 PMCID: PMC7588072 DOI: 10.1371/journal.pone.0240853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022] Open
Abstract
The auditory midbrain (central nucleus of inferior colliculus, ICC) receives multiple brainstem projections and recodes auditory information for perception in higher centers. Many neural response characteristics are represented in gradients (maps) in the three-dimensional ICC space. Map overlap suggests that neurons, depending on their ICC location, encode information in several domains simultaneously by different aspects of their responses. Thus, interdependence of coding, e.g. in spectral and temporal domains, seems to be a general ICC principle. Studies on covariation of response properties and possible impact on sound perception are, however, rare. Here, we evaluated tone-evoked single neuron activity from the mouse ICC and compared shapes of excitatory frequency-response areas (including strength and shape of inhibition within and around the excitatory area; classes I, II, III) with types of temporal response patterns and first-spike response latencies. Analyses showed covariation of sharpness of frequency tuning with constancy and precision of responding to tone onsets. Highest precision (first-spike latency jitter < 1 ms) and stable phasic responses throughout frequency-response areas were the quality mainly of class III neurons with broad frequency tuning, least influenced by inhibition. Class II neurons with narrow frequency tuning and dominating inhibitory influence were unsuitable for time domain coding with high precision. The ICC center seems specialized rather for high spectral resolution (class II presence), lateral parts for constantly precise responding to sound onsets (class III presence). Further, the variation of tone-response latencies in the frequency-response areas of individual neurons with phasic, tonic, phasic-tonic, or pauser responses gave rise to the definition of a core area, which represented a time window of about 20 ms from tone onset for tone-onset responding of the whole ICC. This time window corresponds to the roughly 20 ms shortest time interval that was found critical in several auditory perceptual tasks in humans and mice.
Collapse
Affiliation(s)
- Marina A. Egorova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander G. Akimov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Gleb D. Khorunzhii
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
6
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
7
|
Wong AB, Borst JGG. Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging. eLife 2019; 8:49091. [PMID: 31612853 PMCID: PMC6834370 DOI: 10.7554/elife.49091] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
The dorsal (DCIC) and lateral cortices (LCIC) of the inferior colliculus are major targets of the auditory and non-auditory cortical areas, suggesting a role in complex multimodal information processing. However, relatively little is known about their functional organization. We utilized in vivo two-photon Ca2+ imaging in awake mice expressing GCaMP6s in GABAergic or non-GABAergic neurons in the IC to investigate their spatial organization. We found different classes of temporal responses, which we confirmed with simultaneous juxtacellular electrophysiology. Both GABAergic and non-GABAergic neurons showed spatial microheterogeneity in their temporal responses. In contrast, a robust, double rostromedial-caudolateral gradient of frequency tuning was conserved between the two groups, and even among the subclasses. This, together with the existence of a subset of neurons sensitive to spontaneous movements, provides functional evidence for redefining the border between DCIC and LCIC.
Collapse
Affiliation(s)
- Aaron Benson Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Liu Y, Zhang G, Yu H, Li H, Wei J, Xiao Z. Robust and Intensity-Dependent Synaptic Inhibition Underlies the Generation of Non-monotonic Neurons in the Mouse Inferior Colliculus. Front Cell Neurosci 2019; 13:131. [PMID: 31024260 PMCID: PMC6460966 DOI: 10.3389/fncel.2019.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/15/2019] [Indexed: 11/28/2022] Open
Abstract
Intensity and frequency are the two main properties of sound. The non-monotonic neurons in the auditory system are thought to represent sound intensity. The central nucleus of the inferior colliculus (ICC), as an important information integration nucleus of the auditory system, is also involved in the processing of intensity encoding. Although previous researchers have hinted at the importance of inhibitory effects on the formation of non-monotonic neurons, the specific underlying synaptic mechanisms in the ICC are still unclear. Therefore, we applied the in vivo whole-cell voltage-clamp technique to record the excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) in the ICC neurons, and compared the effects of excitation and inhibition on the membrane potential outputs. We found that non-monotonic neuron responses could not only be inherited from the lower nucleus but also be created in the ICC. By integrating with a relatively weak IPSC, approximately 35% of the monotonic excitatory inputs remained in the ICC. In the remaining cases, monotonic excitatory inputs were reshaped into non-monotonic outputs by the dominating inhibition at high intensity, which also enhanced the non-monotonic nature of the non-monotonic excitatory inputs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| | - Guodong Zhang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| | - Haipeng Yu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| | - He Li
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| | - Jinxing Wei
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China
| |
Collapse
|
9
|
Amplitude- and duration-sensitivity of single-on and double-on neurons to CF-FM stimuli in inferior colliculus of Pratt’s roundleaf bat (Hipposideros pratti). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:653-665. [DOI: 10.1007/s00359-018-1268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
|
10
|
Peng K, Peng YJ, Wang J, Yang MJ, Fu ZY, Tang J, Chen QC. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording. PLoS One 2017; 12:e0184097. [PMID: 28863144 PMCID: PMC5580910 DOI: 10.1371/journal.pone.0184097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In the auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC), and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency). Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.
