1
|
Xu J, Huang X, Guo Y, Ma X, Li P, Zhou S, Zhang C, Chen R, Van Halm-Lutterodt N, Yuan L. Discrepant modulating effects of dietary docosahexaenoic acid on cerebral lipids, fatty acid transporter expression and soluble beta-amyloid levels in ApoE -/- and C57BL/6J mice. Neuropathol Appl Neurobiol 2023; 49:e12855. [PMID: 36259948 DOI: 10.1111/nan.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
AIMS The study was designed to explore the role of apolipoprotein E (ApoE) deficiency concomitant with dietary docosahexaenoic acid (DHA) treatment on brain β-amyloid (Aβ) and lipid levels. METHOD A 5-month dietary DHA intervention was conducted in ApoE-deficient (ApoE-/- ) mice and wild-type C57BL/6J (C57 wt) mice. The Morris water maze test was performed to assess the behaviour of the animals. The cortical contents of soluble Aβ1-40 and Aβ1-42 were detected by enzyme-linked immunosorbent assay (ELISA). Cortical fatty acid levels were detected by gas chromatography. Gene and protein expression of molecules associated with cerebral Aβ and lipid metabolism were measured using real-time polymerase chain reaction (PCR), Western blot and histological methods. RESULTS DHA treatment increased the content of cortical DHA and n-3 polyunsaturated fatty acids (n-3 PUFAs) but decreased the ratio of n-6/n-3 PUFAs in ApoE-/- mice; whereas the content of cortical DHA and n-3 PUFAs in C57 wt mice remained unchanged after DHA treatment. Cerebral Fabp5 and Cd36 gene expression were significantly downregulated in DHA-fed C57 wt mice; cerebral Cd36 and Scarb1 gene expression were significantly upregulated, whereas Fabp5 gene expression was downregulated in DHA-fed ApoE-/- mice. In comparison with C57 wt mice, the content of cortical soluble Aβ1-42 , total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) increased, whereas the level of high-density lipoprotein cholesterol (HDL-C) decreased in ApoE-/- mice. Interestingly, these differences were significantly reversed by DHA dietary treatment. CONCLUSION DHA intervention has discrepant impacts on cerebral lipids, fatty acid transporter expression and soluble Aβ levels in ApoE-/- and C57 wt mice, suggesting the modifying role of ApoE status on the responses of cerebral lipids and Aβ metabolism to DHA treatment.
Collapse
Affiliation(s)
- Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.,Nutrition Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, UK
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | | | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
3
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
4
|
Park J, Kim H, Kim J, Cheon M. A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease. PLoS Comput Biol 2020; 16:e1008099. [PMID: 32706788 PMCID: PMC7406107 DOI: 10.1371/journal.pcbi.1008099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/05/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS) technology has become a powerful tool for dissecting the molecular and pathological signatures of a variety of human diseases. However, the limited availability of biological samples from different disease stages is a major hurdle in studying disease progressions and identifying early pathological changes. Deep learning techniques have recently begun to be applied to analyze NGS data and thereby predict the progression of biological processes. In this study, we applied a deep learning technique called generative adversarial networks (GANs) to predict the molecular progress of Alzheimer's disease (AD). We successfully applied GANs to analyze RNA-seq data from a 5xFAD mouse model of AD, which recapitulates major AD features of massive amyloid-β (Aβ) accumulation in the brain. We examined how the generator is featured to have specific-sample generation and biological gene association. Based on the above observations, we suggested virtual disease progress by latent space interpolation to yield the transition curves of various genes with pathological changes from normal to AD state. By performing pathway analysis based on the transition curve patterns, we identified several pathological processes with progressive changes, such as inflammatory systems and synapse functions, which have previously been demonstrated to be involved in the pathogenesis of AD. Interestingly, our analysis indicates that alteration of cholesterol biosynthesis begins at a very early stage of AD, suggesting that it is the first effect to mediate the cholesterol metabolism of AD downstream of Aβ accumulation. Here, we suggest that GANs are a useful tool to study disease progression, leading to the identification of early pathological signatures.
