1
|
Holt AG, Griffith RD, Lee SD, Asako M, Buras E, Yalcinoglu S, Altschuler RA. Ototoxicity-related changes in GABA immunolabeling within the rat inferior colliculus. Hear Res 2024; 452:109106. [PMID: 39181061 PMCID: PMC11412108 DOI: 10.1016/j.heares.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Several studies suggest that hearing loss results in changes in the balance between inhibition and excitation in the inferior colliculus (IC). The IC is an integral nucleus within the auditory brainstem. The majority of ascending pathways from the lateral lemniscus (LL), superior olivary complex (SOC), and cochlear nucleus (CN) synapse in the IC before projecting to the thalamus and cortex. Many of these ascending projections provide inhibitory innervation to neurons within the IC. However, the nature and the distribution of this inhibitory input have only been partially elucidated in the rat. The inhibitory neurotransmitter, gamma aminobutyric acid (GABA), from the ventral nucleus of the lateral lemniscus (VNLL), provides the primary inhibitory input to the IC of the rat with GABA from other lemniscal and SOC nuclei providing lesser, but prominent innervation. There is evidence that hearing related conditions can result in dysfunction of IC neurons. These changes may be mediated in part by changes in GABA inputs to IC neurons. We have previously used gene micro-arrays in a study of deafness-related changes in gene expression in the IC and found significant changes in GAD as well as the GABA transporters and GABA receptors (Holt 2005). This is consistent with reports of age and trauma related changes in GABA (Bledsoe et al., 1995; Mossop et al., 2000; Salvi et al., 2000). Ototoxic lesions of the cochlea produced a permanent threshold shift. The number, intensity, and density of GABA positive axon terminals in the IC were compared in normal hearing and deafened rats. While the number of GABA immunolabeled puncta was only minimally different between groups, the intensity of labeling was significantly reduced. The ultrastructural localization and distribution of labeling was also examined. In deafened animals, the number of immuno gold particles was reduced by 78 % in axodendritic and 82 % in axosomatic GABAergic puncta. The affected puncta were primarily associated with small IC neurons. These results suggest that reduced inhibition to IC neurons contribute to the increased neuronal excitability observed in the IC following noise or drug induced hearing loss. Whether these deafness diminished inhibitory inputs originate from intrinsic or extrinsic CNIC sources awaits further study.
Collapse
Affiliation(s)
- Avril Genene Holt
- Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, United States of America.
| | - Ronald D Griffith
- Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, United States of America
| | - Soo D Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Mikiya Asako
- Department of Otolaryngology, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | - Eric Buras
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Selin Yalcinoglu
- Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, United States of America
| | - Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
2
|
Sánchez-Benito D, Hyppolito MA, Alvarez-Morujo AJ, López DE, Gómez-Nieto R. Morphological and molecular correlates of altered hearing sensitivity in the genetically audiogenic seizure-prone hamster GASH/Sal. Hear Res 2020; 392:107973. [PMID: 32402894 DOI: 10.1016/j.heares.2020.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
Rodent models of audiogenic seizures, in which seizures are precipitated by an abnormal response of the brain to auditory stimuli, are crucial to investigate the neural bases underlying ictogenesis. Despite significant advances in understanding seizure generation in the inferior colliculus, namely the epileptogenic nucleus, little is known about the contribution of lower auditory stations to the seizure-prone network. Here, we examined the cochlea and cochlear nucleus of the genetic audiogenic seizure hamster from Salamanca (GASH/Sal), a model of reflex epilepsy that exhibits generalized tonic-clonic seizures in response to loud sound. GASH/Sal animals under seizure-free conditions were compared with matched control hamsters in a multi-technical approach that includes auditory brainstem responses (ABR) testing, histology, scanning electron microscopy analysis, immunohistochemistry, quantitative morphometry and gene expression analysis (RT-qPCR). The cochlear histopathology of the GASH/Sal showed preservation of the sensory hair cells, but a significant loss of spiral ganglion neurons and mild atrophy of the stria vascularis. At the electron microscopy level, the reticular lamina exhibited disarray of stereociliary tufts with blebs, loss or elongated stereocilia as well as non-parallel rows of outer hair cells due to protrusions of Deiters' cells. At the molecular level, the abnormal gene expression patterns of prestin, cadherin 23, protocadherin 15, vesicular glutamate transporters 1 (Vglut1) and -2 (Vglut2) indicated that the hair-cell mechanotransduction and cochlear amplification were markedly altered. These were manifestations of a cochlear neuropathy that correlated to ABR waveform I alterations and elevated auditory thresholds. In the cochlear nucleus, the distribution of VGLUT2-immunolabeled puncta was differently affected in each subdivision, showing significant increases in magnocellular regions of the ventral cochlear nucleus and drastic reductions in the granule cell domain. This modified inputs lead to disruption of Vglut1 and Vglut2 gene expression in the cochlear nucleus. In sum, our study provides insight into the morphological and molecular traits associated with audiogenic seizure susceptibility in the GASH/Sal, suggesting an upward spread of abnormal glutamatergic transmission throughout the primary acoustic pathway to the epileptogenic region.