Collapse
Affiliation(s)
- Kang Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Jie Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jing Wang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Ming-Jian Yang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Zi-Ying Fu
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jia Tang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Qi-Cai Chen
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Yassin L, Pecka M, Kajopoulos J, Gleiss H, Li L, Leibold C, Felmy F. Differences in synaptic and intrinsic properties result in topographic heterogeneity of temporal processing of neurons within the inferior colliculus. Hear Res 2016; 341:79-90. [DOI: 10.1016/j.heares.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
12
|
Ono M, Ito T. Functional organization of the mammalian auditory midbrain. J Physiol Sci 2015; 65:499-506. [PMID: 26362672 PMCID: PMC10718034 DOI: 10.1007/s12576-015-0394-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan
| |
Collapse
|
13
|
Pannese A, Grandjean D, Frühholz S. Subcortical processing in auditory communication. Hear Res 2015; 328:67-77. [DOI: 10.1016/j.heares.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
14
|
Li YL, Fu ZY, Yang MJ, Wang J, Peng K, Yang LJ, Tang J, Chen QC. Post-spike hyperpolarization participates in the formation of auditory behavior-related response patterns of inferior collicular neurons in Hipposideros pratti. Neuroscience 2015; 289:443-51. [DOI: 10.1016/j.neuroscience.2015.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
15
|
Neuronal adaptation translates stimulus gaps into a population code. PLoS One 2014; 9:e95705. [PMID: 24759970 PMCID: PMC3997522 DOI: 10.1371/journal.pone.0095705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons in sensory pathways exhibit a vast multitude of adaptation behaviors, which are assumed to aid the encoding of temporal stimulus features and provide the basis for a population code in higher brain areas. Here we study the transition to a population code for auditory gap stimuli both in neurophysiological recordings and in a computational network model. Independent component analysis (ICA) of experimental data from the inferior colliculus of Mongolian gerbils reveals that the network encodes different gap sizes primarily with its population firing rate within 30 ms after the presentation of the gap, where longer gap size evokes higher network activity. We then developed a computational model to investigate possible mechanisms of how to generate the population code for gaps. Phenomenological (ICA) and functional (discrimination performance) analyses of our simulated networks show that the experimentally observed patterns may result from heterogeneous adaptation, where adaptation provides gap detection at the single neuron level and neuronal heterogeneity ensures discriminable population codes for the whole range of gap sizes in the input. Furthermore, our work suggests that network recurrence additionally enhances the network's ability to provide discriminable population patterns.
Collapse
|
16
|
Abstract
AbstractOffset neurons which respond to the termination of the sound stimulation may play important roles in auditory temporal information processing, sound signal recognition, and complex distinction. Two additional possible mechanisms were reviewed: neural inhibition and the intrinsic conductance property of offset neuron membranes. The underlying offset response was postulated to be located in the superior paraolivary nucleus of mice. The biological significance of the offset neurons was discussed as well.
