1
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024:e00452. [PMID: 39304438 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Salem S, Kilgore MD, Anwer M, Maxan A, Child D, Bird TD, Keene CD, Cicchetti F, Latimer C. Evidence of mutant huntingtin and tau-related pathology within neuronal grafts in Huntington's disease cases. Neurobiol Dis 2024; 198:106542. [PMID: 38810948 DOI: 10.1016/j.nbd.2024.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.
Collapse
Affiliation(s)
- Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Departement de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, Neuropathology Division, University of Washington, Seattle, WA, USA
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Departement de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Departement de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Dan Child
- Department of Laboratory Medicine and Pathology, Neuropathology Division, University of Washington, Seattle, WA, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Neuropathology Division, University of Washington, Seattle, WA, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Departement de Médecine Moléculaire, Université Laval, Québec, QC, Canada; Departement de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, Neuropathology Division, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Holley SM, Reidling JC, Cepeda C, Wu J, Lim RG, Lau A, Moore C, Miramontes R, Fury B, Orellana I, Neel M, Coleal-Bergum D, Monuki ES, Bauer G, Meshul CK, Levine MS, Thompson LM. Transplanted human neural stem cells rescue phenotypes in zQ175 Huntington's disease mice and innervate the striatum. Mol Ther 2023; 31:3545-3563. [PMID: 37807512 PMCID: PMC10727970 DOI: 10.1016/j.ymthe.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Alice Lau
- Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Cindy Moore
- Portland VA Medical Center, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Iliana Orellana
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Charles K Meshul
- Portland VA Medical Center, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience and Pathology, Portland, OR 97239, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Kinfe T, Del Vecchio A, Nüssel M, Zhao Y, Stadlbauer A, Buchfelder M. Deep brain stimulation and stereotactic-assisted brain graft injection targeting fronto-striatal circuits for Huntington's disease: an update. Expert Rev Neurother 2022; 22:781-788. [PMID: 35766355 DOI: 10.1080/14737175.2022.2091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Huntington's Disease as progressive neurological disorders associated with motor, behavioral, and cognitive impairment poses a therapeutic challenge in case of limited responsiveness to established therapeutics. Pallidal deep brain stimulation and neurorestorative strategies (brain grafts) scoping to modulate fronto-striatal circuits have gained increased recognition for the treatment of refractory Huntington's disease (HD). AREAS COVERED A review (2000-2022) was performed in PubMed, Embase, and Cochrane Library covering clinical trials conceptualized to determine the efficacy and safety of invasive, stereotactic-guided deep-brain stimulation and intracranial brain-graft injection targeting the globus pallidus and adjunct structures (striatum). EXPERT OPINION Stereotactic brain-grafting strategies were performed in few HD patients with inconsistent findings and mild-to-moderate clinical responsiveness with a recently published large, randomized-controlled trial (NCT00190450) yielding negative results. We identified 19 in-human DBS trials (uncontrolled) targeting the globus pallidus internus/externus along with randomized-controlled trial pending report (NCT02535884). We did not detect any significant changes in the UHDRS total score after restorative injections, while in contrast, the use of deep-brain stimulation resulted in a significant reduction of chorea. GPi-DBS should be considered in cases where selective chorea is present. However, both invasive therapies remain experimental and are not ready for the implementation in clinical use.
Collapse
Affiliation(s)
- Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany.,Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Nüssel
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Yining Zhao
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| |
Collapse
|
6
|
Pinarbasi ES, Liu EA, Yu Z, Kopyov O, Brown NA, Dayalu P, Lieberman AP. Donor-containing cortical and intraventricular glioneuronal nodules in Huntington's disease brain decades after fetal cell transplantation. Acta Neuropathol 2021; 141:979-981. [PMID: 33683397 DOI: 10.1007/s00401-021-02292-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/14/2022]
|
7
|
Beatriz M, Lopes C, Ribeiro ACS, Rego ACC. Revisiting cell and gene therapies in Huntington's disease. J Neurosci Res 2021; 99:1744-1762. [PMID: 33881180 DOI: 10.1002/jnr.24845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Neurodegenerative movement disorders, such as Huntington's disease (HD), share a progressive and relentless course with increasing motor disability, linked with neuropsychiatric impairment. These diseases exhibit diverse pathophysiological processes and are a topic of intense experimental and clinical research due to the lack of therapeutic options. Restorative therapies are promising approaches with the potential to restore brain circuits. However, there were less compelling results in the few clinical trials. In this review, we discuss cell replacement therapies applied to animal models and HD patients. We thoroughly describe the initial trials using fetal neural tissue transplantation and recent approaches based on alternative cell sources tested in several animal models. Stem cells were shown to generate the desired neuron phenotype and/or provide growth factors to the degenerating host cells. Besides, genetic approaches such as RNA interference and the CRISPR/Cas9 system have been studied in animal models and human-derived cells. New genetic manipulations have revealed the capability to control or counteract the effect of human gene mutations as described by the use of antisense oligonucleotides in a clinical trial. In HD, innovative strategies are at forefront of human testing and thus other brain genetic diseases may follow similar therapeutic strategies.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra - Polo II, Coimbra, Portugal
| | | | - Ana Cristina Carvalho Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra - Polo III, Coimbra, Portugal
| |
Collapse
|
8
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Bachoud-Lévi AC, Massart R, Rosser A. Cell therapy in Huntington's disease: Taking stock of past studies to move the field forward. Stem Cells 2021; 39:144-155. [PMID: 33176057 PMCID: PMC10234449 DOI: 10.1002/stem.3300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 06/02/2023]
Abstract
Huntington's disease (HD) is a rare inherited neurodegenerative disease that manifests mostly in adulthood with progressive cognitive, behavioral, and motor dysfunction. Neuronal loss occurs predominantly in the striatum but also extends to other brain regions, notably the cortex. Most patients die around 20 years after motor onset, although there is variability in the rate of progression and some phenotypic heterogeneity. The most advanced experimental therapies currently are huntingtin-lowering strategies, some of which are in stage 3 clinical trials. However, even if these approaches are successful, it is unlikely that they will be applicable to all patients or will completely halt continued loss of neural cells in all cases. On the other hand, cellular therapies have the potential to restore atrophied tissues and may therefore provide an important complementary therapeutic avenue. Pilot studies of fetal cell grafts in the 2000s reported the most dramatic clinical improvements yet achieved for this disease, but subsequent studies have so far failed to identify methodology to reliably reproduce these results. Moving forward, a major challenge will be to generate suitable donor cells from (nonfetal) cell sources, but in parallel there are a host of procedural and trial design issues that will be important for improving reliability of transplants and so urgently need attention. Here, we consider findings that have emerged from clinical transplant studies in HD to date, in particular new findings emerging from the recent multicenter intracerebral transplant HD study, and consider how these data may be used to inform future cell therapy trials.