Collapse
Affiliation(s)
- David Sánchez-Benito
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Miguel A Hyppolito
- Laboratory of Neurobiology of Hearing, Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antonio J Alvarez-Morujo
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
3
|
Combining mGRASP and Optogenetics Enables High-Resolution Functional Mapping of Descending Cortical Projections. Cell Rep 2020; 24:1071-1080. [PMID: 30044974 PMCID: PMC6083038 DOI: 10.1016/j.celrep.2018.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits. Optogenetic axonal stimulation causes prolonged increases in quantal synaptic release Quantal and anatomical measures of synapse strength directly correspond Strength and cellular location of cortical inputs to midbrain are region specific
Collapse
|
4
|
Extracellular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four Subtypes of GABAergic Cells in the Inferior Colliculus. J Neurosci 2016; 36:3988-99. [PMID: 27053206 DOI: 10.1523/jneurosci.0217-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Inhibition plays an important role in shaping responses to stimuli throughout the CNS, including in the inferior colliculus (IC), a major hub in both ascending and descending auditory pathways. Subdividing GABAergic cells has furthered the understanding of inhibition in many brain areas, most notably in the cerebral cortex. Here, we seek the same understanding of subcortical inhibitory cell types by combining staining for two types of extracellular markers--perineuronal nets (PNs) and perisomatic rings of terminals expressing vesicular glutamate transporter 2 (VGLUT2)--to subdivide IC GABAergic cells in adult guinea pigs. We found four distinct groups of GABAergic cells in the IC: (1) those with both a PN and a VGLUT2 ring; (2) those with only a PN; (3) those with only a VGLUT2 ring; and (4) those with neither marker. In addition, these four GABAergic subtypes differ in their soma size and distribution among IC subdivisions. Functionally, the presence or absence of VGLUT2 rings indicates differences in inputs, whereas the presence or absence of PNs indicates different potential for plasticity and temporal processing. We conclude that these markers distinguish four GABAergic subtypes that almost certainly serve different roles in the processing of auditory stimuli within the IC. SIGNIFICANCE STATEMENT GABAergic inhibition plays a critical role throughout the brain. Identification of subclasses of GABAergic cells (up to 15 in the cerebral cortex) has furthered the understanding of GABAergic roles in circuit modulation. Inhibition is also prominent in the inferior colliculus, a subcortical hub in auditory pathways. Here, we use two extracellular markers to identify four distinct groups of GABAergic cells. Perineuronal nets and perisomatic rings of glutamatergic boutons are present in many subcortical areas and often are associated with inhibitory cells, but they have rarely been used to identify inhibitory subtypes. Our results further the understanding of inhibition in the inferior colliculus and suggest that these extracellular molecular markers may provide a key to distinguishing inhibitory subtypes in many subcortical areas.
Collapse
|
5
|
Manohar S, Dahar K, Adler HJ, Dalian D, Salvi R. Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Mol Cell Neurosci 2016; 75:101-12. [PMID: 27473923 DOI: 10.1016/j.mcn.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1β. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| | - Kimberly Dahar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Henry J Adler
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Ding Dalian
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
6
|
Ito T, Bishop DC, Oliver DL. Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 2015; 91:22-34. [PMID: 26497006 DOI: 10.1007/s12565-015-0308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan. .,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan.
| | - Deborah C Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|
7
|
Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys. Neuroscience 2015; 310:128-51. [PMID: 26391919 DOI: 10.1016/j.neuroscience.2015.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys.
Collapse
|
8
|
Fyk-Kolodziej BE, Shimano T, Gafoor D, Mirza N, Griffith RD, Gong TW, Holt AG. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma. Front Neuroanat 2015; 9:88. [PMID: 26257610 PMCID: PMC4510424 DOI: 10.3389/fnana.2015.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons.