Collapse
|
17
|
Gittelman JX, Perkel DJ, Portfors CV. Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. J Assoc Res Otolaryngol 2013; 14:719-29. [PMID: 23835945 DOI: 10.1007/s10162-013-0405-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/21/2013] [Indexed: 02/02/2023] Open
Abstract
Perception of complex sounds such as speech is affected by a variety of factors, including attention, expectation of reward, physiological state, and/or disorders, yet the mechanisms underlying this modulation are not well understood. Although dopamine is commonly studied for its role in reward-based learning and in disorders, multiple lines of evidence suggest that dopamine is also involved in modulating auditory processing. In this study, we examined the effects of dopamine application on neuronal response properties in the inferior colliculus (IC) of awake mice. Because the IC contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase, we predicted that dopamine would modulate auditory responses in the IC. We recorded single-unit responses before, during, and after the iontophoretic application of dopamine using piggyback electrodes. We examined the effects of dopamine on firing rate, timing, and probability of bursting. We found that application of dopamine affected neural responses in a heterogeneous manner. In more than 80 % of the neurons, dopamine either increased (32 %) or decreased (50 %) firing rate, and the effects were similar on spontaneous and sound-evoked activity. Dopamine also either increased or decreased first spike latency and jitter in almost half of the neurons. In 3/28 neurons (11 %), dopamine significantly altered the probability of bursting. The heterogeneous effects of dopamine observed in the IC of awake mice were similar to effects observed in other brain areas. Our findings indicate that dopamine differentially modulates neural activity in the IC and thus may play an important role in auditory processing.
Collapse
Affiliation(s)
- Joshua X Gittelman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave., Vancouver, WA, USA
| | | | | |
Collapse
|
18
|
Local neuronal circuits that may shape the discharge patterns of inferior collicular neurons. Neurosci Bull 2013; 29:541-52. [PMID: 23749626 DOI: 10.1007/s12264-013-1346-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
The discharge patterns of neurons in auditory centers encode information about sounds. However, few studies have focused on the synaptic mechanisms underlying the shaping of discharge patterns using intracellular recording techniques. Here, we investigated the discharge patterns of inferior collicular (IC) neurons using intracellular recordings to further elucidate the mechanisms underlying the shaping of discharge patterns. Under in vivo intracellular recording conditions, recordings were obtained from 66 IC neurons in 18 healthy adult mice (Mus musculus, Km) under free field-stimulation. Fifty-eight of these neurons fi red bursts of action potentials (APs) to auditory stimuli and the remaining eight just generated local responses such as excitatory (n = 4) or inhibitory (n = 4) postsynaptic potentials. Based on the APs and subthreshold responses, the discharge patterns were classified into seven types: phasic (24/58, 41.4%), phasic burst (8/58,13.8%), pauser (4/58, 6.9%), phasic-pauser (1/58, 1.7%), chopper (2/58, 3.4%), primary-like tonic (14/58, 24.1%) and sound-induced inhibitory (5/58,8.6%). We concluded that (1) IC neurons exhibit at least seven distinct discharge patterns; (2) inhibition participates in shaping the discharge pattern of most IC neurons and plays a role in sculpting the pattern, except for the primary-like tonic pattern which was not shaped by inhibition; and (3) local neural circuits are the likely structural basis that shapes the discharge patterns of IC neurons and can be formed either in the IC or in lower-level auditory structures.