Collapse
Affiliation(s)
- Anne-Catherine Bachoud-Lévi
- Assistance Publique-Hôpitaux de Paris, National Reference Center for Huntington's Disease, Neurology Department, Henri Mondor-Albert Chenevier Hospital, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, PSL University, Paris, France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Equipe E01 NeuroPsychologie Interventionnelle, Créteil, France
- NeurATRIS, Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
| | - Renaud Massart
- Assistance Publique-Hôpitaux de Paris, National Reference Center for Huntington's Disease, Neurology Department, Henri Mondor-Albert Chenevier Hospital, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, PSL University, Paris, France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Equipe E01 NeuroPsychologie Interventionnelle, Créteil, France
- NeurATRIS, Créteil, France
| | - Anne Rosser
- Centre for Trials Research, Cardiff University, Cardiff, UK
- Cardiff University Brain Repair Group, Life Sciences Building, School of Biosciences, Cardiff, UK
- Neuroscience and Mental Health Research Institute and Division of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Cardiff, UK
- Brain Repair And Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Maxan A, Mason S, Saint-Pierre M, Smith E, Ho A, Harrower T, Watts C, Tai Y, Pavese N, Savage JC, Tremblay MÈ, Gould P, Rosser AE, Dunnett SB, Piccini P, Barker RA, Cicchetti F. Outcome of cell suspension allografts in a patient with Huntington's disease. Ann Neurol 2018; 84:950-956. [PMID: 30286516 PMCID: PMC6587549 DOI: 10.1002/ana.25354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
For patients with incurable neurodegenerative disorders such as Huntington's (HD) and Parkinson's disease, cell transplantation has been explored as a potential treatment option. Here, we present the first clinicopathological study of a patient with HD in receipt of cell-suspension striatal allografts who took part in the NEST-UK multicenter clinical transplantation trial. Using various immunohistochemical techniques, we found a discrepancy in the survival of grafted projection neurons with respect to grafted interneurons as well as major ongoing inflammatory and immune responses to the grafted tissue with evidence of mutant huntingtin aggregates within the transplant area. Our results indicate that grafts can survive more than a decade post-transplantation, but show compromised survival with inflammation and mutant protein being observed within the transplant site. Ann Neurol 2018;84:950-956.
Collapse
Affiliation(s)
- Alexander Maxan
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Sarah Mason
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Martine Saint-Pierre
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Emma Smith
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Aileen Ho
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Harrower
- Royal Devon and Exeter Hospital, Barrack Road, Exeter, Devon, United Kingdom
| | - Colin Watts
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yen Tai
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nicola Pavese
- Department of Medicine, Neurology Imaging Unit, Imperial College London, London, United Kingdom
| | - Julie C Savage
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Peter Gould
- Laboratoire de neuropathology, Hôpital de l'Enfant-Jésus-CHU de Québec, Québec, QC, United Kingdom
| | - Anne E Rosser
- Brain Repair Group and BRAIN unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephen B Dunnett
- Brain Repair Group and BRAIN unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Paola Piccini
- Department of Medicine, Neurology Imaging Unit, Imperial College London, London, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Abstract
Huntington disease is a monogenic neurodegenerative disorder that displays an autosomal-dominant pattern of inheritance. It is characterized by motor, psychiatric, and cognitive symptoms that progress over 15-20 years. Since the identification of the causative genetic mutation in 1993 much has been discovered about the underlying pathogenic mechanisms, but as yet there are no disease-modifying therapies available. This chapter reviews the epidemiology, genetic basis, pathogenesis, presentation, and clinical management of Huntington disease. The principles of genetic testing are explained. We also describe recent developments in the ongoing search for therapeutics and for biomarkers to track disease progression.
Collapse
Affiliation(s)
- Rhia Ghosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
13
|
Ghosh R, Tabrizi SJ. Clinical Features of Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:1-28. [PMID: 29427096 DOI: 10.1007/978-3-319-71779-1_1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is the most common monogenic neurodegenerative disease and the commonest genetic dementia in the developed world. With autosomal dominant inheritance, typically mid-life onset, and unrelenting progressive motor, cognitive and psychiatric symptoms over 15-20 years, its impact on patients and their families is devastating. The causative genetic mutation is an expanded CAG trinucleotide repeat in the gene encoding the Huntingtin protein, which leads to a prolonged polyglutamine stretch at the N-terminus of the protein. Since the discovery of the gene over 20 years ago much progress has been made in HD research, and although there are currently no disease-modifying treatments available, there are a number of exciting potential therapeutic developments in the pipeline. In this chapter we discuss the epidemiology, genetics and pathogenesis of HD as well as the clinical presentation and management of HD, which is currently focused on symptomatic treatment. The principles of genetic testing for HD are also explained. Recent developments in therapeutics research, including gene silencing and targeted small molecule approaches are also discussed, as well as the search for HD biomarkers that will assist the validation of these potentially new treatments.
Collapse
Affiliation(s)
- Rhia Ghosh
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
14
|
Indications and prospects of neural transplantation for chronic neurological diseases. Curr Opin Organ Transplant 2017; 21:490-6. [PMID: 27517509 DOI: 10.1097/mot.0000000000000344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The replacement of damaged cells in the central nervous system (CNS) affected by degenerative disorders represents an attractive therapeutic strategy. The advent of stem cell technology may offer the possibility of generating a large number of renewable, specifically differentiated cells to potentially cure large cohorts of patients. In this review, we discuss current knowledge and issues involved in neural cell transplantation. The most important preclinical and clinical results of cellular transplantation applied to Parkinson's, Huntington's disease and amyotrophic lateral sclerosis will be summarized. RECENT FINDINGS Cellular transplantation is emerging as a possible therapy for a variety of incurable neurological disorders. The disorders that will primarily take advantage from neural stem cell grafting are those involving a well defined cell population in a restricted area of the CNS. Several clinical trials have been initiated to assess safety and efficacy of different stem cell-derived products, and promising results have been obtained for disorders such as Parkinson's disease. However, several scientific questions remain unanswered. Among these, the impact of the immunological interaction between host and graft in the particular environment of the CNS still requires additional investigations. SUMMARY Several chronic neurological disorders appear to be amenable to cell regenerative therapies. However, safety, efficacy and immunological issues will need to be carefully evaluated beforehand.