Collapse
Affiliation(s)
- Jinhee Park
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- School of Electronics Engineering, Kyungpook National University, Daegu, Korea
| | - Hyerin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| |
Collapse
|
5
|
Gupta A, Sharma A, Kumar A, Goyal R. Alteration in memory cognition due to activation of caveolin-1 and oxidative damage in a model of dementia of Alzheimer's type. Indian J Pharmacol 2020; 51:173-180. [PMID: 31391685 PMCID: PMC6644185 DOI: 10.4103/ijp.ijp_81_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The present study aims to investigate the role of caveolin-1 in dementia of Alzheimer's type using intracerebroventricular streptozotocin (ICV-STZ)-induced neurodegeneration model in rats. MATERIALS AND METHODS Male Wistar rats (220-260 g) were employed. STZ 3 mg/kg via ICV route was given once to cause neuronal injury. Daidzein - a caveolin inhibitor at 0.2, 0.4, and 0.6 mg/kg s.c. were given daily whereas minoxidil - a caveolin activator was given at 0.45 mg/kg, i.p. on alternate days for 28 days. STZ was also given at its submaximal dose 1.5 mg/kg to minoxidil group only. RESULTS ICV-STZ control animals exhibited cognitive and neurological deficits on the Morris water maze, elevated plus maze, and balance beam tests (P < 0.0001). Treatment with daidzein significantly restored memory impairments and decreased oxidative damage whereas minoxidil potentiates the effect of STZ causing significant impairment in memory. Significant oxidative stress such as lipid peroxidation and glutathione (P < 0.0001) were also observed due to ICV-STZ administration resulting in neuronal damage which was significantly prevented by treatment with daidzein in brain tissues. CONCLUSION The findings from the present investigation may conclude that the caveolin-1 from caveolae at the cell membrane induces memory deficits and oxidative stress phenotype that resemble the neurological phenotype of Alzheimer's disease. Further studies are warranted to gauge the effect of caveolin dyshomeostasis on the amyloidogenic cascade.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Ashish Sharma
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Anil Kumar
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Gao Z, Li Y, Zhang C, Zhang S, Jia Y, Li F, Ding H, Li X, Chen Z, Wei Q. AuCu xO-Embedded Mesoporous CeO 2 Nanocomposites as a Signal Probe for Electrochemical Sensitive Detection of Amyloid-Beta Protein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12335-12341. [PMID: 30855126 DOI: 10.1021/acsami.9b01445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A sandwich-type electrochemical immunosensor for detecting amyloid-beta protein was fabricated based on Au NP-functionalized reduced graphene oxide (Au@rGO) as an effective sensing platform and AuCu xO-embedded mesoporous CeO2 (AuCu xO@m-CeO2) nanocomposites as the catalytic matrix. The AuCu xO@m-CeO2 composites were obtained by adjusting the amount of m-CeO2 in the reaction to expose enormous active sites. Also, AuCu xO@m-CeO2 was applied as a matrix to immobilize antibodies by forming bridged bonds between m-CeO2 and carboxyl functional groups of antibodies without additional agents. Furthermore, AuCu xO with prominent catalytic activities dramatically improved the performance of the fabricated immunosensor. Also, the morphology, structure, and electronic state of the surface were characterized by SEM, XRD, TEM, and XPS. In addition, the immunosensor demonstrated a wide linear range of 100 fg mL-1 to 10 ng mL-1. This study may provide a way for sensitively detecting various biomarkers.
Collapse
Affiliation(s)
- Zengqiang Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | | | | | | | | | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Hui Ding
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | | | | | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
7
|
Sikanyika NL, Parkington HC, Smith AI, Kuruppu S. Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer's Disease. Neurochem Res 2019; 44:1289-1296. [PMID: 30806879 DOI: 10.1007/s11064-019-02756-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aβ exists and the importance of enzymes involved in the production and breakdown of Aβ in maintaining healthy Aβ levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aβ-producing enzymes, β-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aβ-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aβ degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aβ build-up. Therefore Aβ degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aβ synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aβ-degrading enzymes, and the untapped therapeutic potential of enzyme activation.
Collapse
Affiliation(s)
- Nkumbu L Sikanyika
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sanjaya Kuruppu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
8
|
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. Mol Psychiatry 2019; 24:345-363. [PMID: 30470799 PMCID: PMC6514885 DOI: 10.1038/s41380-018-0266-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
In addition to the devastating symptoms of dementia, Alzheimer's disease (AD) is characterized by accumulation of the processing products of the amyloid-β (Aβ) peptide precursor protein (APP). APP's non-pathogenic functions include regulating intracellular iron (Fe) homeostasis. MicroRNAs are small (~ 20 nucleotides) RNA species that instill specificity to the RNA-induced silencing complex (RISC). In most cases, RISC inhibits mRNA translation through the 3'-untranslated region (UTR) sequence. By contrast, we report a novel activity of miR-346: specifically, that it targets the APP mRNA 5'-UTR to upregulate APP translation and Aβ production. This upregulation is reduced but not eliminated by knockdown of argonaute 2. The target site for miR-346 overlaps with active sites for an iron-responsive element (IRE) and an interleukin-1 (IL-1) acute box element. IREs interact with iron response protein1 (IRP1), an iron-dependent translational repressor. In primary human brain cultures, miR-346 activity required chelation of Fe. In addition, miR-346 levels are altered in late-Braak stage AD. Thus, miR-346 plays a role in upregulation of APP in the CNS and participates in maintaining APP regulation of Fe, which is disrupted in late stages of AD. Further work will be necessary to integrate other metals, and IL-1 into the Fe-miR-346 activity network. We, thus, propose a "FeAR" (Fe, APP, RNA) nexus in the APP 5'-UTR that includes an overlapping miR-346-binding site and the APP IRE. When a "healthy FeAR" exists, activities of miR-346 and IRP/Fe interact to maintain APP homeostasis. Disruption of an element that targets the FeAR nexus would lead to pathogenic disruption of APP translation and protein production.