Collapse
Affiliation(s)
- Bozena E Fyk-Kolodziej
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Takashi Shimano
- Department of Otolaryngology, Kansai Medical University Osaka, Japan
| | - Dana Gafoor
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Najab Mirza
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Ronald D Griffith
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Tzy-Wen Gong
- Kresge Hearing Research Institute, University of Michigan School of Medicine, Ann Arbor MI, USA
| | - Avril Genene Holt
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
9
|
Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL. Convergence of Lemniscal and Local Excitatory Inputs on Large GABAergic Tectothalamic Neurons. J Comp Neurol 2015; 523:2277-96. [PMID: 25879870 DOI: 10.1002/cne.23789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Large GABAergic (LG) neurons form a distinct cell type in the inferior colliculus (IC), identified by the presence of dense VGLUT2-containing axosomatic terminals. Although some of the axosomatic terminals originate from local and commissural IC neurons, it has been unclear whether LG neurons also receive axosomatic inputs from the lower auditory brainstem nuclei, i.e., cochlear nuclei (CN), superior olivary complex (SOC), and nuclei of the lateral lemniscus (NLL). In this study we injected recombinant viral tracers that force infected cells to express GFP in a Golgi-like manner into the lower auditory brainstem nuclei to determine whether these nuclei directly innervate LG cell somata. Labeled axons from CN, SOC, and NLL terminated as excitatory axosomatic endings, identified by colabeling of GFP and VGLUT2, on single LG neurons in the IC. Each excitatory axon made only a few axosomatic contacts on each LG neuron. Inputs to a single LG cell are unlikely to be from a single brainstem nucleus, since lesions of individual nuclei failed to eliminate most VGLUT2-positive terminals on the LG neurons. The estimated number of inputs on a single LG cell body was almost proportional to the surface area of the cell body. Double injections of different viruses into IC and a brainstem nucleus showed that LG neurons received inputs from both. These results demonstrated that both ascending and intrinsic sources converge on the LG somata to control inhibitory tectothalamic projections.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), 5-3-1 Koujimachi, Tokyo, 102-8472, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Iino
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, 06030-3401, USA
| |
Collapse
|
10
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Murillo-Cuesta S, Contreras J, Juiz JM, Varela-Nieto I. IGF-1 deficiency causes atrophic changes associated with upregulation of VGluT1 and downregulation of MEF2 transcription factors in the mouse cochlear nuclei. Brain Struct Funct 2014; 221:709-34. [PMID: 25378055 DOI: 10.1007/s00429-014-0934-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 10/28/2014] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - J C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - L Rodríguez-de la Rosa
- Facultad de Medicina, Universidad de Castilla-La Mancha, Campus de Albacete. C/Almansa, 14, 02006, Albacete, Spain
| | - S Murillo-Cuesta
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain
| | - J Contreras
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain.,Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - J M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - I Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain
| |
Collapse
|
11
|
The auditory corticocollicular system: molecular and circuit-level considerations. Hear Res 2014; 314:51-9. [PMID: 24911237 DOI: 10.1016/j.heares.2014.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/11/2023]
Abstract
We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing.
Collapse
|
12
|
Lee CC. Two types of auditory glutamatergic synapses and their implications for repairing damaged central auditory pathways. Neural Regen Res 2014; 9:1000-2. [PMID: 25206751 PMCID: PMC4146298 DOI: 10.4103/1673-5374.133158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Blanco JL, Juiz JM. Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 2014; 6:29. [PMID: 24634657 PMCID: PMC3942650 DOI: 10.3389/fnagi.2014.00029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is one of the most frequent sensory impairments in senescence and is a source of important socio-economic consequences. Understanding the pathological responses that occur in the central auditory pathway of patients who suffer from this disability is vital to improve its diagnosis and treatment. Therefore, the goal of this study was to characterize age-related modifications in auditory brainstem responses (ABR) and to determine whether these functional responses might be accompanied by an imbalance between excitation and inhibition in the cochlear nucleus of Wistar rats. To do so, ABR recordings at different frequencies and immunohistochemistry for the vesicular glutamate transporter 1 (VGLUT1) and the vesicular GABA transporter (VGAT) in the ventral cochlear nucleus (VCN) were performed in young, middle-aged and old male Wistar rats. The results demonstrate that there was a significant increase in the auditory thresholds, a significant decrease in the amplitudes and an increase in the latencies of the ABR waves as the age of the rat increased. Additionally, there were decreases in VGLUT1 and VGAT immunostaining in the VCN of older rats compared to younger rats. Therefore, the observed age-related decline in the magnitude of auditory evoked responses might be due in part to a reduction in markers of excitatory function; meanwhile, the concomitant reduction in both excitatory and inhibitory markers might reflect a common central alteration in animal models of ARLH. Together, these findings highlight the suitability of the Wistar rat as an excellent model to study ARHL.
