1
|
Wu NC, Quevedo R, Nurse M, Hezaveh K, Liu H, Sun F, Muffat J, Sun Y, Simmons CA, McGaha TL, Prinos P, Arrowsmith CH, Ailles L, D'Arcangelo E, McGuigan AP. The use of a multi-metric readout screen to identify EHMT2/G9a-inhibition as a modulator of cancer-associated fibroblast activation state. Biomaterials 2024; 314:122879. [PMID: 39395244 DOI: 10.1016/j.biomaterials.2024.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression, including mediating tumour cell invasion via their pro-invasive secretory profile and ability to remodel the extracellular matrix (ECM). Given that reduced CAF abundance in tumours correlates with improved outcomes in various cancers, we set out to identify epigenetic targets involved in CAF activation in regions of tumour-stromal mixing with the goal of reducing tumour aggressiveness. Using the GLAnCE (Gels for Live Analysis of Compartmentalized Environments) platform, we performed an image-based, phenotypic screen that enabled us to identify modulators of CAF abundance and the capacity of CAFs to induce tumour cell invasion. We identified EHMT2 (also known as G9a), an enzyme that targets the methylation of histone 3 lysine 9 (H3K9), as a potent modulator of CAF abundance and CAF-mediated tumour cell invasion. Transcriptomic and functional analysis of EHMT2-inhibited CAFs revealed EHMT2 participated in driving CAFs towards a pro-invasive phenotype and mediated CAF hyperproliferation, a feature typically associated with activated fibroblasts in tumours. Our study suggests that EHMT2 regulates CAF state within the tumour microenvironment by impacting CAF activation, as well as by magnifying the pro-invasive effects of these activated CAFs on tumour cell invasion through promoting CAF hyperproliferation.
Collapse
Affiliation(s)
- Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Nurse
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Haijiao Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Fumao Sun
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Elisa D'Arcangelo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Yan P, Liu H, Zhou T, Sun P, Wang Y, Wang X, Zhang L, Wang T, Dong J, Zhu J, Lv L, Li W, Qi S, Liang Y, Kong E. Crosstalk of Synapsin1 palmitoylation and phosphorylation controls the dynamicity of synaptic vesicles in neurons. Cell Death Dis 2022; 13:786. [PMID: 36097267 PMCID: PMC9468182 DOI: 10.1038/s41419-022-05235-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
The dynamics of synaptic vesicles (SVs) within presynaptic domains are tightly controlled by synapsin1 phosphorylation; however, the mechanism underlying the anchoring of synapsin1 with F-actin or SVs is not yet fully understood. Here, we found that Syn1 is modified with protein palmitoylation, and examining the roles of Syn1 palmitoylation in neurons led us to uncover that Syn1 palmitoylation is negatively regulated by its phosphorylation; together, they manipulate the clustering and redistribution of SVs. Using the combined approaches of electron microscopy and genetics, we revealed that Syn1 palmitoylation is vital for its binding with F-actin but not SVs. Inhibition of Syn1 palmitoylation causes defects in SVs clustering and a reduced number of total SVs in vivo. We propose a model in which SVs redistribution is triggered by upregulated Syn1 phosphorylation and downregulated Syn1 palmitoylation, and they reversibly promote SVs clustering. The crosstalk of Syn1 palmitoylation and phosphorylation thereby bidirectionally manipulates SVs dynamics in neurons.
Collapse
Affiliation(s)
- Peipei Yan
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhou
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Pu Sun
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Yilin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xibin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tian Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jing Dong
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Yinming Liang
- grid.412990.70000 0004 1808 322XLaboratory of Genetic Regulators in the Immune System, Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Zhi WJ, Qiao SM, Zou Y, Peng RY, Yan HT, Ma LZ, Dong J, Zhao L, Yao BW, Zhao XL, Feng XX, Hu XJ, Wang LF. Low p-SYN1 (Ser-553) Expression Leads to Abnormal Neurotransmitter Release of GABA Induced by Up-Regulated Cdk5 after Microwave Exposure: Insights on Protection and Treatment of Microwave-Induced Cognitive Dysfunction. Curr Issues Mol Biol 2021; 44:206-221. [PMID: 35723394 PMCID: PMC8929049 DOI: 10.3390/cimb44010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
With the wide application of microwave technology, concerns about its health impact have arisen. The signal transmission mode of the central nervous system and neurons make it particularly sensitive to electromagnetic exposure. It has been reported that abnormal release of amino acid neurotransmitters is mediated by alteration of p-SYN1 after microwave exposure, which results in cognitive dysfunction. As the phosphorylation of SYN1 is regulated by different kinases, in this study we explored the regulatory mechanisms of SYN1 fluctuations following microwave exposure and its subsequent effect on GABA release, aiming to provide clues on the mechanism of cognitive impairment caused by microwave exposure. In vivo studies with Timm and H&E staining were adopted and the results showed abnormality in synapse formation and neuronal structure, explaining the previously-described deficiency in cognitive ability caused by microwave exposure. The observed alterations in SYN1 level, combined with the results of earlier studies, indicate that SYN1 and its phosphorylation status (ser-553 and ser62/67) may play a role in the abnormal release of neurotransmitters. Thus, the role of Cdk5, the upstream kinase regulating the formation of p-SYN1 (ser-553), as well as that of MEK, the regulator of p-SYN1 (ser-62/67), were investigated both in vivo and in vitro. The results showed that Cdk5 was a negative regulator of p-SYN1 (ser-553) and that its up-regulation caused a decrease in GABA release by reducing p-SYN1 (ser-553). While further exploration still needed to elaborate the role of p-SYN1 (ser-62/67) for neurotransmitter release, MEK inhibition had was no impact on p-Erk or p-SYN1 (ser-62/67) after microwave exposure. In conclusion, the decrease of p-SYN1 (ser-553) may result in abnormalities in vesicular anchoring and GABA release, which is caused by increased Cdk5 regulated through Calpain-p25 pathway after 30 mW/cm2 microwave exposure. This study provided a potential new strategy for the prevention and treatment of microwave-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Wei-Jia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Si-Mo Qiao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (S.-M.Q.); (H.-T.Y.)
| | - Yong Zou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Hai-Tao Yan
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (S.-M.Q.); (H.-T.Y.)
| | - Li-Zhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Bin-Wei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Xue-Long Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
| | - Xin-Xing Feng
- Endocrine and Cardiovascular Center, Cardiovascular Institute and Fuwai Hospital of Chinese Academy of Medical Sciences, Beijing 100850, China;
| | - Xiang-Jun Hu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
- Correspondence: (X.-J.H.); (L.-F.W.)
| | - Li-Feng Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.-J.Z.); (Y.Z.); (R.-Y.P.); (L.-Z.M.); (J.D.); (L.Z.); (B.-W.Y.); (X.-L.Z.)