Collapse
Affiliation(s)
- Justin M. Long
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bryan Maloney
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, MGH, Harvard Medical School, Charlestown, MA 02129 USA
| | - Debomoy K. Lahiri
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
9
|
Zou Z, Cai J, Zhong A, Zhou Y, Wang Z, Wu Z, Yang Y, Li X, Cheng X, Tan J, Fan Y, Zhang X, Lu Y, Zhou Y, Yang L, Zhang C, Zhao Q, Fu D, Shen Q, Chen J, Bai S, Wu L, Chen Y, Chen X, Chen J, Zheng H, Wang H, Lou Y, Ding Y, Shen S, Ye Y, Chen L, Lin Y, Huang J, Zou K, Zhang J, Bian B, Huang C, Rong C, Dai L, Xu Y, Cheng L, Chen Y, Luo Y, Zhang S, Li L. Using the synthesized peptide HAYED (5) to protect the brain against iron catalyzed radical attack in a naturally senescence Kunming mouse model. Free Radic Biol Med 2019; 130:458-470. [PMID: 30448512 DOI: 10.1016/j.freeradbiomed.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aβ42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.
Collapse
Affiliation(s)
- Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China; Medical School of Taizhou University, Taizhou, ZJ 318000, China; Biochemistry Department, Purdue University, West Lafayette, IN 47906, USA.
| | - Jing Cai
- Genetic Department of Nanjing Medical University, Nanjing, JS 210000, China
| | - Aiguo Zhong
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yong Zhou
- Clinical Laboratory of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zengxian Wang
- Medical Image Center of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zhongmin Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yue Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Li
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaoying Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Yihao Fan
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaotong Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yuxiang Lu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yaping Zhou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liu Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | | | - Qiang Zhao
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Derong Fu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Qiqiong Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shi Bai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lijuan Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yongfeng Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jiaren Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongjie Zheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongdian Wang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yingjie Lou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yarong Ding
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shiyi Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ying Ye
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lifen Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yukai Lin
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jue Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Kechun Zou
- Shangli Teacher Training School, Pingxiang, JX 337009, China
| | - Jianxing Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Baohua Bian
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Chengbo Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Cuiping Rong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Limiao Dai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yali Xu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lin Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ye Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yewen Luo
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shanshan Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| |
Collapse
|
10
|
Mancini O, Rolinski OJ, Kubiak-Ossowska K, Mulheran PA. Tyrosine Rotamer States in Beta Amyloid: Signatures of Aggregation and Fibrillation. ACS OMEGA 2018; 3:16046-16056. [PMID: 31458243 PMCID: PMC6643746 DOI: 10.1021/acsomega.8b02408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
During the early stages of β amyloid (Ab) peptide aggregation, toxic oligomers form which have been recognized as a likely cause of Alzheimer's disease. In this work, we use fully atomistic molecular dynamics simulation to study the amorphous aggregation of the peptide as well as model β-sheet protofibril structures. In particular, we study the rotamer states of the single fluorescent tyrosine (Tyr) residue present in each Ab. We find that the occupation of the four previously identified rotamers is different for monomeric and amorphous aggregates because of the differing environments of the Tyr side-chains. Surprisingly, we also identify two new rotamers that uniquely appear for the β-sheet structures, so that together the rotamers provide distinct signatures for the different stages of aggregation and fibrillation. We propose that these rotamers could be identified in fluorescence spectroscopy, with each rotamer having a distinct fluorescence lifetime because of its different exposures to the solvent. The identification of the two new rotamers therefore provides a new means to probe amyloid formation kinetics and to monitor the effect of additives including prospective drugs.
Collapse
Affiliation(s)
- Onorio Mancini
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K.
| | - Olaf J. Rolinski
- Department of Physics, University
of Strathclyde, Glasgow G4 0NG, U.K.
| | | | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K.