Collapse
|
15
|
Abstract
Huntington's disease (HD) is a fatal genetic disorder, which causes the
progressive breakdown of neurons in the human brain. HD deteriorates human
physical and mental abilities over time and has no cure. Stem cell-based
technologies are promising novel treatments, and in HD, they aim to replace lost
neurons and/or to prevent neural cell death. Herein we discuss the use of human
fetal tissue (hFT), neural stem cells (NSCs) of hFT origin or embryonic stem
cells (ESCs) and induced pluripotent stem cells (IPSCs), in clinical and
pre-clinical studies. The in vivo use of mesenchymal stem cells
(MSCs), which are derived from non-neural tissues, will also be discussed. All
these studies prove the potential of stem cells for transplantation therapy in
HD, demonstrating cell grafting and the ability to differentiate into mature
neurons, resulting in behavioral improvements. We claim that there are still
many problems to overcome before these technologies become available for HD
patient treatment, such as: a) safety regarding the use of NSCs and pluripotent stem cells, which
are potentially teratogenic; b) safety regarding the transplantation procedure itself, which
represents a risk and needs to be better studied; and finally c) technical and ethical issues regarding cells of fetal and
embryonic origin.
Collapse
Affiliation(s)
- Mônica Santoro Haddad
- MD. Faculdade de Medicina da Universidade de São Paulo - Neurologia São Paulo, São Paulo, SP, Brazil
| | | | - Celine Pompeia
- MD. Instituto Butantan - Genética, São Paulo, SP, Brazil
| | - Irina Kerkis
- MD, PhD. Instituto Butantan - Genética, São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
17
|
Porfirio B, Paganini M, Mazzanti B, Bagnoli S, Bucciantini S, Ghelli E, Nacmias B, Putignano AL, Rombolà G, Saccardi R, Lombardini L, Di Lorenzo N, Vannelli GB, Gallina P. Donor-Specific Anti-HLA Antibodies in Huntington's Disease Recipients of Human Fetal Striatal Grafts. Cell Transplant 2015; 24:811-7. [DOI: 10.3727/096368913x676222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal grafting in a human diseased brain was thought to be less immunogenic than other solid organ transplants, hence the minor impact on the efficacy of the transplant. How much prophylactic immune protection is required for neural allotransplantation is also debated. High-sensitive anti-HLA antibody screening in this field has never been reported. Sixteen patients with Huntington's disease underwent human fetal striatal transplantation in the frame of an open-label observational trial, which is being carried out at Florence University. All patients had both brain hemispheres grafted in two separate robotic-stereotactic procedures. The trial started in February 2006 with the first graft to the first patient (R1). R16 was given his second graft on March 2011. All patients received triple immunosuppressive treatment. Pre- and posttransplant sera were analyzed for the presence of anti-HLA antibodies using the multiplexed microsphere-based suspension array Luminex xMAP technology. Median follow-up was 38.5 months (range 13-85). Six patients developed anti-HLA antibodies, which turned out to be donor specific. Alloimmunization occurred in a time window of 0–49 months after the first neurosurgical procedure. The immunogenic determinants were non-self-epitopes from mismatched HLA antigens. These determinants were both public epitopes shared by two or more HLA molecules and private epitopes unique to individual HLA molecules. One patient had non-donor-specific anti-HLA antibodies in her pretransplant serum sample, possibly due to previous sensitization events. Although the clinical significance of donor-specific antibodies is far from being established, particularly in the setting of neuronal transplantation, these findings underline the need of careful pre- and posttransplant immunogenetic evaluation of patients with intracerebral grafts.
Collapse
Affiliation(s)
- Berardino Porfirio
- Careggi University Hospital, Florence, Italy
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | - Silvia Bagnoli
- Department of Neurosciences, University of Florence, Florence, Italy
| | | | | | - Benedetta Nacmias
- Careggi University Hospital, Florence, Italy
- Department of Neurosciences, University of Florence, Florence, Italy
| | | | | | | | | | - Nicola Di Lorenzo
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella B. Vannelli
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Pasquale Gallina
- Careggi University Hospital, Florence, Italy
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Drouin-Ouellet J. The potential of alternate sources of cells for neural grafting in Parkinson's and Huntington's disease. Neurodegener Dis Manag 2015; 4:297-307. [PMID: 25313986 DOI: 10.2217/nmt.14.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapies for Parkinson's and Huntington's disease have provided mixed clinical outcomes and one of the reasons underlying this is the use of primary fetal tissue as the source of grafted cells. An alternate source of cells, such as stem cells, could overcome many of the issues associated with primary fetal tissue and would help bring forward cell replacement therapy as a reliable and effective treatment for these two neurodegenerative disorders. This review will discuss which stem cells are likely to go to clinic in the next generation of cells, based on trials for Parkinson's and Huntington's disease.
Collapse
|
19
|
Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA. Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regen Med 2015; 10:623-46. [PMID: 26237705 PMCID: PMC6785015 DOI: 10.2217/rme.15.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease and damage within the CNS in part due to their native ability to mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to release beneficial neurotrophic factors and their ability to foster a neuroprotective microenviroment. While early stem cell transplantation therapies have been fraught with technical and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset Huntington's disease.