- Correspondence: (X.-J.H.); (L.-F.W.)
| |
Collapse
|
4
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
5
|
Gao L, Penglee R, Huang Y, Yi X, Wang X, Liu L, Gong X, Bao B. CRISPR/Cas9-induced nos2b mutant zebrafish display behavioral abnormalities. GENES BRAIN AND BEHAVIOR 2020; 20:e12716. [PMID: 33200539 DOI: 10.1111/gbb.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
The immunomodulatory function of nitric oxide synthase (NOS2) has been extensively studied. However, some behavioral abnormalities caused by its mutations have been found in a few rodent studies, of which the molecular mechanism remains elusive. In this research, we generated nos2b gene knockout zebrafish (nos2bsou2/sou2 ) using CRISPR/Cas9 approach and investigated their behavioral and molecular changes by doing a series of behavioral detections, morphological measurements, and molecular analyses. We found that, compared with nos2b+/+ zebrafish, nos2bsou2/sou2 zebrafish exhibited enhanced motor activity; additionally, nos2bsou2/sou2 zebrafish were characterized by smaller brain size, abnormal structure of optic tectum, reduced mRNA level of presynaptic synaptophysin and postsynaptic homer1, and altered response to sodium nitroprusside/methylphenidate hydrochloride treatment. These findings will likely contribute to future studies of behavioral regulation.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rachit Penglee
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinxin Yi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaojie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
7
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
8
|
Forte N, Binda F, Contestabile A, Benfenati F, Baldelli P. Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations. Cereb Cortex 2019; 30:1393-1406. [DOI: 10.1093/cercor/bhz174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023] Open
Abstract
Abstract
Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.
Collapse
Affiliation(s)
- N Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - F Binda
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - P Baldelli
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
9
|
Liu B, Liu J, Zhang J, Mao W, Li S. Effects of autophagy on synaptic-plasticity-related protein expression in the hippocampus CA1 of a rat model of vascular dementia. Neurosci Lett 2019; 707:134312. [DOI: 10.1016/j.neulet.2019.134312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
|
10
|
Fu T, Wang J, Ding Y, Zhang Y, Han S, Li J. Modulation of cPKCγ on Synapsin-Ia/b-Specific Phosphorylation Sites in the Developing Visual Cortex of Mice. Invest Ophthalmol Vis Sci 2019; 60:2676-2684. [PMID: 31242289 DOI: 10.1167/iovs.19-26675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of synapsin-Ia/b in visual cortical plasticity, the dynamic changes in total protein expression (T-) and conventional protein kinase C (cPKC)γ-modulated phosphorylation (P-) levels of synapsin-Ia/b were observed in the developing visual cortex of mice. Methods The Western blot analysis was used to determine the levels of T- and P-synapsin-Ia/b at site of Ser9, 549, and 603; the cPKCγ gene wild-type (cPKCγ+/+) and knockout (cPKCγ-/-) mice were applied to explore the modulation of cPKCγ on synapsin-Ia/b phosphorylation status in visual cortex of mice at postnatal 7 to 60 days (P7-P60, n = 6 per group). Results The results showed that T-synapsin-Ia/b protein levels significantly increased at P14 to P35 and peaked at P42 to 60 (P < 0.001) in visual cortex when compared with that of P7 cPKCγ+/+ mice, and cPKCγ-/- did not affect this pattern of T-synapsin-Ia/b protein expressions. For synapsin-Ia/b phosphorylation status, the levels of P-Ser9 and 603 synapsin-Ia/b significantly elevated at P21 to P28 (P < 0.05 or 0.001), and then went down and maintained at lower levels at P35 to P60 (P < 0.05 or 0.001) compared with P7 cPKCγ+/+ mice. In addition, the cPKCγ gene knockout could significantly (P < 0.001) inhibit both the increase and decrease of P-Ser9 and 603 synapsin-Ia/b levels when compared with cPKCγ+/+ mice at P7 to P60. However, there were no significant changes of P-Ser549 synapsin-Ia/b in the developing visual cortex of both cPKCγ+/+ and cPKCγ-/- mice at P7 to P60. Conclusions These results suggested that both protein expression levels and cPKCγ-modulated phosphorylation status at Ser9 and 603 of synapsin-Ia/b may play important role in developing visual cortex of mice.
Collapse
Affiliation(s)
- Tao Fu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Jing Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yichao Ding
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yunxia Zhang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lugarà E, De Fusco A, Lignani G, Benfenati F, Humeau Y. Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion. Front Cell Neurosci 2019; 13:220. [PMID: 31164805 PMCID: PMC6536628 DOI: 10.3389/fncel.2019.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/01/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA). We performed dual electrophysiological recordings of identified cells in juvenile and adult GAD67-GFP mice after independent stimulation of cortical and thalamic afferent systems. The results demonstrate that synaptic strengthening occurs during development at synapses projecting to LA principal neurons, but not interneurons. As synaptic strengthening underlies fear conditioning which depends, in turn, on presence and increasing expression of synapsin I, we tested if synapsin I contributes to synaptic strengthening during development. Interestingly, the physiological synaptic strengthening of cortical and thalamic synapses projecting to LA principal neurons was virtually abolished in synapsin I knockout mice, but not differences were observed in the excitatory projections to interneurons. Immunohistochemistry analysis showed that the presence of synapsin I is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. These results indicate that synapsin I is a key regulator of the maturation of synaptic connectivity in this brain region and that is expression is dependent on postsynaptic identity.