- E-mail: (P.A.M.)
| |
Collapse
|
11
|
Kubánková M, López-Duarte I, Kiryushko D, Kuimova MK. Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. SOFT MATTER 2018; 14:9466-9474. [PMID: 30427370 DOI: 10.1039/c8sm01633j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amyloid deposits of aggregated beta-amyloid Aβ(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1-42) oligomers, while fibrillar Aβ(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
12
|
DelBove CE, Deng XZ, Zhang Q. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study. ACS Chem Neurosci 2018; 9:2225-2232. [PMID: 29869871 DOI: 10.1021/acschemneuro.8b00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Collapse
Affiliation(s)
- Claire E. DelBove
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Xian-zhen Deng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
13
|
Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Sci Rep 2018; 8:3518. [PMID: 29476081 PMCID: PMC5824883 DOI: 10.1038/s41598-018-21815-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neuronal dysfunction and loss associated with the accumulation of amyloid-β (Aβ) in the form of extracellular amyloid plaques and hyperphosphorylated tau in the form of intraneuronal neurofibrillary tangles represent key features of Alzheimer's disease (AD). Amyloid plaques found in the brains of AD patients are predominantly composed of Aβ42 and its multiple chemically or structurally modified isoforms. Recently, we demonstrated that Aβ42 with isomerised Asp7 (isoAβ42) which is one of the most abundant Aβ isoform in plaques, exhibited high neurotoxicity in human neuronal cells. Here, we show that, in SH-SY5Y neuroblastoma cells, the administration of synthetic isoAβ42 rather than intact Aβ42 resulted in a significantly higher level of protein phosphorylation, especially the phosphorylation of tau, tubulins, and matrin 3. IsoAβ42 induced a drastic reduction of tau protein levels. Our data demonstrate, for the first time, that isoAβ42, being to date the only known synthetic Aβ species to cause AD-like amyloidogenesis in an animal AD model, induced cell death by disabling structural proteins in a manner characteristic of that observed in the neurons of AD patients. The data emphasize an important role of isoAβ42 in AD progression and provide possible neurotoxicity paths for this particular isoform.
Collapse
|
14
|
Mancini O, Wellbrock T, Rolinski OJ, Kubiak-Ossowska K, Mulheran PA. Probing beta amyloid aggregation using fluorescence anisotropy: experiments and simulation. Phys Chem Chem Phys 2018; 20:4216-4225. [DOI: 10.1039/c7cp08217g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Simulated fluorescence anisotropy from Tyr residues distinguishes a beta amyloid monomer (black) from oligomers (coloured).
Collapse
Affiliation(s)
- Onorio Mancini
- Department of Chemical Engineering and Process Engineering
- University of Strathclyde
- Glasgow
- UK
| | | | | | | | - Paul A. Mulheran
- Department of Chemical Engineering and Process Engineering
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
15
|
Li HH, Lin CL, Huang CN. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 2018; 13:198-206. [PMID: 29557360 PMCID: PMC5879882 DOI: 10.4103/1673-5374.226379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD). In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ) levels by affecting amyloid precursor protein (APP) cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK) in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
16
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
17
|
Cheng J, Lin X, Morgan D, Gordon M, Chen X, Wang ZH, Li HN, He LJ, Zhou SF, Cao C. Dendritic and Langerhans cells respond to Aβ peptides differently: implication for AD immunotherapy. Oncotarget 2016; 6:35443-57. [PMID: 26473448 PMCID: PMC4742117 DOI: 10.18632/oncotarget.6123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Both wild-type and mutated beta-amyloid (Aβ) peptides can elicit an immune response when delivered subcutaneously. However, only mutated forms of Aβ can sensitize dendritic cells when administered intravenously or intraperitoneally. To understand the role of mutation and delivery routes in creating immune responses, and the function of dendritic cells as therapeutic agents, we used fluorescent-conjugated WT Aβ1-40 (WT40) and artificially mutated Aβ1-40 (22W40) peptides to treat dendritic and Langerhans cells from young and/or old mice at different time points. The cell types were analyzed by flow cytometry and confocal microscopy to identify differences in function and antigen presentation, and Luminex and Western blots for cell activation and associated mechanisms. Our results demonstrated that the artificial mutant, 22W40, enhanced dendritic cell's phagocytosis and antigen presentation better than the WT40. Interestingly, Langerhans cells were more effective at early presentation. The artificial mutant 22W40 increased CD8α+ dendritic cells, CD8+ T-cells, and IFN-γ production when co-cultured with self-lymphocytes and dendritic cells from aged mice (30-month-old). Here, the 22W40 mutant peptide has been found to be potent enough to activate DCs, and that dendritic cell-based therapy may be a more effective treatment for age-related diseases, such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.,USF-Health Byrd Alzheimer's Institute University of South Florida, Tampa, FL, USA
| | - David Morgan
- USF-Health Byrd Alzheimer's Institute University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology University of South Florida, Tampa, FL, USA
| | - Marcia Gordon
- USF-Health Byrd Alzheimer's Institute University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology University of South Florida, Tampa, FL, USA
| | - Xi Chen
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhen-Hai Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hai-Ning Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan-Jie He
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.,Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, China
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.,USF-Health Byrd Alzheimer's Institute University of South Florida, Tampa, FL, USA
| |
Collapse
|
18
|