Collapse
Affiliation(s)
- Kyle D Fink
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Peter Deng
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
- GenomeCenter, Biochemistry & Molecular Medicine, University of California, 451 Health Sciences Dr. Davis, CA 95616, USA
| | - Audrey Torrest
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Heather Stewart
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Kari Pollock
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - William Gruenloh
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Geralyn Annett
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Teresa Tempkin
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Jan A Nolta
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| |
Collapse
|
20
|
Batista CEM, Mariano ED, Marie SKN, Teixeira MJ, Morgalla M, Tatagiba M, Li J, Lepski G. Stem cells in neurology--current perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:457-65. [PMID: 24964114 DOI: 10.1590/0004-282x20140045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central nervous system (CNS) restoration is an important clinical challenge and stem cell transplantation has been considered a promising therapeutic option for many neurological diseases. OBJECTIVE The present review aims to briefly describe stem cell biology, as well as to outline the clinical application of stem cells in the treatment of diseases of the CNS. METHOD Literature review of animal and human clinical experimental trials, using the following key words: "stem cell", "neurogenesis", "Parkinson", "Huntington", "amyotrophic lateral sclerosis", "traumatic brain injury", "spinal cord injury", "ischemic stroke", and "demyelinating diseases". CONCLUSION Major recent advances in stem cell research have brought us several steps closer to their effective clinical application, which aims to develop efficient ways of regenerating the damaged CNS.
Collapse
Affiliation(s)
| | - Eric Domingos Mariano
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | - Manoel Jacobsen Teixeira
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Jun Li
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
21
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
22
|
Bachoud-Lévi AC, Perrier A. Regenerative medicine in Huntington's disease: Current status on fetal grafts and prospects for the use of pluripotent stem cell. Rev Neurol (Paris) 2014; 170:749-62. [DOI: 10.1016/j.neurol.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022]
|
23
|
Cisbani G, Cicchetti F. Review: The fate of cell grafts for the treatment of Huntington's disease: thepost-mortemevidence. Neuropathol Appl Neurobiol 2014; 40:71-90. [DOI: 10.1111/nan.12104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G. Cisbani
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
| | - F. Cicchetti
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
- Département de Psychiatrie et Neurosciences; Université Laval; Québec QC Canada
| |
Collapse
|
24
|
Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, Lowrance S, Bombard M, DeKorver N, Lescaudron L, Dunbar GL. Transplants of Adult Mesenchymal and Neural Stem Cells Provide Neuroprotection and Behavioral Sparing in a Transgenic Rat Model of Huntington's Disease. Stem Cells 2014; 32:500-9. [DOI: 10.1002/stem.1508] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2013] [Accepted: 07/27/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Julien Rossignol
- Department of Psychology; Central Michigan University; Mount Pleasant Michigan USA
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
- College of Medicine; Central Michigan University; Mount Pleasant Michigan USA
- Field Neurosciences Institute; Saginaw Michigan USA
| | - Kyle Fink
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Kendra Davis
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Steven Clerc
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Andrew Crane
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Jessica Matchynski
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Steven Lowrance
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Matthew Bombard
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Nicholas DeKorver
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Laurent Lescaudron
- INSERM UMR 643; Nantes France
- ITUN, Institut Transplantation Urologie Nephrologie; CHU Nantes France
- Université de Nantes; UFR des Sciences et des Techniques; Nantes France
| | - Gary L. Dunbar
- Department of Psychology; Central Michigan University; Mount Pleasant Michigan USA
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
- College of Medicine; Central Michigan University; Mount Pleasant Michigan USA
- Field Neurosciences Institute; Saginaw Michigan USA
| |
Collapse
|
25
|
Gallina P, Paganini M, Biggeri A, Marini M, Romoli A, Sarchielli E, Berti V, Ghelli E, Guido C, Lombardini L, Mazzanti B, Simonelli P, Peri A, Maggi M, Porfirio B, Di Lorenzo N, Vannelli GB. Human Striatum Remodelling after Neurotransplantation in Huntington's Disease. Stereotact Funct Neurosurg 2014; 92:211-7. [DOI: 10.1159/000360583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022]
|
26
|
Zhu M, Shu K, Wang H, Li X, Xiao Q, Chan W, Emmanuel B, Jiang W, Lei T. Microtransplantation of whole ganglionic eminence cells ameliorates motor deficit, enlarges the volume of grafts, and prolongs survival in a rat model of Huntington's disease. J Neurosci Res 2013; 91:1563-71. [PMID: 24105649 DOI: 10.1002/jnr.23282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/23/2013] [Accepted: 07/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxin Zhu
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Kai Shu
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Heping Wang
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaopeng Li
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Qungen Xiao
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Waipan Chan
- Department of Immunology; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Bosomah Emmanuel
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wei Jiang
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ting Lei
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
27
|
Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Behav Brain Res 2013; 256:56-63. [PMID: 23916743 DOI: 10.1016/j.bbr.2013.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.
Collapse
|
28
|
Perrier A, Peschanski M. How can human pluripotent stem cells help decipher and cure Huntington's disease? Cell Stem Cell 2013; 11:153-61. [PMID: 22862942 DOI: 10.1016/j.stem.2012.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cell (PSC) technologies are becoming a key asset for deciphering pathological cascades and for developing new treatments against many neurodegenerative disorders, including Huntington's disease (HD). This perspective discusses the challenges and opportunities facing the use of PSCs for treating HD, focusing on four major applications: namely, the use of PSCs as a substitute source of human striatal cells for current HD cell therapy, as a cellular model of HD for the validation of human-specific gene therapies, for deciphering molecular mechanisms underlying HD, and in drug discovery.