Collapse
|
19
|
Pollak GD. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hear Res 2013; 305:86-101. [PMID: 23545427 DOI: 10.1016/j.heares.2013.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/20/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity. In the second section, the lack of selectivity in the DNLL is contrasted with the high degree of response selectivity in the IC. The third section then reviews how inhibition in the IC shapes response selectivities for calls, and how those selectivities can create a population response with a distinctive response profile to a particular call, which differs from the population profile evoked by any other call. The fourth section is concerned with the specifics of inhibition in the IC, and how the interaction of excitation and inhibition creates directional selectivities for frequency modulations, one of the principal acoustic features of communication signals. The two major hypotheses for directional selectivity are presented. One is the timing hypothesis, which holds that the precise timing of excitation relative to inhibition is the feature that shapes directionality. The other hypothesis is that the relative magnitudes of excitation and inhibition are the dominant features that shape directionality, where timing is relatively unimportant. The final section then turns to the role of serotonin, a neuromodulator that can markedly change responses to calls in the IC. Serotonin provides a linkage between behavioral states and processing. This linkage is discussed in the final section together with the hypothesis that serotonin acts to enhances the contrast in the population responses to various calls over and above the distinctive population responses that were created by inhibition. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- George D Pollak
- Section of Neurobiology and Center for Perceptual Systems, 337 Patterson Laboratory Building, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Geis HRA, Borst JGG. Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 2012; 521:189-202. [DOI: 10.1002/cne.23170] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
|
21
|
Gittelman JX, Wang L, Colburn HS, Pollak GD. Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Front Neural Circuits 2012; 6:67. [PMID: 23024629 PMCID: PMC3444759 DOI: 10.3389/fncir.2012.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
Pharmacological block of inhibition is often used to determine if inhibition contributes to spike selectivity, in which a preferred stimulus evokes more spikes than a null stimulus. When inhibitory block reduces spike selectivity, a common interpretation is that differences between the preferred- and null-evoked inhibitions created the selectivity from less-selective excitatory inputs. In models based on empirical properties of cells from the inferior colliculus (IC) of awake bats, we show that inhibitory differences are not required. Instead, inhibition can enhance spike selectivity by changing the gain, the ratio of output spikes to input current. Within the model, we made preferred stimuli that evoked more spikes than null stimuli using five distinct synaptic mechanisms. In two cases, synaptic selectivity (the differences between the preferred and null inputs) was entirely excitatory, and in two it was entirely inhibitory. In each case, blocking inhibition eliminated spike selectivity. Thus, observing spike rates following inhibitory block did not distinguish among the cases where synaptic selectivity was entirely excitatory or inhibitory. We then did the same modeling experiment using empirical synaptic conductances derived from responses to preferred and null sounds. In most cases, inhibition in the model enhanced spike selectivity mainly by gain modulation and firing rate reduction. Sometimes, inhibition reduced the null gain to zero, eliminating null-evoked spikes. In some cases, inhibition increased the preferred gain more than the null gain, enhancing the difference between the preferred- and null-evoked spikes. Finally, inhibition kept firing rates low. When selectivity is quantified by the selectivity index (SI, the ratio of the difference to the sum of the spikes evoked by the preferred and null stimuli), inhibitory block reduced the SI by increasing overall firing rates. These results are consistent with inhibition shaping spike selectivity by gain control.
Collapse
Affiliation(s)
- Joshua X Gittelman
- Section of Neurobiology, Institute for Neuroscience, Center for Perceptual Systems, The University of Texas Austin, TX, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells with BDs and temporal response bandwidths that mirror the range of species-specific vocalizations. Neural tuning to stimulus duration appears to be universal among hearing vertebrates. Herein, we test the hypothesis that neural mechanisms underlying duration selectivity may be similar across vertebrates. We instantiated theoretical mechanisms of duration tuning in computational models to systematically explore the roles of excitatory and inhibitory receptor strengths, input latencies, and membrane time constant on duration tuning response profiles. We demonstrate that models of duration tuning with similar neural circuitry can be tuned with species-specific parameters to reproduce the responses of in vivo DTNs from the auditory midbrain. To relate and validate model output to in vivo responses, we collected electrophysiological data from the inferior colliculus of the awake big brown bat, Eptesicus fuscus, and present similar in vivo data from the published literature on DTNs in rats, mice, and frogs. Our results support the hypothesis that neural mechanisms of duration tuning may be shared across vertebrates despite species-specific differences in duration selectivity. Finally, we discuss how the underlying mechanisms of duration selectivity relate to other auditory feature detectors arising from the interaction of neural excitation and inhibition.