Jin S, Kedia N, Illes-Toth E, Haralampiev I, Prisner S, Herrmann A, Wanker EE, Bieschke J. Amyloid-β(1-42) Aggregation Initiates Its Cellular Uptake and Cytotoxicity. J Biol Chem 2016; 291:19590-606. [PMID: 27458018 PMCID: PMC5016693 DOI: 10.1074/jbc.m115.691840] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
The accumulation of amyloid β peptide(1-42) (Aβ(1-42)) in extracellular plaques is one of the pathological hallmarks of Alzheimer disease (AD). Several studies have suggested that cellular reuptake of Aβ(1-42) may be a crucial step in its cytotoxicity, but the uptake mechanism is not yet understood. Aβ may be present in an aggregated form prior to cellular uptake. Alternatively, monomeric peptide may enter the endocytic pathway and conditions in the endocytic compartments may induce the aggregation process. Our study aims to answer the question whether aggregate formation is a prerequisite or a consequence of Aβ endocytosis. We visualized aggregate formation of fluorescently labeled Aβ(1-42) and tracked its internalization by human neuroblastoma cells and neurons. β-Sheet-rich Aβ(1-42) aggregates entered the cells at low nanomolar concentration of Aβ(1-42). In contrast, monomer uptake faced a concentration threshold and occurred only at concentrations and time scales that allowed Aβ(1-42) aggregates to form. By uncoupling membrane binding from internalization, we found that Aβ(1-42) monomers bound rapidly to the plasma membrane and formed aggregates there. These structures were subsequently taken up and accumulated in endocytic vesicles. This process correlated with metabolic inhibition. Our data therefore imply that the formation of β-sheet-rich aggregates is a prerequisite for Aβ(1-42) uptake and cytotoxicity.
Collapse
Affiliation(s)
- Sha Jin
- From the Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany, the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | - Niraja Kedia
- the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | - Eva Illes-Toth
- the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | | | | | - Andreas Herrmann
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Erich E Wanker
- From the Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Jan Bieschke
- the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130,
| |
Collapse
|
19
|
Altered protein phosphorylation as a resource for potential AD biomarkers. Sci Rep 2016; 6:30319. [PMID: 27466139 PMCID: PMC4964585 DOI: 10.1038/srep30319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/04/2016] [Indexed: 01/19/2023] Open
Abstract
The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer’s disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued.
Collapse
|
20
|
Bird SM, Sohrabi HR, Sutton TA, Weinborn M, Rainey-Smith SR, Brown B, Patterson L, Taddei K, Gupta V, Carruthers M, Lenzo N, Knuckey N, Bucks RS, Verdile G, Martins RN. Cerebral amyloid-β accumulation and deposition following traumatic brain injury--A narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 2016; 64:215-28. [PMID: 26899257 DOI: 10.1016/j.neubiorev.2016.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) increases the risk of neurodegenerative disorders many years post-injury. However, molecular mechanisms underlying the relationship between TBI and neurodegenerative diseases, such as Alzheimer's disease (AD), remain to be elucidated. Nevertheless, previous studies have demonstrated a link between TBI and increased amyloid-β (Aβ), a protein involved in AD pathogenesis. Here, we review animal studies that measured Aβ levels following TBI. In addition, from a pool of initially identified 1209 published papers, we examined data from 19 eligible animal model studies using a meta-analytic approach. We found an acute increase in cerebral Aβ levels ranging from 24h to one month following TBI (overall log OR=2.97 ± 0.40, p<0.001). These findings may contribute to further understanding the relationship between TBI and future dementia risk. The methodological inconsistencies of the studies discussed in this review suggest the need for improved and more standardised data collection and study design, in order to properly elucidate the role of TBI in the expression and accumulation of Aβ.
Collapse
Affiliation(s)
- Sabine M Bird
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Thomas A Sutton
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia; School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Belinda Brown
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Leigh Patterson
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Veer Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Malcolm Carruthers
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Centre for Men's Health, 96 Harley Street, London, W1G 7HY, United Kingdom
| | - Nat Lenzo
- Oceanic Medical Imaging, Hollywood Medical Centre, 85 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Neville Knuckey
- Centre for Neuromuscular and Neurological Disorders (CNND), University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Romola S Bucks
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Giuseppe Verdile
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia.
| |
Collapse
|
21
|
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 2015; 310:C181-92. [PMID: 26771520 DOI: 10.1152/ajpcell.00087.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Adam Kassan
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Anna R Busija
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
22
|
Aggarwal NT, Shah RC, Bennett DA. Alzheimer's disease: Unique markers for diagnosis & new treatment modalities. Indian J Med Res 2015; 142:369-82. [PMID: 26609028 PMCID: PMC4683821 DOI: 10.4103/0971-5916.169193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. In humans, AD becomes symptomatic only after brain changes occur over years or decades. Three contiguous phases of AD have been proposed: (i) the AD pathophysiologic process, (ii) mild cognitive impairment due to AD, and (iii) AD dementia. Intensive research continues around the world on unique diagnostic markers and interventions associated with each phase of AD. In this review, we summarize the available evidence and new therapeutic approaches that target both amyloid and tau pathology in AD and discuss the biomarkers and pharmaceutical interventions available and in development for each AD phase.