Collapse
Affiliation(s)
- Eleonora Lugarà
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Antonio De Fusco
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de Neuroscience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Chen C, Jiang X, Li Y, Yu H, Li S, Zhang Z, Xu H, Yang Y, Liu G, Zhu F, Ren X, Zou L, Xu B, Liu J, Spencer PS, Yang X. Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer's disease. Free Radic Biol Med 2019; 135:144-156. [PMID: 30862541 DOI: 10.1016/j.freeradbiomed.2019.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Excessive copper can cause neurotoxicity and contribute to the development of some neurological diseases; however, copper neurotoxicity and the potential mechanisms remain poorly understood. We used proteomics and phosphoproteomics to quantify protein changes in the hippocampus of wild-type and 3xTg-AD mice, both of which were treated at 6 months of age with 2 months of drinking water with or without added copper chloride (0.13 ppm concentration). A total of 3960 unique phosphopeptides (5290 phosphorylation sites) from 1406 phosphoproteins was identified. Differentially expressed phosphoproteins involved neuronal and synaptic function, transcriptional regulation, energy metabolism and mitochondrial function. In addition, low-dose copper treatment of wild-type mice decreased hippocampal mitochondrial copy number, mitochondrial biogenesis and disrupted mitochondrial dynamics; these changes were associated with increased hydrogen peroxide production (H2O2), reduced cytochrome oxidase activity and decreased ATP content. In 3xTg-AD mice, identical low-dose oral copper treatment increased axonal degeneration, which was associated with altered phosphorylation of Camk2α at T286 and phosphorylation of mitogen-activated protein kinase (ERK1/2), which involved long-term potentiation (LTP) signaling. Mitochondrial dysfunction was mainly related to changes in phosphorylation levels of glycogen synthase kinase-3 beta (GSK3β) and serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform (Ppp3ca), which involved mitochondrial biogenesis signaling. In sum, low-dose oral copper treatment changes the phosphorylation of key hippocampal proteins involved in mitochondrial, synaptic and axonal integrity. These data showing that excess of copper speeds some early events of AD changes observed suggest that excess circulating copper has the potential to perturb brain function of wild-type mice and exacerbate neurodegenerative changes in a mouse model of AD.
Collapse
Affiliation(s)
- Chongyang Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Guangdong, China
| | - Yingchao Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Hua Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The 3rd Affiliated Hospital of Shenzhen University, China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen, 518020, China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Michetti C, Caruso A, Pagani M, Sabbioni M, Medrihan L, David G, Galbusera A, Morini M, Gozzi A, Benfenati F, Scattoni ML. The Knockout of Synapsin II in Mice Impairs Social Behavior and Functional Connectivity Generating an ASD-like Phenotype. Cereb Cortex 2018; 27:5014-5023. [PMID: 28922833 DOI: 10.1093/cercor/bhx207] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorders (ASD) and epilepsy are neurodevelopmental conditions that appear with high rate of co-occurrence, suggesting the possibility of a common genetic basis. Mutations in Synapsin (SYN) genes, particularly SYN1 and SYN2, have been recently associated with ASD and epilepsy in humans. Accordingly, mice lacking Syn1 or Syn2, but not Syn3, experience epileptic seizures and display autistic-like traits that precede the onset of seizures. Here, we analyzed social behavior and ultrasonic vocalizations emitted in 2 social contexts by SynI, SynII, or SynIII mutants and show that SynII mutants display the most severe ASD-like phenotype. We also show that the behavioral SynII phenotype correlates with a significant decrease in auditory and hippocampal functional connectivity as measured with resting state functional magnetic resonance imaging (rsfMRI). Taken together, our results reveal a permissive contribution of Syn2 to the expression of normal socio-communicative behavior, and suggest that Syn2-mediated synaptic dysfunction can lead to ASD-like behavior through dysregulation of cortical connectivity.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Angela Caruso
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Mara Sabbioni
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Gergely David
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Monica Morini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Maria Luisa Scattoni
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 2018; 13:7. [PMID: 29712572 PMCID: PMC5928581 DOI: 10.1186/s13064-018-0104-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023] Open
Abstract
In the mammalian cerebral cortex neurons are arranged in specific layers and form connections both within the cortex and with other brain regions, thus forming a complex mesh of specialized synaptic connections comprising distinct circuits. The correct establishment of these connections during development is crucial for the proper function of the brain. Astrocytes, a major type of glial cell, are important regulators of synapse formation and function during development. While neurogenesis precedes astrogenesis in the cortex, neuronal synapses only begin to form after astrocytes have been generated, concurrent with neuronal branching and process elaboration. Here we provide a combined overview of the developmental processes of synapse and circuit formation in the rodent cortex, emphasizing the timeline of both neuronal and astrocytic development and maturation. We further discuss the role of astrocytes at the synapse, focusing on astrocyte-synapse contact and the role of synapse-related proteins in promoting formation of distinct cortical circuits.
Collapse
Affiliation(s)
- Isabella Farhy-Tselnicker
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Barbieri R, Contestabile A, Ciardo MG, Forte N, Marte A, Baldelli P, Benfenati F, Onofri F. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice. Oncotarget 2018; 9:18760-18774. [PMID: 29721159 PMCID: PMC5922353 DOI: 10.18632/oncotarget.24655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 01/23/2023] Open
Abstract
Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.
Collapse
Affiliation(s)
- Raffaella Barbieri
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Maria Grazia Ciardo
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Nicola Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| |
Collapse
|
16
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
17
|
Cragnaz L, Klima R, De Conti L, Romano G, Feiguin F, Buratti E, Baralle M, Baralle FE. An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model. Neuroscience 2015; 311:415-21. [PMID: 26518462 DOI: 10.1016/j.neuroscience.2015.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The average age of onset of both sporadic and familial cases is 50-60 years of age. The presence of cytoplasmic inclusions of the RNA-binding protein TAR DNA-binding protein-43 (TDP-43) in the affected neurons is seen in 95% of the ALS cases, which results in TDP-43 nuclear clearance and loss of function. The Drosophila melanogaster ortholog of TDP-43 (TBPH) shares many characteristics with the human protein. Using a TDP-43 aggregation inducer previously developed in human cells, we created a transgenic fly that shows an adult locomotive defect. Phenotype onset correlates with a physiologically age-related drop of TDP-43/TBPH mRNA and protein levels, seen both in mice and flies. Artificial reduction of mRNA levels, in vivo, anticipates the locomotion defect to the larval stage. Our study links, for the first time, aggregation and the age-related, evolutionary conserved reduction of TDP-43/TBPH levels with the onset of an ALS-like locomotion defect in a Drosophila model. A similar process might trigger the human disease.