Collapse
Affiliation(s)
- Anselme Perrier
- INSERM U861, I-Stem/AFM, 5 rue Henri Desbruères Evry, 91030 Cedex, France
| | | |
Collapse
|
29
|
Janowski M, Engels C, Gorelik M, Lyczek A, Bernard S, Bulte JWM, Walczak P. Survival of neural progenitors allografted into the CNS of immunocompetent recipients is highly dependent on transplantation site. Cell Transplant 2013; 23:253-62. [PMID: 23294627 DOI: 10.3727/096368912x661328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Allografts continue to be used in clinical neurotransplantation studies; hence, it is crucial to understand the mechanisms that govern allograft tolerance. We investigated the impact of transplantation site within the brain on graft survival. Mouse [Friend leukemia virus, strain B (FVB)] glial precursors, transfected with luciferase, were injected (3 × 10(5)) into the forceps minor (FM) or striatum (STR). Immunodeficient rag2(-/-) and immunocompetent BALB/c mice were used as recipients. Magnetic resonance imaging (MRI) confirmed that cells were precisely deposited at the selected coordinates. The graft viability was assessed noninvasively with bioluminescent imaging (BLI) for a period of 16 days. Regardless of implantation site, all grafts (n = 10) deposited in immunodeficient animals revealed excellent survival. In contrast, immunocompetent animals only accepted grafts at the STR site (n = 10), whereas all the FM grafts were rejected (n = 10). To investigate the factors that led to rejection of FM grafts, with acceptance of STR grafts, another group of animals (n = 19) was sacrificed during the prerejection period, on day 5. Near-infrared fluorescence imaging with IRDye 800CW-polyethylene glycol probe displayed similar blood-brain barrier disruption at both graft locations. The morphological distribution of FM grafts was cylindrical, parallel to the needle track, whereas cells transplanted into the STR accumulated along the border between the STR and the corpus callosum. There was significantly less infiltration by both innate and adaptive immune cells in the STR grafts, especially along the calloso-striatal border. With allograft survival being dependent on the transplantation site, the anatomical coordinates of the graft target should always be taken into account as it may determine the success or failure of therapy.
Collapse
Affiliation(s)
- M Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
McLeod MC, Kobayashi NR, Sen A, Baghbaderani BA, Sadi D, Ulalia R, Behie LA, Mendez I. Transplantation of GABAergic cells derived from bioreactor-expanded human neural precursor cells restores motor and cognitive behavioral deficits in a rodent model of Huntington's disease. Cell Transplant 2012; 22:2237-56. [PMID: 23127784 DOI: 10.3727/096368912x658809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is characterized by progressive dementia, choreiform involuntary movements, and emotional deterioration. Neuropathological features include the progressive degeneration of striatal γ-aminobutyric acid (GABA) neurons. New therapeutic approaches, such as the transplantation of human neural precursor cells (hNPCs) to replace damaged or degenerated cells, are currently being investigated. The aim of this study was to investigate the potential for utilizing telencephalic hNPCs expanded in suspension bioreactors for cell restorative therapy in a rodent model of HD. hNPCs were expanded in a hydrodynamically controlled and homogeneous environment under serum-free conditions. In vitro analysis revealed that the bioreactor-expanded telencephalic (BET)-hNPCs could be differentiated into a highly enriched population of GABAergic neurons. Behavioral assessments of unilateral striatal quinolinic acid-lesioned rodents revealed a significant improvement in motor and memory deficits following transplantation with GABAergic cells differentiated from BET-hNPCs. Immunohistochemical analysis revealed that transplanted BET-hNPCs retained a GABAergic neuronal phenotype without aberrant transdifferentiation or tumor formation, indicating that BET-hNPCs are a safe source of cells for transplantation. This preclinical study has important implications as the transplantation of GABAergic cells derived from predifferentiated BET-hNPCs may be a safe and feasible cell replacement strategy to promote behavioral recovery in HD.
Collapse
Affiliation(s)
- Marcus C McLeod
- Cell Restoration Laboratory, Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Karussis D, Petrou P, Kassis I. Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci 2012; 324:1-9. [PMID: 23107343 DOI: 10.1016/j.jns.2012.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Abstract
To overcome the limited capacity of the CNS for regeneration, the theoretical alternative would be to use stem cells for more effective management of chronic degenerative and inflammatory neurological conditions, and also of acute neuronal damage from injuries or cerebrovascular diseases. Although the adult brain contains small numbers of stem cells in restricted areas, this intrinsic stem cell repertoire is small and does not measurably contribute to functional recovery. Embryonic cells carrying pluripotent and self-renewal properties represent the stem cell prototype, but there are additional somatic stem cells that may be harvested and expanded from various tissues during adult life. Stem cell transplantation is based on the assumption that such cells may have the potential to regenerate or support the survival of the existing, partially damaged cells. This review summarizes the state-of-the-art and the clinical worldwide experience with the use of various types of stem cells in neurological diseases.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology, MS Center and Laboratory of Neuroimmunology, Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel.
| | | | | |
Collapse
|
32
|
Klein A, Lane EL, Dunnett SB. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 2012; 22:1735-51. [PMID: 23067670 DOI: 10.3727/096368912x657918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) produces severe neurodegeneration in the striatum leading to disabling motor impairments, including the loss of control of skilled reaching movements. Fetal GABAergic transplants can physically replace the lost striatal cells but with only partial success in functional recovery. Here, we aimed to determine the extent and quality of the repair produced by fetal cell transplantation through an in-depth analysis of reaching behavior in the quinolinic acid-lesioned rat model of HD. Control, quinolinic acid-lesioned plus sham graft, and quinolinic acid-lesioned plus graft groups of rats were assessed in skilled reaching performance prior to and following lesion surgery and 3 months following injection of 400,000 fetal whole ganglionic eminence-derived cells into the striatum. This was compared to their performance in two more rudimentary tests of motor function (the adjusting step and vibrissae-evoked hand-placing tests). Grafted rats demonstrated a significant improvement in reaching success rate (graft +59%, shamTX +3%). Importantly, the quality of reaching behavior, including all components of the movement, was fully restored with no identifiable differences in the normal behavior shown by control rats. Postmortem immunohistochemical examination verified the survival of large intrastriatal grafts, and Fluoro-Gold tracing indicated appropriate outgrowth to the globus pallidus. Our study illustrates for the first time the detailed analysis of qualitative improvement of motor function following brain repair in a rat model of HD. The results demonstrate significant improvements not only in gross movements but also in the skilled motor patterns lost during HD. Fetal GABAergic cell transplantation showed a demonstrable ability to restore motor function to near normal levels, such that there were few differences from intact control animals, an effect not observed in standard tests of motor function.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
33
|