Collapse
Affiliation(s)
- Neelum T. Aggarwal
- Department of Neurology, Rush University Medical Center, Chicago, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - Raj C. Shah
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
- Department of Family Medicine, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Department of Neurology, Rush University Medical Center, Chicago, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| |
Collapse
|
23
|
Lee BJ, Kim JY. Identification of the Best Anthropometric Predictors of Serum High- and Low-Density Lipoproteins Using Machine Learning. IEEE J Biomed Health Inform 2015; 19:1747-56. [DOI: 10.1109/jbhi.2014.2350014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
25
|
Xu L, Wang C, Chen L, Ren J, Xie J, Jia L. Detection of Aβ-interacting proteins via a novel Aβ-adsorbents that use immobilized regular comb polymer. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:94-8. [PMID: 25278441 DOI: 10.1016/j.jchromb.2014.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
A detailed study of individual Aβ-interacting proteins has always been a difficult task because Aβ has a wide range of molecular weights and can easily form aggregates. In this study, we established a novel method for isolating Aβ-interacting proteins by utilizing regular comb polymer immobilized on Sepharose CL-4B. To achieve site-directed ligation of Aβ, a cysteine residue was added at the N-terminus of Aβ. Asp and Asp12, which have 2 and 13 carboxyl groups, respectively, were selected as the carriers for the regular comb polymer. Firstly, the N-termini of Asp and Asp12 were immobilized on Sepharose CL-4B. Next, modified Aβ molecules were coupled to the carboxyl groups of Asp and Asp12 using bromoethylamine as a spacer. To obtain homogeneous comb polymer, the efficiency of the reaction was controlled during the synthesis process. Thioflavin T staining indicated that homogeneous Aβ was achieved. The prepared Aβ-adsorbents were used to isolate Aβ-interacting proteins from mice brain extracts. The results showed that the adsorption capacity of the Aβ-adsorbents for proteins in mice brain extracts increased with the ages of the animals. SDS-PAGE analysis of the Aβ-interacting proteins showed that many kinds of brain proteins were selectively adsorbed by the Aβ adsorbents, and the levels of some of these proteins varied with the ages of the animals. The results indicated that Aβ-interacting proteins could be successfully obtained through the use of immobilized comb polymer. Similar method could also be used to isolate other amyloid-interacting proteins.
Collapse
Affiliation(s)
- Li Xu
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Conggang Wang
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Linli Chen
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jun Ren
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jian Xie
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Lingyun Jia
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
26
|
Vision function abnormalities in Alzheimer disease. Surv Ophthalmol 2014; 59:414-33. [DOI: 10.1016/j.survophthal.2013.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
27
|
Wood WG, Li L, Müller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J Neurochem 2014; 129:559-72. [PMID: 24329875 PMCID: PMC3999290 DOI: 10.1111/jnc.12637] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer's disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Ab) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD.Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only amyloid precursor protein and Ab. The purpose of this review, therefore, was to examine the above-mentioned issues, discuss the pros and cons of the cholesterol-AD hypothesis, involvement of other lipids in the mevalonate pathway, and consider that AD may impact cholesterol homeostasis.
Collapse
Affiliation(s)
- W. Gibson Wood
- Geriatric Research, Education and Clinical Center, VAMC, Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Walter E. Müller
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
28
|
Cappai R. Making sense of the amyloid precursor protein: its tail tells an interesting tale. J Neurochem 2014; 130:325-7. [DOI: 10.1111/jnc.12707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto Cappai
- Department of Pathology; The University of Melbourne; Parkville Victoria Australia
- Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
29
|
Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol 2014; 50:119-29. [PMID: 24553856 DOI: 10.1007/s12035-014-8652-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
Abstract
The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A(2) (PLA(2)s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.
Collapse
|
30
|
Davey DA. Alzheimer's disease, dementia, mild cognitive impairment and the menopause: a 'window of opportunity'? ACTA ACUST UNITED AC 2013; 9:279-90. [PMID: 23638783 DOI: 10.2217/whe.13.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is not an inevitable consequence of aging and may be modified by both adverse and protective factors. The pathological changes of AD commence in midlife and AD has a long preclinical phase that may be diagnosed by biomarkers in the cerebrospinal fluid and by brain MRI. New clinical criteria for the diagnosis of AD dementia and AD mild cognitive impairment (MCI) have been proposed. MCI and dementia are frequently the result of AD and cerebrovascular disease combined. Over the age of 85 years, MCI and dementia are more common in women than in men. Women with a surgical premature menopause have an increased risk of MCI and AD. Menopausal hormone therapy from the menopause to the age of 60 years, when any risks of menopausal hormone therapy are extremely small, may provide a 'window of opportunity' to reduce the risk of MCI and AD in later life. Many measures may help to prevent, delay or minimize AD in both women and men and should be actively encouraged.