Collapse
Affiliation(s)
- L Cragnaz
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - R Klima
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - L De Conti
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - G Romano
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - F Feiguin
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - E Buratti
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - M Baralle
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - F E Baralle
- ICGEB - International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
18
|
Torres LH, Garcia RCT, Blois AMM, Dati LMM, Durão AC, Alves AS, Pacheco-Neto M, Mauad T, Britto LRG, Xavier GF, Camarini R, Marcourakis T. Exposure of Neonatal Mice to Tobacco Smoke Disturbs Synaptic Proteins and Spatial Learning and Memory from Late Infancy to Early Adulthood. PLoS One 2015; 10:e0136399. [PMID: 26305213 PMCID: PMC4549279 DOI: 10.1371/journal.pone.0136399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
Exposure to environmental tobacco smoke (ETS) in the early postnatal period has been associated with several diseases; however, little is known about the brain effects of ETS exposure during this critical developmental period or the long-term consequences of this exposure. This study investigated the effects of the early postnatal ETS exposure on both reference and working memory, synaptic proteins and BDNF from late infancy to early adulthood (P3-P73). BALB/c mice were exposed to ETS generated from 3R4F reference research cigarettes (0.73 mg of nicotine/cigarette) from P3 to P14. Spatial reference and working memory were evaluated in the Morris water maze during infancy (P20-P29), adolescence (P37-P42) and adulthood (P67-P72). Synapsin, synaptophysin, PSD95 and brain-derived neurotrophic factor (BDNF) were assessed at P15, P35 and P65 by immunohistochemistry and immunoblotting. Mice that were exposed to ETS during the early postnatal period showed poorer performance in the spatial reference memory task. Specifically, the ETS-exposed mice exhibited a significantly reduced time and distance traveled in the target quadrant and in the platform location area than the controls at all ages evaluated. In the spatial working memory task, ETS disrupted the maintenance but not the acquisition of the critical spatial information in both infancy and adolescence. ETS also induced changes in synaptic components, including decreases in synapsin, synaptophysin, PSD95 and BDNF levels in the hippocampus. Exposure to ETS in the early postnatal period disrupts both spatial reference and working memory; these results may be related to changes in synaptogenesis in the hippocampus. Importantly, most of these effects were not reversed even after a long exposure-free period.
Collapse
Affiliation(s)
- Larissa Helena Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Raphael C. T. Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Anne M. M. Blois
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Lívia M. M. Dati
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Ana Carolina Durão
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Adilson Silva Alves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Maurílio Pacheco-Neto
- Department of Clinical Pathology, School of Medicine, University of São Paulo, São Paulo/SP, CEP: 05403–010, Brazil
| | - Thais Mauad
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo/SP, CEP: 01246–903, Brazil
| | - Luiz R. G. Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo/SP, CEP: 05508–900, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–900, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP, CEP: 05508–000, Brazil
- * E-mail:
| |
Collapse
|
19
|
Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice. Neurochem Res 2015; 40:524-30. [PMID: 25576091 DOI: 10.1007/s11064-014-1492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
Abstract
Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.
Collapse
|
20
|
Medrihan L, Ferrea E, Greco B, Baldelli P, Benfenati F. Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse. Cereb Cortex 2014; 25:3356-68. [PMID: 24962993 PMCID: PMC4585492 DOI: 10.1093/cercor/bhu141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII−/− epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Enrico Ferrea
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Barbara Greco
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
21
|
de Vivo L, Faraguna U, Nelson AB, Pfister-Genskow M, Klapperich ME, Tononi G, Cirelli C. Developmental patterns of sleep slow wave activity and synaptic density in adolescent mice. Sleep 2014; 37:689-700, 700A-700B. [PMID: 24744454 DOI: 10.5665/sleep.3570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVE In humans sleep slow wave activity (SWA) declines during adolescence. It has been suggested that this decline reflects the elimination of cortical synapses, but this hypothesis has never been tested directly. DESIGN We focused on mouse frontal cortex and collected data from early adolescence (∼postnatal day 20, P20) to adulthood (P60) of (1) SWA; (2) expression of synapsin I, a presynaptic marker; and (3) number of dendritic spines in layers I-II. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS YFP-line H mice (n = 70; P15-87, all males) and GFP-line S mice (n = 14; P17-60, 8 females) were used for EEG recording. Forty-five YFP mice (P19-119, 12 females) and 42 GFP-S mice (P20-60, 14 females) were used for in vivo 2-photon imaging and ex vivo confocal microscopy, respectively. Other YGP mice (n = 57, P10-77) were used for western blot analysis of synapsin I. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS As in humans, SWA in mice declined from early adolescence to adulthood. Synapsin I levels increased from P10 to P24, with little change afterwards. Mean spine density in apical dendrites of layer V pyramidal neurons (YFP-H) showed no change from P20 to P60. Spine number in layers I-II apical dendrites, belonging to layer III and V pyramidal neurons (GFP-S), increased slightly from P20 to P30 and decreased from P30 to P60; smaller spines decreased in number from P20 to P60, while bigger spines increased. CONCLUSIONS In mice, it is unlikely that the developmental decrease in SWA can be accounted for by a net pruning of cortical synapses.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Ugo Faraguna
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin/Madison, WI ; Neuroscience Training Program, University of Wisconsin-Madison, WI
| | | | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin/Madison, WI
| |
Collapse
|
22
|
Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 2014; 33:18319-30. [PMID: 24227741 DOI: 10.1523/jneurosci.5293-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Some forms of idiopathic epilepsy in animals and humans are associated with deficiency of synapsin, a phosphoprotein that reversibly associates with synaptic vesicles. We have previously shown that the epileptic phenotype seen in synapsin II knock-out mice (SynII(-)) can be rescued by the genetic deletion of the Rab3a protein. Here we have examined the cellular basis for this rescue using whole-cell recordings from CA1 hippocampal pyramidal cells in brain slices. We find that SynII(-) neurons have increased spontaneous activity and a reduced threshold for the induction of epileptiform activity by 4-aminopyridine (4-AP). Using selective recordings of glutamatergic and GABAergic activity we show that in wild-type neurons low concentrations of 4-AP facilitate glutamatergic and GABAergic transmission in a balanced way, whereas in SynII(-) neurons this balance is shifted toward excitation. This imbalance reflects a deficit in inhibitory synaptic transmission that appears to be secondary to reduced Ca(2+) sensitivity in SynII(-) neurons. This suggestion is supported by our finding that synaptic and epileptiform activity at SynII(-) and wild-type synapses is similar when GABAergic transmission is blocked. Deletion of Rab3a results in glutamatergic synapses that have a compromised responsiveness to either low 4-AP concentrations or elevated extracellular Ca(2+). These changes mitigate the overexcitable phenotype observed in SynII(-) neurons. Thus, Rab3a deletion appears to restore the excitatory/inhibitory imbalance observed in SynII(-) hippocampal slices indirectly, not by correcting the deficit in GABAergic synaptic transmission but rather by impairing excitatory glutamatergic synaptic transmission.