Collapse
Affiliation(s)
- Juan C Alvarado
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - María C Gabaldón-Ull
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - José L Blanco
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - José M Juiz
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| |
Collapse
|
14
|
Geis HRA, Borst JGG. Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 2012; 521:189-202. [DOI: 10.1002/cne.23170] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
|
15
|
Ito T, Oliver DL. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 2012; 6:48. [PMID: 22855671 PMCID: PMC3405314 DOI: 10.3389/fncir.2012.00048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/08/2012] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of FukuiEiheiji, Japan
- Research and Education Program for Life Science, University of FukuiFukui, Japan
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut Health Center, FarmingtonCT, USA
| |
Collapse
|
16
|
Malmierca MS, Blackstad TW, Osen KK. Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat. Hear Res 2011; 274:13-26. [DOI: 10.1016/j.heares.2010.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
17
|
Ito T, Bishop DC, Oliver DL. Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J Comp Neurol 2011; 519:316-40. [PMID: 21165977 DOI: 10.1002/cne.22521] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the auditory system, but associations between glutamatergic neuronal populations and the distribution of their synaptic terminations have been difficult. Different subsets of glutamatergic terminals employ one of three vesicular glutamate transporters (VGLUT) to load synaptic vesicles. Recently, VGLUT1 and VGLUT2 terminals were found to have different patterns of organization in the inferior colliculus, suggesting that there are different types of glutamatergic neurons in the brainstem auditory system with projections to the colliculus. To positively identify VGLUT-expressing neurons as well as inhibitory neurons in the auditory brainstem, we used in situ hybridization to identify the mRNA for VGLUT1, VGLUT2, and VIAAT (the vesicular inhibitory amino acid transporter used by GABAergic and glycinergic terminals). Similar expression patterns were found in subsets of glutamatergic and inhibitory neurons in the auditory brainstem and thalamus of adult rats and mice. Four patterns of gene expression were seen in individual neurons. 1) VGLUT2 expressed alone was the prevalent pattern. 2) VGLUT1 coexpressed with VGLUT2 was seen in scattered neurons in most nuclei but was common in the medial geniculate body and ventral cochlear nucleus. 3) VGLUT1 expressed alone was found only in granule cells. 4) VIAAT expression was common in most nuclei but dominated in some. These data show that the expression of the VGLUT1/2 and VIAAT genes can identify different subsets of auditory neurons. This may facilitate the identification of different components in auditory circuits.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
18
|
Fyk-Kolodziej B, Shimano T, Gong TW, Holt AG. Vesicular glutamate transporters: spatio-temporal plasticity following hearing loss. Neuroscience 2011; 178:218-39. [PMID: 21211553 DOI: 10.1016/j.neuroscience.2010.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 12/22/2022]
Abstract
An immunocytochemical comparison of vGluT1 and vGluT3 in the cochlear nucleus (CN) of deafened versus normal hearing rats showed the first example of vGluT3 immunostaining in the dorsal and ventral CN and revealed temporal and spatial changes in vGluT1 localization in the CN after cochlear injury. In normal hearing rats vGluT1 immunostaining was restricted to terminals on CN neurons while vGluT3 immunolabeled the somata of the neurons. This changed in the ventral cochlear nucleus (VCN) 3 days following deafness, where vGluT1 immunostaining was no longer seen in large auditory nerve terminals but was instead found in somata of VCN neurons. In the dorsal cochlear nucleus (DCN), while vGluT1 labeling of terminals decreased, there was no labeling of neuronal somata. Therefore, loss of peripheral excitatory input results in co-localization of vGluT1 and vGluT3 in VCN neuronal somata. Postsynaptic glutamatergic neurons can use retrograde signaling to control their presynaptic inputs and these results suggest vGluTs could play a role in regulating retrograde signaling in the CN under different conditions of excitatory input. Changes in vGluT gene expression in CN neurons were found 3 weeks following deafness using qRT-PCR with significant increases in vGluT1 gene expression in both ventral and dorsal CN while vGluT3 gene expression decreased in VCN but increased in DCN.