Collapse
Affiliation(s)
- Dennis A Davey
- Department of Obstetrics & Gynaecology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa.
| |
Collapse
|
31
|
Feng H, Guo W, Han J, Li XA. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci 2013; 93:1-6. [PMID: 23727353 DOI: 10.1016/j.lfs.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
Caveolae, plasma membrane invaginations of 60-80nm in diameter, are a subset of lipid rafts enriched in cholesterol and sphingolipids. Caveolae are expressed in various tissues and cell types, such as endothelial cells, macrophages, neutrophils and adipocytes. The functions of caveolae are diverse and include endocytosis, transcytosis, potocytosis, calcium signaling, and regulation of various signaling events. Although growing evidence has increased our understanding of caveolae function, the role of caveolae in sepsis is still a controversial issue. In this review, we present a number of studies addressing caveolae and sepsis and describe the signaling pathways involved, including the LPS-eNOS-TLR4-NFκB, MKK3/p38 MAPK, cPLA2/p38 MAPK, STAT3/NFκB and IL-1β-IL-1R1 pathways. Different studies using endotoxemia and bacteremia animal models have provided distinct conclusions about the function of caveolae, and we discuss these inconsistencies. Taken together, the current data suggest that the function of caveolae in sepsis, which involves a number of signaling pathways, is complex and warrants further studies.
Collapse
Affiliation(s)
- Hong Feng
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wen Guo
- Taian Central Hospital, Taian, Shandong 271000, China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
32
|
β-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 2012; 32:6490-500. [PMID: 22573671 DOI: 10.1523/jneurosci.0630-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) inside brain neurons is an early and crucial event in Alzheimer's disease (AD). Studies in brains of AD patients and mice models of AD suggested that cholesterol homeostasis is altered in neurons that accumulate Aβ. Here we directly investigated the role of intracellular oligomeric Aβ(42) (oAβ(42)) in neuronal cholesterol homeostasis. We report that oAβ(42) induces cholesterol sequestration without increasing cellular cholesterol mass. Several features of AD, such as endosomal abnormalities, brain accumulation of Aβ and neurofibrillary tangles, and influence of apolipoprotein E genotype, are also present in Niemann-Pick type C, a disease characterized by impairment of intracellular cholesterol trafficking. These common features and data presented here suggest that a pathological mechanism involving abnormal cholesterol trafficking could take place in AD. Cholesterol sequestration in Aβ-treated neurons results from impairment of intracellular cholesterol trafficking secondary to inhibition of protein prenylation. oAβ(42) reduces sterol regulatory element-binding protein-2 (SREBP-2) cleavage, causing decrease of protein prenylation. Inhibition of protein prenylation represents a mechanism of oAβ(42)-induced neuronal death. Supply of the isoprenoid geranylgeranyl pyrophosphate to oAβ(42)-treated neurons recovers normal protein prenylation, reduces cholesterol sequestration, and prevents Aβ-induced neurotoxicity. Significant to AD, reduced levels of protein prenylation are present in the cerebral cortex of the TgCRND8 mouse model. In conclusion, we demonstrate a significant inhibitory effect of Aβ on protein prenylation and identify SREBP-2 as a target of oAβ(42), directly linking Aβ to cholesterol homeostasis impairment.
Collapse
|
33
|
Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012; 3:189. [PMID: 22737128 PMCID: PMC3381238 DOI: 10.3389/fphys.2012.00189] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
Collapse
Affiliation(s)
- David A Hicks
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | |
Collapse
|
34
|
Posse de Chaves E. Reciprocal regulation of cholesterol and beta amyloid at the subcellular level in Alzheimer's disease. Can J Physiol Pharmacol 2012; 90:753-64. [PMID: 22626060 DOI: 10.1139/y2012-076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the discovery that apolipoprotein E, a cholesterol transport protein, is a major risk factor for Alzheimer's disease (AD) development, there has been a remarkable interest in understanding the many facets of the relationship between cholesterol and AD. Several lines of evidence have demonstrated the importance of cholesterol in amyloid beta peptide (Aβ) production and metabolism, as well as the involvement of Aβ in cholesterol homeostasis. The emerging picture is complex and still incomplete. This review discusses findings that indicate that a reciprocal regulation exists between Aβ and cholesterol at the subcellular level. The pathological impact of such regulation is highlighted.