Collapse
|
23
|
Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2014; 2:94. [PMID: 25237665 PMCID: PMC4154395 DOI: 10.3389/fped.2014.00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 12/03/2022] Open
Abstract
Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests, and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn) genes in humans has been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Syns are pre-synaptic proteins regulating synaptic vesicle traffic, neurotransmitter release, and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication, and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.
Collapse
Affiliation(s)
- Silvia Giovedí
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| |
Collapse
|
24
|
Pachernegg S, Joshi I, Muth-Köhne E, Pahl S, Münster Y, Terhag J, Karus M, Werner M, Ma-Högemeier ZL, Körber C, Grunwald T, Faissner A, Wiese S, Hollmann M. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs. Front Cell Neurosci 2013; 7:241. [PMID: 24348335 PMCID: PMC3847582 DOI: 10.3389/fncel.2013.00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells (NSCs). We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs), by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (KARs) (GluK2 to GluK5), AMPA receptors (AMPARs) (GluA1, GluA3, and GluA4), and NMDA receptors (NMDARs) (GluN1, and GluN2A to GluN2D). Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs) and NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for iGluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express KARs (GluK2 to GluK5), AMPARs (GluA3), and NMDARs (GluN1, and GluN2A to GluN2D) at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs.
Collapse
Affiliation(s)
- Svenja Pachernegg
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany
| | - Illah Joshi
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; DFG Graduate School 736, Ruhr University Bochum Bochum, Germany
| | - Elke Muth-Köhne
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany
| | - Steffen Pahl
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany
| | - Yvonne Münster
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Jan Terhag
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany ; DFG Graduate School 736, Ruhr University Bochum Bochum, Germany
| | - Michael Karus
- International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany ; Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum Bochum, Germany
| | - Markus Werner
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Zhan-Lu Ma-Högemeier
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | - Christoph Körber
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr University Bochum Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum Bochum, Germany
| | - Stefan Wiese
- Group for Molecular Cell Biology, Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
25
|
Corradi A, Fadda M, Piton A, Patry L, Marte A, Rossi P, Cadieux-Dion M, Gauthier J, Lapointe L, Mottron L, Valtorta F, Rouleau GA, Fassio A, Benfenati F, Cossette P. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Hum Mol Genet 2013; 23:90-103. [PMID: 23956174 PMCID: PMC3857945 DOI: 10.1093/hmg/ddt401] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2 knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2 as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.
Collapse
Affiliation(s)
- Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
27
|
Etholm L, Bahonjic E, Heggelund P. Sensitive and critical periods in the development of handling induced seizures in mice lacking synapsins: differences between synapsin I and synapsin II knockouts. Exp Neurol 2013; 247:59-65. [PMID: 23570901 DOI: 10.1016/j.expneurol.2013.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 01/14/2023]
Abstract
Mice lacking either synapsin I or synapsin II develop handling induced seizures from around two months of age. In mice lacking synapsin I (synapsin 1 knock-out mice, Syn1KO mice) such seizures can either consist of mild myoclonic jerks or of fully developed generalized tonic-clonic seizures, and the two seizure types are quite evenly distributed. In mice lacking synapsin II (synapsin 2 knock-out mice, Syn2KO mice) all seizures are in the form of generalized tonic-clonic seizures. Through the use of specialized animal rearing procedures whereby human-animal interaction was minimized (minimal handling procedures), this study investigated effects of handling also prior to the emergence of actual seizures. The effect of minimal handling procedures was significant in both genotypes, but most pronounced in Syn1KO mice. In this genotype, minimal handling reduced the frequency of mild seizures, and completely eliminated generalized tonic-clonic seizures when the animals were tested with regular handling at 4 1/2 months of age. Neither seizure frequency nor generalized tonic-clonic seizures could be re-established through regular handling from 4 1/2 to 8 months. This suggests that the period up to 4 1/2 months constitute a sensitive period for seizures in general, and a critical period for generalized tonic-clonic seizures in this genotype. In Syn2KO mice minimal handling did not remove generalized tonic-clonic seizures, as such seizures were present when handling was introduced at 4 1/2 months. We found an initial reduction of seizure frequency, but the seizure frequency eventually reached levels seen in mice kept under regular handling regimes. Thus, it is unlikely that the period up to 4 1/2 months is a sensitive period in the Syn2KO genotype.
Collapse
Affiliation(s)
- Lars Etholm
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | | | | |
Collapse
|
28
|
Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenati F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 2012; 251:65-74. [PMID: 23280234 PMCID: PMC3730181 DOI: 10.1016/j.bbr.2012.12.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.
Collapse
Affiliation(s)
- Barbara Greco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Paonessa F, Latifi S, Scarongella H, Cesca F, Benfenati F. Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5'-cytosine-phosphoguanine (CpG) methylation. J Biol Chem 2012; 288:3227-39. [PMID: 23250796 PMCID: PMC3561544 DOI: 10.1074/jbc.m112.399782] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The development and function of the nervous system are directly dependent on a well defined pattern of gene expression. Indeed, perturbation of transcriptional activity or epigenetic modifications of chromatin can dramatically influence neuronal phenotypes. The phosphoprotein synapsin I (Syn I) plays a crucial role during axonogenesis and synaptogenesis as well as in synaptic transmission and plasticity of mature neurons. Abnormalities in SYN1 gene expression have been linked to important neuropsychiatric disorders, such as epilepsy and autism. SYN1 gene transcription is suppressed in non-neural tissues by the RE1-silencing transcription factor (REST); however, the molecular mechanisms that allow the constitutive expression of this genetic region in neurons have not been clarified yet. Herein we demonstrate that a conserved region of human and mouse SYN1 promoters contains cis-sites for the transcriptional activator Sp1 in close proximity to REST binding motifs. Through a series of functional assays, we demonstrate a physical interaction of Sp1 on the SYN1 promoter and show that REST directly inhibits Sp1-mediated transcription, resulting in SYN1 down-regulation. Upon differentiation of neuroblastoma Neuro2a cells, we observe a decrease in endogenous REST and a higher stability of Sp1 on target GC boxes, resulting in an increase of SYN1 transcription. Moreover, methylation of Sp1 cis-sites in the SYN1 promoter region could provide an additional level of transcriptional regulation. Our results introduce Sp1 as a fundamental activator of basal SYN1 gene expression, whose activity is modulated by the neural master regulator REST and CpG methylation.