Gorelik M, Orukari I, Wang J, Galpoththawela S, Kim H, Levy M, Gilad AA, Bar-Shir A, Kerr DA, Levchenko A, Bulte JWM, Walczak P. Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology 2012; 265:175-85. [PMID: 22923719 DOI: 10.1148/radiol.12112212] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine if glial precursor cells can be targeted to inflamed brain through overexpression of very late antigen-4 (VLA-4) and whether this docking process can be monitored with magnetic resonance (MR) cell tracking after intraarterial injection. MATERIALS AND METHODS All experimental procedures were performed between August 2010 and February 2012 and were approved by the institutional animal care and use committee. Human glial precursor cells (hGPs) were transfected with VLA-4 and labeled with superparamagnetic iron oxide that contained rhodamine. A microfluidic adhesion assay was used for assessing VLA-4 receptor-mediated cell docking in vitro. A rat model of global lipopolysaccharide (LPS)-mediated brain inflammation was used to induce global vascular cell adhesion molecule-1 (VCAM-1) expression. hGPs were infused into the carotid artery in four animal cohorts (consisting of three rats each): rats that received VLA-4-naive hGPs but did not receive LPS, rats that received VLA-4-expressing hGPs but not LPS, rats that received VLA-4-naive hGPs and LPS, and rats that received VLA-4-expressing hGPs and LPS. MR imaging was performed at 9.4 T before and 1, 10, 20, and 30 minutes after injection. Brain tissue was processed for histologic examination. Quantification of low-signal-intensity pixels was performed with pixel-by-pixel analysis for MR images obtained before and after cell injection. RESULTS With use of the microfluidic adhesion assay, cell binding to activated brain endothelium significantly increased compared with VLA-4-naive control cells (71.5 cells per field of view±11.7 vs 36.4 cells per field of view±3.3, respectively; P<.05). Real-time quantitative in vivo MR cell tracking revealed that VLA-4-expressing cells docked exclusively within the vascular bed of the ipsilateral carotid artery and that VLA-4-expressing cells exhibited significantly enhanced homing as compared with VLA-4-naive cells (1448 significant pixels±366.5 vs 113.3 significant pixels±19.88, respectively; P<.05). Furthermore, MR cell tracking was crucial for correct cell delivery and proper ligation of specific arteries. CONCLUSION Targeted intraarterial delivery and homing of VLA-4-expressing hGPs to inflamed endothelium is feasible and can be monitored in real time by using MR imaging in a quantitative, dynamic manner.
Collapse
Affiliation(s)
- Michael Gorelik
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 N Broadway, Broadway Research Building, Room 649, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
El-Akabawy G, Rattray I, Johansson SM, Gale R, Bates G, Modo M. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington's disease. BMC Neurosci 2012; 13:97. [PMID: 22876937 PMCID: PMC3502570 DOI: 10.1186/1471-2202-13-97] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/24/2012] [Indexed: 01/15/2023] Open
Abstract
Background Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD). To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. Results In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05) implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also pre-differentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or pre-differentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker Fox3. Conclusions Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line’s therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Neuroscience, King's College London, Institute of Psychiatry, London, SE5 9NU, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Lepski G. What do we know about the neurogenic potential of different stem cell types? ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:540-6. [DOI: 10.1590/s0004-282x2012000700013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.
Collapse
|
36
|
Pauly MC, Piroth T, Döbrössy M, Nikkhah G. Restoration of the striatal circuitry: from developmental aspects toward clinical applications. Front Cell Neurosci 2012; 6:16. [PMID: 22529778 PMCID: PMC3329876 DOI: 10.3389/fncel.2012.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
In the basal ganglia circuitry, the striatum is a highly complex structure coordinating motor and cognitive functions and it is severely affected in Huntington's disease (HD) patients. Transplantation of fetal ganglionic eminence (GE) derived precursor cells aims to restore neural circuitry in the degenerated striatum of HD patients. Pre-clinical transplantation in genetic and lesion HD animal models has increased our knowledge of graft vs. host interactions, and clinical studies have been shown to successfully reduce motor and cognitive effects caused by the disease. Investigating the molecular mechanisms of striatal neurogenesis is a key research target, since novel strategies aim on generating striatal neurons by differentiating embryonic stem cells or by reprogramming somatic cells as alternative cell source for neural transplantation.
Collapse
Affiliation(s)
- Marie-Christin Pauly
- Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University Freiburg - Medical Center Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
37
|
Precious SV, Rosser AE. Producing striatal phenotypes for transplantation in Huntington's disease. Exp Biol Med (Maywood) 2012; 237:343-51. [PMID: 22490511 DOI: 10.1258/ebm.2011.011359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neural transplantation as a therapeutic strategy in neurodegenerative disorders offers to replace cells lost during the disease process, with the potential to reconstruct dysfunctional circuitry, thus alleviating associated disease symptoms. The focal loss of striatal cells, specifically medium-sized spiny neurons (MSN) in Huntington's disease (HD), makes transplantation a therapeutic option. Here, we review the progress made in generating striatal MSN phenotypes for transplantation in HD. We discuss the use of primary fetal tissue as a donor source in both preclinical and clinical studies and assess the options for renewable cell sources. We evaluate progress in directing the differentiation of renewable cells towards a striatal MSN phenotype for HD.
Collapse
Affiliation(s)
- Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|
38
|
Krause M, Ganser C, Kobayashi E, Papazoglou A, Nikkhah G. The Lewis GFP transgenic rat strain is a useful cell donor for neural transplantation. Cell Transplant 2012; 21:1837-51. [PMID: 22405077 DOI: 10.3727/096368911x627426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic approach in neurodegenerative diseases. Studying graft survival and development has important implications for the further development of experimental and clinical transplantation protocols. Cellular elements in neural transplants are sometimes difficult to identify. The existing labeling methods cannot reliably provide stably labeled cells that can be detected in long-term experiments. Transgenic (tg) Lewis rats ubiquitously expressing green fluorescent protein (GFP) provide an ideal donor source. The aim of this project was to investigate the potential of GFP-tg Lewis rats to serve as donor tissue for neural stem cell transplantation. Ventral mesencephalon (VM) GFP-tg E14.5-derived cells were compared to wild-type (wt) in vitro and in vivo. Firstly, cells from GFP and non-GFP VM tissue were compared with regard to their proliferation and response towards 6-OHDA-toxicity in culture. Secondly, 6-OHDA-lesioned hemiparkinsonian Sprague-Dawley/Crl:CD(SD) rats received intrastriatal grafts derived from VM of E14.5 GFP-tg rats. Due to the fact that donor and recipient belong to two different rat strains, we focused on graft survival in correlation with immunosuppression and graft GFP and tyrosine hydroxylase (TH) expression. In summary, in vitro tg cells exhibited 98% GFP expression and did not differ from wt cells in any of the measured parameters. In vivo, all experimental groups showed a significant compensation in rotation behavior after transplantation. Furthermore, there was no difference on rotation behavior or graft morphology and survival pattern as well as GFP expression between immunosuppressed and nonimmunosuppressed animals. The GFP-positive population of the graft was composed of 13.3% GFAP-positive, 56.1% NeuN-positive, and 1.9% TH-positive cells. Analysis of graft subpopulations manifested that 70.6% of GFAP-positive, 86.9% of NeuN-positive, and 80.1% of TH-positive cells coexpressed GFP. In conclusion, our data show that the Lewis GFP-tg rats serve as an excellent cell source for studying primary neural precursor cells in the transplantation paradigm.