Collapse
|
23
|
Intracellular recording in behaving animals. Curr Opin Neurobiol 2011; 22:34-44. [PMID: 22054814 DOI: 10.1016/j.conb.2011.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/08/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022]
Abstract
Electrophysiological recordings from behaving animals provide an unparalleled view into the functional role of individual neurons. Intracellular approaches can be especially revealing as they provide information about a neuron's inputs and intrinsic cellular properties, which together determine its spiking output. Recent technical developments have made intracellular recording possible during an ever-increasing range of behaviors in both head-fixed and freely moving animals. These recordings have yielded fundamental insights into the cellular and circuit mechanisms underlying neural activity during natural behaviors in such areas as sensory perception, motor sequence generation, and spatial navigation, forging a direct link between cellular and systems neuroscience.
Collapse
|
24
|
Gittelman JX, Li N. FM velocity selectivity in the inferior colliculus is inherited from velocity-selective inputs and enhanced by spike threshold. J Neurophysiol 2011; 106:2399-414. [PMID: 21813749 DOI: 10.1152/jn.00250.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Frequency modulation (FM) is computed from the temporal sequence of activated auditory nerve fibers representing different frequencies. Most studies in the inferior colliculus (IC) have inferred from extracellular recordings that the precise timing of nonselective inputs creates selectivity for FM direction and velocity (Andoni S, Li N, Pollak GD. J Neurosci 27: 4882-4893, 2007; Fuzessery ZM, Richardson MD, Coburn MS. J Neurophysiol 96: 1320-1336, 2006; Gordon M, O'Neill WE. Hear Res 122: 97-108, 1998). We recently reported that two additional mechanisms were more important than input timing for directional selectivity in some IC cells: spike threshold and inputs that were already selective (Gittelman JX, Li N, Pollak GD. J Neurosci 29: 13030-13041, 2009). Here, we show that these same mechanisms, selective inputs and spike threshold, underlie selectivity for FM velocity and intensity. From whole cell recordings in awake bats, we recorded spikes and postsynaptic potentials (PSPs) evoked by downward and upward FMs that swept identical frequencies at different velocities and intensities. To determine the synaptic mechanisms underlying PSP selectivity (relative PSP height), we derived sweep-evoked synaptic conductances. Changing FM velocity or intensity changed conductance timing and size. Modeling indicated that excitatory conductance size contributed more to PSP selectivity than conductance timing, indicating that the number of afferent spikes carried more FM information to the IC than precise spike timing. However, excitation alone produced mostly suprathreshold PSPs. Inhibition reduced absolute PSP heights, without necessarily altering PSP selectivity, thereby rendering some PSPs subthreshold. Spike threshold then sharpened selectivity in the spikes by rectifying the smaller PSPs. This indicates the importance of spike threshold, and that inhibition enhances selectivity via a different mechanism than previously proposed.
Collapse
Affiliation(s)
- Joshua X Gittelman
- Section of Neurobiology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA.
| | | |
Collapse
|
25
|
Duration tuning in the auditory midbrain of echolocating and non-echolocating vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:571-83. [PMID: 21305304 DOI: 10.1007/s00359-011-0627-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 01/03/2011] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
Abstract
Neurons tuned for stimulus duration were first discovered in the auditory midbrain of frogs. Duration-tuned neurons (DTNs) have since been reported from the central auditory system of both echolocating and non-echolocating mammals, and from the central visual system of cats. We hypothesize that the functional significance of auditory duration tuning likely varies between species with different evolutionary histories, sensory ecologies, and bioacoustic constraints. For example, in non-echolocating animals such as frogs and mice the temporal filtering properties of auditory DTNs may function to discriminate species-specific communication sounds. In echolocating bats duration tuning may also be used to create cells with highly selective responses for specific rates of frequency modulation and/or pulse-echo delays. The ability to echolocate appears to have selected for high temporal acuity in the duration tuning curves of inferior colliculus neurons in bats. Our understanding of the neural mechanisms underlying sound duration selectivity has improved substantially since DTNs were first discovered almost 50 years ago, but additional research is required for a comprehensive understanding of the functional role and the behavioral significance that duration tuning plays in sensory systems.