Collapse
Affiliation(s)
- Francesco Paonessa
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | | | | |
Collapse
|
30
|
Ketzef M, Gitler D. Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. ACTA ACUST UNITED AC 2012; 24:996-1008. [PMID: 23236212 DOI: 10.1093/cercor/bhs384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
31
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
32
|
Schock SC, Jolin-Dahel KS, Schock PC, Theiss S, Arbuthnott GW, Garcia-Munoz M, Staines WA. Development of dissociated cryopreserved rat cortical neurons in vitro. J Neurosci Methods 2012; 205:324-33. [PMID: 22326618 DOI: 10.1016/j.jneumeth.2012.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/30/2022]
Abstract
Dissociated neuronal cultures of various brain regions are commonly used to study physiological and pathophysiological processes in vitro. The data derived from these studies are often viewed to have relevance to processes taking place in the mature brain. However, due to the practical challenges associated with lengthy neuronal culture, neurons are often kept for 14 days in vitro (DIV), or less, before being subject to experimentation. Non-proliferative cultures such as primary neuronal cultures can be maintained for more than 42 DIV if water evaporation from culture media is monitored and corrected. To determine appropriate time points corresponding to the stages of cortical development, we compared characteristics of cryopreserved cortical neurons in cultures at various DIV using immunofluorescence, biochemical measurements and multielectrode array recordings. Compared to 21 and 35 DIV, at 14 DIV, cultures are still undergoing developmental changes and are not representative of adult in vivo brain tissue. Specifically, we noted significant lack in immunoreactivity for synaptic markers such as synapsin, vesicular GABA transporter and vesicular glutamate transporter at 14 DIV, relative to 21 and 35 DIV. Moreover, multielectrode array analysis indicated an increase in network firing up to 46 DIV with patterned firing peaking at 35 DIV. Our results provide specific evidence of the maturational stages of neurons in culture that can be used to more successfully plan various types of in vitro experimentation.
Collapse
Affiliation(s)
- Sarah C Schock
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Etholm L, Bahonjic E, Walaas SI, Kao HT, Heggelund P. Neuroethologically delineated differences in the seizure behavior of synapsin 1 and synapsin 2 knock-out mice. Epilepsy Res 2012; 99:252-9. [PMID: 22236379 DOI: 10.1016/j.eplepsyres.2011.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
The highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures. Analysis of seizure behavior at earlier stages shows that the mature seizure pattern in Syn2KO mice establishes rapidly from the age of ∼2 months, when Syn1KO partial seizures are rare, and Syn1KO generalized seizures are almost absent. The specific behavioral phenotypes of the two strains suggest that the slight differences in structure, function and expression of these highly related proteins could be important factors during seizure generating neural activity.
Collapse
Affiliation(s)
- Lars Etholm
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
34
|
Fassio A, Raimondi A, Lignani G, Benfenati F, Baldelli P. Synapsins: from synapse to network hyperexcitability and epilepsy. Semin Cell Dev Biol 2011; 22:408-15. [PMID: 21816229 DOI: 10.1016/j.semcdb.2011.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023]
Abstract
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity. Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, Section of Physiology and National Institute of Neuroscience, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
35
|
Humeau Y, Candiani S, Ghirardi M, Poulain B, Montarolo P. Functional roles of synapsin: Lessons from invertebrates. Semin Cell Dev Biol 2011; 22:425-33. [DOI: 10.1016/j.semcdb.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/13/2011] [Indexed: 12/18/2022]
|
36
|
Bogen IL, Jensen V, Hvalby Ø, Walaas SI. Glutamatergic neurotransmission in the synapsin I and II double knock-out mouse. Semin Cell Dev Biol 2011; 22:400-7. [DOI: 10.1016/j.semcdb.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 01/19/2023]
|
37
|
Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience 2011; 189:108-22. [PMID: 21621590 DOI: 10.1016/j.neuroscience.2011.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/16/2011] [Accepted: 05/11/2011] [Indexed: 11/21/2022]
Abstract
Adult synapsin triple-knockout mice exhibit epilepsy that manifests as generalized tonic-clonic seizures. Because in vitro recordings have shown a reduction in quantal release from inhibitory neurons, an inherent excitation-inhibition imbalance has been hypothesized as the direct culprit for epilepsy in these mice. We critically assessed this hypothesis by examining neurotransmission during the emergence of epilepsy. Using long-term video and telemetric EEG monitoring we found that synapsin triple-knockout mice exhibit an abrupt transition during early adulthood from a seizure-free presymptomatic latent state to a consistent symptomatic state of sensory-induced seizures. Electrophysiological recordings showed that during the latent period larger field responses could be elicited in slices from mutant mice. However, only after the transition to a symptomatic state in the adult mice did evoked epileptiform activity become prevalent. This state was characterized by resistance to the epileptiform-promoting effects of 4-aminopyridine, by marked hypersensitivity to blockage of GABAA receptors, and by the emergence of unresponsiveness to NMDA receptor antagonism, all of which were not observed during the latent period. Importantly, enhancement in inhibitory transmission was associated with upregulation of GAD67 expression without affecting the number of inhibitory neurons in the same brain areas where epileptiform activity was recorded. We therefore suggest that while deletion of the synapsins initially increases cortical network activity, this enhanced excitability is insufficient to elicit seizures. Rather, compensatory epileptogenic mechanisms are activated during the latent period that lead to an additional almost-balanced enhancement of both the excitatory and inhibitory components of the network, finally culminating in the emergence of epilepsy.