Collapse
Affiliation(s)
- Martin Krause
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Döbrössy MD, Nikkhah G. Role of experience, training, and plasticity in the functional efficacy of striatal transplants. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195425 DOI: 10.1016/b978-0-444-59575-1.00014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell-based treatments of neurodegenerative diseases have been tested clinically with partial success. In the context of Huntington's disease (HD), experimental studies show that the grafted embryonic striatal cells survive, integrate within the host brain, and reverse some functional deficits. Importantly, once transplanted, the grafted striatal neurons retain a significant level of cellular, morphological, and functional plasticity which allows the experimental modification of their character through the manipulation of environmental cues or learning protocols. Using embryonic striatal grafts in the rodent model of HD as the principal example, this chapter summarizes seminal experiments that demonstrate that environmental factors, training, and activity can tap into mechanisms that influence the development of the grafted cells and can change the profile of graft-mediated behavioral recovery. Although currently there is limited understanding of the biological rationale behind the recovery, we put forward experimental data indicating that striatal grafts can express experience-dependent physiological plasticity at the synaptic as well as at the systemic functional level.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Molecular Neurosurgery, Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany.
| | | |
Collapse
|
40
|
Rosser AE, Bachoud-Lévi AC. Clinical trials of neural transplantation in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195427 DOI: 10.1016/b978-0-444-59575-1.00016-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical neural transplantation in Huntington's disease has moved forward as a series of small studies, which have provided some preliminary proof of principle that neural transplantation can provide benefit. However, to date, such benefits have not been robust, and there are a number of important issues that need to be addressed. These include defining the optimum donor tissue conditions and host characteristics in order to produce reliable benefit in transplant recipients, and whether, and for how long, immunosuppression is needed. Further clinical studies will be required to address these, and other issues, in order to better understand the processes leading to a properly functioning neural graft. Such studies will pave the way for future clinical trials of renewable donor sources, in particular, stem cell-derived neuronal progenitor grafts.
Collapse
Affiliation(s)
- Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | |
Collapse
|
41
|
Wijeyekoon R, Barker RA. The Current Status of Neural Grafting in the Treatment of Huntington's Disease. A Review. Front Integr Neurosci 2011; 5:78. [PMID: 22162966 PMCID: PMC3232470 DOI: 10.3389/fnint.2011.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/15/2011] [Indexed: 11/15/2022] Open
Abstract
Huntington’s disease (HD) is a devastating, fatal, autosomal dominant condition in which the abnormal gene codes for a mutant form of huntingtin that causes widespread neuronal dysfunction and death. This leads to a clinical presentation, typically in midlife, with a combination of motor, psychiatric, cognitive, metabolic, and sleep abnormalities, for which there are some effective symptomatic therapies that can produce some transient benefits. The disease, though, runs a progressive course over a 20-year period ultimately leading to death, and there are currently no proven disease modifying therapies. However whilst the neuronal dysfunction and loss affects much of the central nervous system, the striatum is affected early on in the disease and is one of the areas most affected by the pathogenic process. As a result the prospect of treating HD using neural transplants of striatal tissue has been explored and to date the clinical data is inconclusive. In this review we discuss the rationale for treating HD using this approach, before discussing the clinical trial data and what we have learnt to date using this therapeutic strategy.
Collapse
Affiliation(s)
- Ruwani Wijeyekoon
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | | |
Collapse
|
42
|
Lecanu L. Sex, the Underestimated Potential Determining Factor in Brain Tissue Repair Strategy. Stem Cells Dev 2011; 20:2031-5. [DOI: 10.1089/scd.2011.0188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Sukhinich KK, Podgornyi OV, Aleksandrova MA. Immunohistochemical analysis of development of suspension and tissue neurotransplants. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011060136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
45
|
Nicoleau C, Viegas P, Peschanski M, Perrier AL. Human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges. Neurotherapeutics 2011; 8:562-76. [PMID: 21976138 PMCID: PMC3250302 DOI: 10.1007/s13311-011-0079-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra-striatal transplantation of homotypic fetal tissue at the time of peak striatal neurogenesis can provide some functional benefit to patients suffering from Huntington's disease. Currently, the only approach shown to slow down the course of this condition is replacement of the neurons primarily targeted in this disorder, although it has been transient and has only worked with a limited number of patients. Otherwise, this dominantly inherited neurodegenerative disease inevitably results in the progressive decline of motricity, cognition, and behavior, and leads to death within 15 to 20 years of onset. However, fetal neural cell therapy of Huntington's disease, as with a similar approach in Parkinson's disease, is marred with both technical and biological hurdles related to the source of grafting material. This heavily restricts the number of patients who can be treated. A substitute cell source is therefore needed, but must perform at least as well as fetal neural graft in terms of brain recovery and reconstruction, while overcoming its major obstacles. Human pluripotent stem cells (embryonic in origin or induced from adult cells through genetic reprogramming) have the potential to meet those challenges. In this review, the therapeutic potential in view of 4 major issues is identified during fetal cell therapy clinical trials: 1) logistics of graft procurement, 2) quality control of the cell preparation, 3) immunogenicity of the graft, and 4) safety of the procedure.