Collapse
|
26
|
Intracellular recordings reveal novel features of neurons that code interaural intensity disparities in the inferior colliculus. J Neurosci 2010; 30:14573-84. [PMID: 20980615 DOI: 10.1523/jneurosci.2228-10.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cells in the inferior colliculus (IC) are excited by contralateral and inhibited by ipsilateral stimulation and are thought to be important for sound localization. These excitatory-inhibitory (EI) cells comprise a diverse group, even though they exhibit a common binaural response property. Previous extracellular studies showed the diversity results from different circuits that generate the same EI property among the IC population, where some inherit the property from a lower nucleus, some are formed de novo in the IC, and others inherit EI features that are modified by inhibitory circuits. Here we evaluated the differential circuitry by recording inputs (postsynaptic potentials) and outputs (spikes) with in vivo whole-cell recordings from the IC of awake Mexican free-tailed bats. We show that in a minority of EI cells, either they inherited their binaural property from a lower binaural nucleus or the EI property was created in the IC via inhibitory projections from the ipsilateral ear, features consistent with those observed in extracellular studies. However, in a majority of EI cells, ipsilateral signals evoked subthreshold EPSPs that behaved paradoxically in that EPSP amplitudes increased with intensity, even though binaural signals with the same ipsilateral intensities generated progressively greater spike suppressions. We propose circuitry that can account for the responses we observed and suggest that the ipsilaterally evoked EPSPs could influence the responsiveness of IC cells to dynamic signals with interaural intensity disparities that change over time, such as moving sound sources or multiple sounds that occur in complex acoustic environments.
Collapse
|
27
|
Recovery Cycle of Inferior Collicular Neurons Determine Pulse Following Rate in CF-FM Bat*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Pollak GD, Xie R, Gittelman JX, Andoni S, Li N. The dominance of inhibition in the inferior colliculus. Hear Res 2010; 274:27-39. [PMID: 20685288 DOI: 10.1016/j.heares.2010.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 11/16/2022]
Abstract
Almost all of the processing that occurs in the various lower auditory nuclei converges upon a common target in the central nucleus of the inferior colliculus (ICc) thus making the ICc the nexus of the auditory system. A variety of new response properties are formed in the ICc through the interactions among the excitatory and inhibitory inputs that converge upon it. Here we review studies that illustrate the dominant role inhibition plays in the ICc. We begin by reviewing studies of tuning curves and show how inhibition shapes the variety of tuning curves in the ICc through sideband inhibition. We then show how inhibition shapes selective response properties for complex signals, focusing on selectivity for the sweep direction of frequency modulations (FM). In the final section we consider results from in vivo whole-cell recordings that show how parameters of the incoming excitation and inhibition interact to shape directional selectivity. We show that post-synaptic potentials (PSPs) evoked by different signals can be similar but evoke markedly different spike-counts. In these cases, spike threshold acts as a non-linear amplifier that converts small differences in PSPs into large differences in spike output. Such differences between the inputs to a cell compared to the outputs from the same cell suggest that highly selective discharge properties can be created by only minor adjustments in the synaptic strengths evoked by one or both signals. These findings also suggest that plasticity of response features may be achieved with far less modifications in circuitry than previously supposed.
Collapse
Affiliation(s)
- George D Pollak
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
29
|
Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals. Hear Res 2010; 273:134-44. [PMID: 20451594 DOI: 10.1016/j.heares.2010.03.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPON and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPON inputs generates the tuning of these IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features.