Collapse
Affiliation(s)
- B Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
19
|
Lee CC, Sherman SM. On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear Res 2010; 276:79-87. [PMID: 21184817 DOI: 10.1016/j.heares.2010.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/24/2023]
Abstract
Auditory forebrain pathways exhibit several morphological and physiological properties that underlie their specific neurobiological roles in auditory processing. Anatomically, such projections can be distinguished by their terminal size, arborization patterns, and postsynaptic dendritic locations. These structural features correlate with several postsynaptic physiological properties, such as EPSP amplitude, short-term plasticity, and postsynaptic receptor types. Altogether, these synaptic properties segregate into two main classes that are associated with either primarily information-bearing (Class 1) or modulatory (Class 2) roles, and have been used to delineate the principle routes of information flow through the auditory midbrain, thalamus, and cortex. Moreover, these synaptic properties engender as yet unexplored issues regarding the neuronal processing of auditory information, such as the convergent integration and long-term plasticity of auditory forebrain inputs.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
20
|
Hackett TA, Takahata T, Balaram P. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway. Hear Res 2010; 274:129-41. [PMID: 21111036 DOI: 10.1016/j.heares.2010.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/20/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system.
Collapse
Affiliation(s)
- Troy A Hackett
- Dept of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
| | | | | |
Collapse
|
21
|
Ito T, Oliver DL. Origins of Glutamatergic Terminals in the Inferior Colliculus Identified by Retrograde Transport and Expression of VGLUT1 and VGLUT2 Genes. Front Neuroanat 2010; 4:135. [PMID: 21048892 PMCID: PMC2967334 DOI: 10.3389/fnana.2010.00135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/07/2010] [Indexed: 11/13/2022] Open
Abstract
Terminals containing vesicular glutamate transporter (VGLUT) 2 make dense axosomatic synapses on tectothalamic GABAergic neurons. These are one of the three types of glutamatergic synapses in the inferior colliculus (IC) identified by one of three combinations of transporter protein: VGLUT1 only, VGLUT2 only, or both VGLUT1 and 2. To identify the source(s) of these three classes of glutamatergic terminals, we employed the injection of Fluorogold (FG) into the IC and retrograde transport in combination with in situ hybridization for VGLUT1 and VGLUT2 mRNA. The distribution of FG-positive soma was consistent with previous reports. In the auditory cortex, all FG-positive cells expressed only VGLUT1. In the IC, the majority of FG-positive cells expressed only VGLUT2. In the intermediate nucleus of the lateral lemniscus, most FG-positive cells expressed VGLUT2, and a few FG-positive cells expressed both VGLUT1 and 2. In the superior olivary complex (SOC), the majority of FG-positive cells expressing VGLUT2 were in the lateral superior olive, medial superior olive, and some periolivary nuclei. Fewer FG-positive cells expressed VGLUT1&2. In the ventral cochlear nucleus, almost all FG-positive cells expressed VGLUT1&2. On the other hand in the dorsal cochlear nucleus, the vast majority of FG-positive cells expressed only VGLUT2. Our data suggest that (1) the most likely sources of VGLUT2 terminals in the IC are the intermediate nucleus of the lateral lemniscus, the dorsal cochlear nucleus, the medial and lateral superior olive, and the IC itself, (2) VGLUT1 terminals in the IC originate only in the ipsilateral auditory cortex, and (3) VGLUT1&2 terminals in IC originate mainly from the VCN with minor contributions from the SOC and the lateral lemniscal nuclei.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | | |
Collapse
|
22
|
Abstract
The inferior colliculus (IC) is unique, having both glutamatergic and GABAergic projections ascending to the thalamus. Although subpopulations of GABAergic neurons in the IC have been proposed, criteria to distinguish them have been elusive and specific types have not been associated with specific neural circuits. Recently, the largest IC neurons were found to be recipients of somatic terminals containing vesicular glutamate transporter 2 (VGLUT2). Here, we show with electron microscopy that VGLUT2-positive (VGLUT2(+)) axonal terminals make axosomatic synapses on IC neurons. These terminals contain only VGLUT2 even though others in the IC have VGLUT1 or both VGLUT1 and 2. We demonstrate that there are two types of GABAergic neurons: larger neurons with VGLUT2(+) axosomatic endings and smaller neurons without such endings. Both types are present in all subdivisions of the IC, but larger GABAergic neurons with VGLUT2(+) axosomatic terminals are most prevalent in the central nucleus. The GABAergic tectothalamic neurons consist almost entirely of the larger cells surrounded by VGLUT2(+) axosomatic endings. Thus, two types of GABAergic neurons in the IC are defined by different synaptic organization and neuronal connections. Larger tectothalamic GABAergic neurons are covered with glutamatergic axosomatic synapses that could allow them to fire rapidly and overcome a slow membrane time constant; their axons may be the largest in the brachium of the IC. Thus, large GABAergic neurons could deliver IPSPs to the medial geniculate body before EPSPs from glutamatergic IC neurons firing simultaneously.
Collapse
|
23
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|