Collapse
Affiliation(s)
- Camille Nicoleau
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Pedro Viegas
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Anselme L. Perrier
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| |
Collapse
|
46
|
Abstract
Huntington's disease (HD) is an inherited, relentlessly progressive neurodegenerative disease with an invariably fatal outcome. HD is inherited in an autosomal dominant fashion, and is characterized pathologically by the loss of cortical and striatal neurons, and clinically by involuntary choreiform movements accompanied by progressive cognitive impairment and emotional lability. The disorder is caused by an expanded cystosine adenine guanine (CAG) tri-nucleotide repeat encoding polyglutamine (polyQ) in the first exon of the Huntingtin gene. There is a correlation between the number of CAG repeats and disease onset, such that in patients with CAG repeat lengths of 36 to 60, disease symptoms typically manifest after 35 years of age, whereas CAG repeat lengths >60 yield the more severe juvenile form of the disease. Even though mutant huntingtin is expressed throughout the brain, it is characterized by the selective degeneration of medium spiny neurons of the caudate and putamen, which heralds more widespread neuronal degeneration with disease progression. The mechanisms of cell dysfunction and death in HD have been the subjects of a number of studies, which have led to therapeutic strategies largely based on the amelioration of mutant huntingtin-related metabolic impairment and cellular toxicity. Each of these approaches has aimed to delay or stop the preferential degeneration of medium spiny neurons early in the disease course. Yet, in later stages of the disease, after cell death has become prominent, cell replacement therapy (whether by direct cell transplantation or by the mobilization of endogenous progenitors) may comprise a stronger potential avenue for therapy. In this review, we will consider recent progress in the transplantation of fetal striatal cells to the HD brain, as well as emerging alternative sources for human striatal progenitor cells. We will then consider the potential application of gene therapy toward the induction of striatal neurogenesis and neuronal recruitment, with an eye toward its potential therapeutic use in HD.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Department of Neurology, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY USA
| | - Steven A. Goldman
- Department of Neurology, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
47
|
Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PLoS One 2011; 6:e22924. [PMID: 21850243 PMCID: PMC3151281 DOI: 10.1371/journal.pone.0022924] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/02/2011] [Indexed: 12/12/2022] Open
Abstract
We investigated the therapeutic potential of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in Huntington's disease (HD) mouse models. Ten weeks after intrastriatal injection of quinolinic acid (QA), mice that received hBM-MSC transplantation showed a significant reduction in motor function impairment and increased survival rate. Transplanted hBM-MSCs were capable of survival, and inducing neural proliferation and differentiation in the QA-lesioned striatum. In addition, the transplanted hBM-MSCs induced microglia, neuroblasts and bone marrow-derived cells to migrate into the QA-lesioned region. Similar results were obtained in R6/2-J2, a genetically-modified animal model of HD, except for the improvement of motor function. After hBM-MSC transplantation, the transplanted hBM-MSCs may integrate with the host cells and increase the levels of laminin, Von Willebrand Factor (VWF), stromal cell-derived factor-1 (SDF-1), and the SDF-1 receptor Cxcr4. The p-Erk1/2 expression was increased while Bax and caspase-3 levels were decreased after hBM-MSC transplantation suggesting that the reduced level of apoptosis after hBM-MSC transplantation was of benefit to the QA-lesioned mice. Our data suggest that hBM-MSCs have neural differentiation improvement potential, neurotrophic support capability and an anti-apoptotic effect, and may be a feasible candidate for HD therapy.
Collapse
|
48
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
49
|
Capetian P, Döbrössy M, Winkler C, Prinz M, Nikkhah G. To be or not to be accepted: the role of immunogenicity of neural stem cells following transplantation into the brain in animal and human studies. Semin Immunopathol 2011; 33:619-26. [PMID: 21533909 DOI: 10.1007/s00281-011-0272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Grafting of neural stem cells into the mammalian central nervous system (CNS) has been performed for some decades now, both in basic research and clinical applications for neurological disorders such as Parkinson's and Huntington's disease, stroke, and spinal cord injuries. Albeit the "proof of principle" status that neural grafts can reinstate functional deficits and rebuild damaged neuronal circuitries, many critical scientific questions are still open. Among them are the manifold immunological aspects that are encountered during the graft-host interaction in vivo. For example, the experience with allografted cells in absence of immunosuppressant drugs has raised serious doubts about an immunological privileged site within the CNS as compared to other engraftment sites in the body. This review discusses recent experimental and clinical findings demonstrating that neural stem cells have unique characteristics that help them modulate the host immunological defense, but, under some conditions, may still trigger a rejection process. Implications of these findings on neural grafting and potential new therapeutic applications are discussed.
Collapse
Affiliation(s)
- Philipp Capetian
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University Medical Center Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Waldron J, Lecanu L. Age and sex differences in neural stem cell transplantation: a descriptive study in rats. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2011; 4:25-37. [PMID: 24198528 PMCID: PMC3781847 DOI: 10.2147/sccaa.s18653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose The purpose of this study was to determine whether neural stem cell (NSC) sexual dimorphism previously demonstrated in vitro translates in vivo in NSC transplantation experiments and constitutes a defining factor of the transplantation outcome. Methods NSCs isolated from the subventricular zone of 2-day-old or 20-month-old male and female rats were grown as neurospheres prior to being transplanted in the striatum of 2-day-old or 20-month-old male and female recipient animals. The outcome of the transplantation and the NSC differentiation status were analyzed 8 weeks later by assessing the expression of the markers doublecortin (DCX) for neuroblasts, glial fibrillary acidic protein (GFAP) for astrocytes, nestin for stem cells, and choline acetyltransferase (ChAT) for neuronal cholinergic phenotype by immunofluorescence. Results No NSCs were detected in the brain of rat pups 8 weeks after transplantation. However, the endogenous neurogenesis was dramatically increased in a sex-dependent manner. These data suggest that the transplanted NSCs may have triggered endogenous neurogenesis by the intermediate growth factors they may have produced or the production they may have induced. However, NSCs transplanted into the striatum of adult rats were detectable at week 8. NSC survival was dependent on the sex and age of the donor and the recipient. Some of the transplanted cells were found to express DCX, GFAP, and ChAT, supporting an ongoing differentiation process toward astroglial and neuronal cholinergic phenotypes. Conclusion The outcome of the NSC transplantation was highly dependent on the sex and age of the combination donor/recipient. Data generated from our work may allow us in the future to answer the question “What NSCs and for whom?” and consequently lead to the optimization of the grafting process and improvement of the clinical prognosis.
Collapse
Affiliation(s)
- Jay Waldron
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|