Collapse
|
30
|
Abstract
Discrimination of stimulus duration on the order of milliseconds has been observed in behavioral and neurophysiological studies across a variety of species and taxa. Several studies conducted in mammals have found neurons in the auditory midbrain (inferior colliculus) that are selective for signal duration. Duration selectivity in these cells arises from an interaction of excitatory and inhibitory events occurring at particular latencies from stimulus onset and offset. As previously shown in barn owls, coincidence of delayed, excitatory events can be used by the CNS to respond selectively to specific stimuli in auditory space. This study formulates several computational models of duration tuning that combine existing conceptual models with observed physiological responses in the auditory brainstem and midbrain to evaluate the plausibility of the proposed neural mechanisms. The computational models are able to reproduce a wide range of in vivo responses including best duration tuning, duration-selective response classes, spike counts, first-spike latencies, level tolerance to changes in signal amplitude, and neuropharmacological effects of applying inhibitory neurotransmitter antagonists to duration-tuned neurons. A unified model of duration tuning is proposed that enhances classic models of duration tuning, emphasizes similarities across the models, and simplifies our understanding of duration tuning across species and sensory modalities.
Collapse
|
31
|
Geis HR, Borst JGG. Intracellular Responses of Neurons in the Mouse Inferior Colliculus to Sinusoidal Amplitude-Modulated Tones. J Neurophysiol 2009; 101:2002-16. [DOI: 10.1152/jn.90966.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the temporal envelope are important defining features of natural acoustic signals. Many cells in the inferior colliculus (IC) respond preferentially to certain modulation frequencies, but how they accomplish this is not yet clear. We therefore made whole cell patch-clamp recordings in the IC of anesthetized mice while presenting sinusoidal amplitude-modulated (SAM) tones. The relation between the number of evoked spikes and modulation frequency was used to construct rate modulation transfer functions (rMTFs). We observed different types of rate tuning, including band-pass (16%), band-reject (13%), high-pass (6%), and low-pass (6%) tuning. In the high-pass rMTF neurons and some of the low-pass rMTF neurons, the tuning characteristics appeared to be already present in the inputs. In both band-pass and band-reject rMTF neurons, the nonlinear relation between membrane potential and spike probability ensured preferential spiking during only a small part of the modulation period. Band-pass rMTF neurons had rapidly rising excitatory postsynaptic potentials, allowing good phase-locking to brief tones and intermediate modulation frequencies. At low modulation frequencies, adaptation of their spike threshold contributed to the onset response. In contrast, band-reject rMTF neurons responded with small excitatory or inhibitory postsynaptic potentials to brief tones. In these cells, a power law could describe the supralinear relation between average membrane potential and spike rate. Differences in timing of synaptic input and presence or absence of spike adaptation therefore define band-pass and band-reject rate tuning to SAM tones in the mouse IC.
Collapse
|
32
|
Nelson PC, Smith ZM, Young ED. Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. J Neurosci 2009; 29:2553-62. [PMID: 19244530 PMCID: PMC2677200 DOI: 10.1523/jneurosci.5359-08.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/14/2009] [Accepted: 01/28/2009] [Indexed: 11/21/2022] Open
Abstract
An organism's ability to detect and discriminate sensory inputs depends on the recent stimulus history. For example, perceptual detection thresholds for a brief tone can be elevated by as much as 50 dB when following a masking stimulus. Previous work suggests that such forward masking is not a direct result of peripheral neural adaptation; the central pathway apparently modifies the representation in a way that further attenuates the input's response to short probe signals. Here, we show that much of this transformation is complete by the level of the inferior colliculus (IC). Single-neuron extracellular responses were recorded in the central nucleus of the awake marmoset IC. The threshold for a 20 ms probe tone presented at best frequency was determined for various masker-probe delays, over a range of masker sound pressure levels (SPLs) and frequencies. The most striking aspect of the data was the increased potency of forward maskers as their SPL was increased, despite the fact that the excitatory response to the masker was often saturating or nonmonotonic over the same range of levels. This led to probe thresholds at high masker levels that were almost always higher than those observed in the auditory nerve. Probe threshold shifts were not usually caused by a persistent excitatory response to the masker; instead we propose a wide-dynamic-range inhibitory mechanism locked to sound offset as an explanation for several key aspects of the data. These findings further delineate the role of subcortical auditory processing in the generation of a context-dependent representation of ongoing acoustic scenes.
Collapse
Affiliation(s)
- Paul C Nelson
- Center for Hearing and Balance, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
33
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|