Collapse
|
38
|
Dahlhaus M, Li KW, van der Schors RC, Saiepour MH, van Nierop P, Heimel JA, Hermans JM, Loos M, Smit AB, Levelt CN. The synaptic proteome during development and plasticity of the mouse visual cortex. Mol Cell Proteomics 2011; 10:M110.005413. [PMID: 21398567 PMCID: PMC3098591 DOI: 10.1074/mcp.m110.005413] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During brain development, the neocortex shows periods of enhanced plasticity, which enables the acquisition of knowledge and skills that we use and build on in adult life. Key to persistent modifications of neuronal connectivity and plasticity of the neocortex are molecular changes occurring at the synapse. Here we used isobaric tag for relative and absolute quantification to measure levels of 467 synaptic proteins in a well-established model of plasticity in the mouse visual cortex and the regulation of its critical period. We found that inducing visual cortex plasticity by monocular deprivation during the critical period increased levels of kinases and proteins regulating the actin-cytoskeleton and endocytosis. Upon closure of the critical period with age, proteins associated with transmitter vesicle release and the tubulin- and septin-cytoskeletons increased, whereas actin-regulators decreased in line with augmented synapse stability and efficacy. Maintaining the visual cortex in a plastic state by dark rearing mice into adulthood only partially prevented these changes and increased levels of G-proteins and protein kinase A subunits. This suggests that in contrast to the general belief, dark rearing does not simply delay cortical development but may activate signaling pathways that specifically maintain or increase the plasticity potential of the visual cortex. Altogether, this study identified many novel candidate plasticity proteins and signaling pathways that mediate synaptic plasticity during critical developmental periods or restrict it in adulthood.
Collapse
Affiliation(s)
- Martijn Dahlhaus
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hiratsuka K, Momose A, Takagi N, Sasaki H, Yin SA, Fujita M, Ohtomo T, Tanonaka K, Toyoda H, Suzuki H, Kurosawa T, Yamada J. Neuronal expression, cytosolic localization, and developmental regulation of the organic solute carrier partner 1 in the mouse brain. Histochem Cell Biol 2011; 135:229-38. [PMID: 21331566 DOI: 10.1007/s00418-011-0790-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2011] [Indexed: 01/11/2023]
Abstract
Organic solute carrier partner 1 (OSCP1) is a mammalian, transporter-related protein that is able to facilitate the uptake of structurally diverse organic compounds into the cell when expressed in Xenopus laevis oocytes. This protein has been implicated in testicular handling of organic solutes because its mRNA expression is almost exclusive in the testis. However, in this study, we demonstrated significant expression of OSCP1 protein in mouse brain, the level of which was rather higher than that in the testis, although the corresponding mRNA expression was one-tenth of the testicular level. Immunohistochemistry revealed that OSCP1 was broadly distributed throughout the brain, and various neuronal cells were immunostained, including pyramidal cells in the cerebral cortex and hippocampus. However, there was no evidence of OSCP1 expression in glia. In primary cultures of cerebral cortical neurons, double-labeling immunofluorescence localized OSCP1 to the cytosol throughout the cell body and neurites including peri-synaptic regions. This was consistent with the subcellular fractionation of brain homogenates, in which OSCP1 was mainly recovered after centrifugation both in the cytosolic fraction and the particulate fraction containing synaptosomes. Immunoelectron microscopy of brain sections also demonstrated OSCP1 in the cytosol near synapses. In addition, it was revealed that changes in the expression level of OSCP1 correlated with neuronal maturation during postnatal development of mouse brain. These results indicate that OSCP1 may have a role in the brain indirectly mediating substrate uptake into the neurons in adult animals.
Collapse
Affiliation(s)
- Kazuyuki Hiratsuka
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd, Kanagawa, 230-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hvalby O, Jensen V, Kao HT, Walaas SI. Synapsin-dependent vesicle recruitment modulated by forskolin, phorbol ester and ca in mouse excitatory hippocampal synapses. Front Synaptic Neurosci 2010; 2:152. [PMID: 21423538 PMCID: PMC3059703 DOI: 10.3389/fnsyn.2010.00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/09/2010] [Indexed: 12/03/2022] Open
Abstract
Repeated release of transmitter from presynaptic elements depends on stimulus-induced Ca2+ influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.1 Hz) were significantly enhanced by both the adenylate cyclase activator forskolin, the priming activator β-phorbol-12,13-dibutyrate (PDBu) and 4 mM [Ca2+]o′ whereas during 20 Hz stimulation, the same manipulations reduced the time needed to reach the peak and increased the magnitude of the resulting frequency facilitation. In contrast, paired-pulse facilitations were unchanged in the presence of forskolin, decreased by 4 mM [Ca2+]o and essentially abolished by PDBu. The subsequent delayed response enhancement (DRE) responses, elicited during continuous 20 Hz stimulations and mediated by recruited vesicles, were enhanced by forskolin, essentially unchanged by PDBu and slightly decreased by 4 mM [Ca2+]o· Similar experiments done on slices devoid of the vesicle-associated synapsin I and II proteins indicated that synapsin I/II-induced enhancements of vesicle recruitment were restricted to Ca2+-induced frequency facilitations and forskolin-induced enhancements of the early DRE phase, whereas the proteins had minor effects during PDBu-treatment and represented constraints on late Ca2+-induced responses. The data indicate that in these glutamatergic synapses, the comparable enhancements of single synaptic responses induced by these biochemical mechanisms can be transformed during prolonged synaptic stimulation into highly distinct short-term plasticity patterns, which are partly dependent on synapsins I/II.
Collapse
Affiliation(s)
- Oivind Hvalby
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Revest JM, Kaouane N, Mondin M, Le Roux A, Rougé-Pont F, Vallée M, Barik J, Tronche F, Desmedt A, Piazza PV. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry 2010; 15:1125, 1140-51. [PMID: 20368707 PMCID: PMC2990189 DOI: 10.1038/mp.2010.40] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GR(NesCre)), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress.
Collapse
Affiliation(s)
- J-M Revest
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France.
| | - N Kaouane
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - M Mondin
- Université de Bordeaux, Bordeaux, France,CNRS UMR 5091, Cellular Physiology of the Synapse, Bordeaux, France
| | - A Le Roux
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - F Rougé-Pont
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - M Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - J Barik
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - F Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - A Desmedt
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - P V Piazza
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France,Department of Pathophysiology, Université de Bordeaux, INSERM U862, Bordeaux F33077, France. E-mail: or
| |
Collapse
|
42
|
Shideler KK, Yan J. M1 muscarinic receptor for the development of auditory cortical function. Mol Brain 2010; 3:29. [PMID: 20964868 PMCID: PMC2972260 DOI: 10.1186/1756-6606-3-29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/22/2010] [Indexed: 02/02/2023] Open
Abstract
The sensory cortex is subject to continuous remodelling during early development and throughout adulthood. This process is important for establishing normal brain function and is dependent on cholinergic modulation via muscarinic receptors. Five muscarinic receptor genes encode five unique receptor subtypes (M1-5). The distributions and functions of each subtype vary in central and peripheral systems. In the brain, the M1 receptor is most abundant in the cerebral cortex, where its immunoreactivity peaks transiently during early development. This likely signifies the importance of M1 receptor in the development and maintenance of normal cortical function. Several lines of study have outlined the roles of M1 receptors in the development and plasticity of the auditory cortex. For example, M1-knockout reduces experience-dependent plasticity and disrupts tonotopic mapping in the adult mouse auditory cortex. Further evidence demonstrates a role for M1 in neurite outgrowth and hence determining the structure of cortical neurons. The disruption of tonotopic maps in M1-knockout mice may be linked to alterations in thalamocortical connectivity, because the targets of thalamocortical afferents (layer IV cortical neurons) appear less mature in M1 knockouts. Herein we review the literature to date concerning M1 receptors in the auditory cortex and consider some future directions that will contribute to our understanding.
Collapse
Affiliation(s)
- Karalee K Shideler
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Boido D, Farisello P, Cesca F, Ferrea E, Valtorta F, Benfenati F, Baldelli P. Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 2010; 171:268-83. [PMID: 20804820 DOI: 10.1016/j.neuroscience.2010.08.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/03/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. Both fast and slow interictal (I-IC) and ictal (IC) events were observed in both genotypes. The incidence of fast I-IC events was higher in presymptomatic TKO slices, while frequency and latency of I-IC events were similar in both genotypes. The major age and genotype effects were observed in IC activity, that was much more pronounced in 3-weeks-old TKO and persisted with age, while it disappeared from 1-year-old TWT slices. LEV virtually suppressed fast I-IC and IC discharges from 3-weeks-old TWT slices, while it only increased the latency of fast I-IC and IC activity in TKO slices. Analysis of I-IC events in patch-clamped CA1 pyramidal neurons revealed that LEV increased the inhibitory/excitatory ratio of I-IC activity in both genotypes. The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV receptor SV2A.
Collapse
Affiliation(s)
- D Boido
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Elizalde N, Pastor PM, Garcia-García AL, Serres F, Venzala E, Huarte J, Ramírez MJ, Del Rio J, Sharp T, Tordera RM. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 2010; 114:1302-14. [PMID: 20550627 DOI: 10.1111/j.1471-4159.2010.06854.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that chronic mild stress induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein - Arc) but a long-lasting decrease of the brain derived neurotrophic factor as well as depressive-like behaviour. The immediate early gene Arc was also down-regulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients.
Collapse
Affiliation(s)
- Natalia Elizalde
- Department of Pharmacology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Scott LL, Kogan D, Shamma AA, Quinlan EM. Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults. Neuroscience 2009; 166:539-50. [PMID: 20035839 DOI: 10.1016/j.neuroscience.2009.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The rodent visual cortex retains significant ocular dominance plasticity beyond the traditional postnatal critical period. However, the intracellular mechanisms that underlie the cortical response to monocular deprivation are predicted to be different in juveniles and adults. Here we show monocular deprivation in adult, but not juvenile rats, induced an increase in the phosphorylation of the prominent presynaptic effecter protein synapsin at two key sites known to regulate synapsin function. Monocular deprivation in adults induced an increase in synapsin phosphorylation at the PKA consensus site (site 1) and the CaMKII consensus site (site 3) in the visual cortex ipsilateral to the deprived eye, which is dominated by non-deprived eye input. The increase in synapsin phosphorylation was observed in total cortical homogenate, but not synaptoneurosomes, suggesting that the pool of synapsin targeted by monocular deprivation in adults does not co-fractionate with excitatory synapses. Phosphorylation of sites 1 and 3 stimulates the release of synaptic vesicles from a reserve pool and increases in the probability of evoked neurotransmitter release, which may contribute to the strengthening of the non-deprived input characteristic of ocular dominance plasticity in adults.
Collapse
Affiliation(s)
- L L Scott
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
46
|
Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats. Biogerontology 2009; 11:197-209. [PMID: 19609710 DOI: 10.1007/s10522-009-9240-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 06/30/2009] [Indexed: 12/17/2022]
Abstract
Numerous reports implicate increased oxidative stress in the functional and structural changes occurring in the brain and other organs as a part of the normal aging process. Dietary restriction (DR) has long been shown to be life-prolonging intervention in several species. This study was aimed to assess the potential efficacy of late-onset short term DR when initiated in 21 months old male wistar rats for 3 months on the antioxidant defense system and lipid peroxidation, cellular stress response protein HSP 70 and synaptic marker protein synapsin 1 in discrete brain regions such as cortex, hypothalamus, and hippocampus as well as liver, kidney and heart from 24 month old rats. Age-associated decline in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid peroxidation was observed in brain and peripheral organ as well as increased expression of HSP 70 and reduction in synapsin 1 was observed in brain studied. Late-onset short term DR was effective in partially restoring the antioxidant status and in decreasing lipid peroxidation level as well as enhancing the expression of HSP 70 and synapsin 1 in aged rats. Late onset short term DR also prevented age-related neurodegeneration as revealed by Fluoro-Jade B staining in hippocampus and cortex regions of rat brain. Thus our current results suggest that DR initiated even in old age has the potential to improve age related decline in body functions.
Collapse
|
47
|
The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem Int 2009; 55:13-21. [DOI: 10.1016/j.neuint.2009.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 11/20/2022]
|
48
|
Davanger S, Manahan-Vaughan D, Mulle C, Storm-Mathisen J, Ottersen OP. Protein trafficking, targeting, and interaction at the glutamate synapse. Neuroscience 2008; 158:1-3. [PMID: 19027053 DOI: 10.1016/j.neuroscience.2008.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- S Davanger
- Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway.
| | | | | | | | | |
Collapse
|