Collapse
Affiliation(s)
- Elena Posse de Chaves
- Department of Pharmacology, 9-31 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
35
|
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor and is characterized by high invasiveness, poor prognosis, and limited therapeutic options. Biochemical and morphological experiments have shown the presence of caveolae in glioblastoma cells. Caveolae are flask-shaped plasma membrane subdomains that play trafficking, mechanosensing, and signaling roles. Caveolin-1 is a membrane protein that participates in the formation of caveolae and binds a multitude of signaling proteins, compartmentalizing them in caveolae and often directly regulating their activity via binding to its scaffolding domain. Caveolin-1 has been proposed to behave either as a tumor suppressor or as an ongogene depending on the tumor type and progress. This review discusses the existing information on the expression and function of caveolin-1 and caveolae in GBM and the role of this organelle and its defining protein on cellular signaling, growth, and invasiveness of GBM. We further analyze the available data suggesting caveolin-1 could be a target in GBM therapy.
Collapse
Affiliation(s)
- Marie-Odile Parat
- University of Queensland School of Pharmacy, PACE, 20 Cornwall St., Woollloongabba QLD 4102, Australia.
| | | |
Collapse
|
36
|
Schreiber A, Fischer S, Lang T. The amyloid precursor protein forms plasmalemmal clusters via its pathogenic amyloid-β domain. Biophys J 2012; 102:1411-7. [PMID: 22455924 DOI: 10.1016/j.bpj.2012.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/26/2022] Open
Abstract
The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-β (Aβ) domain. In the human brain, endosomal processing of APP produces neurotoxic Aβ-peptides, which are involved in Alzheimer's disease. Here, we show that the Aβ sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aβ concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aβ stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aβ domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides.
Collapse
Affiliation(s)
- Arne Schreiber
- Department of Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
37
|
Rossello XS, Igbavboa U, Weisman GA, Sun GY, Wood WG. AP-2β regulates amyloid beta-protein stimulation of apolipoprotein E transcription in astrocytes. Brain Res 2012; 1444:87-95. [PMID: 22325097 DOI: 10.1016/j.brainres.2012.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 02/04/2023]
Abstract
Two key players involved in Alzheimer's disease (AD) are amyloid beta protein (Aβ) and apolipoprotein E (apoE). Aβ increases apoE protein levels in astrocytes which is associated with cholesterol trafficking, neuroinflammatory responses and Aβ clearance. The mechanism for the increase in apoE protein abundance is not understood. Based on different lines of evidence, we propose that the beta-adrenergic receptor (βAR), cAMP and the transcription factor activator protein-2 (AP-2) are contributors to the Aβ-induced increase in apoE abundance. This hypothesis was tested in mouse primary astrocytes and in cells transfected with an apoE promoter fragment with binding sites for AP-2. Aβ(42) induced a time-dependent increase in apoE mRNA and protein levels which were significantly inhibited by βAR antagonists. A novel finding was that Aβ incubation significantly reduced AP-2α levels and significantly increased AP-2β levels in the nuclear fraction. The impact of Aβ-induced translocation of AP-2 into the nucleus was demonstrated in cells expressing AP-2 and incubated with Aβ(42). AP-2 expressing cells had enhanced activation of the apoE promoter region containing AP-2 binding sites in contrast to AP-2 deficient cells. The transcriptional upregulation of apoE expression by Aβ(42) may be a neuroprotective response to Aβ-induced cytotoxicity, consistent with apoE's role in cytoprotection.
Collapse
Affiliation(s)
- Ximena S Rossello
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research Education and Clinical Center, VAMC, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
38
|
The role of APP proteolytic processing in lipid metabolism. Exp Brain Res 2011; 217:365-75. [DOI: 10.1007/s00221-011-2975-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022]
|
39
|
Bailey JA, Maloney B, Ge YW, Lahiri DK. Functional activity of the novel Alzheimer's amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene 2011; 488:13-22. [PMID: 21708232 DOI: 10.1016/j.gene.2011.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/16/2022]
Abstract
Amyloid-β peptide (Aβ) plaque in the brain is the primary (post mortem) diagnostic criterion of Alzheimer's disease (AD). The physiological role(s) of Aβ are poorly understood. We have previously determined an Aβ interacting domain (AβID) in the promoters of AD-associated genes (Maloney and Lahiri, 2011. Gene. 15,doi:10.1016/j.gene.2011.06.004. epub ahead of print.). This AβID interacts in a DNA sequence-specific manner with Aβ. We now demonstrate novel Aβ activity as a possible transcription factor. Herein, we detected Aβ-chromatin interaction in cell culture by ChIP assay. We observed that human neuroblastoma (SK-N-SH) cells treated with FITC conjugated Aβ1-40 localized Aβ to the nucleus in the presence of H2O2-mediated oxidative stress. Furthermore, primary rat fetal cerebrocortical cultures were transfected with APP and BACE1 promoter-luciferase fusions, and rat PC12 cultures were transfected with polymorphic APP promoter-CAT fusion clones. Transfected cells were treated with different Aβ peptides and/or H2O2. Aβ treatment of cell cultures produced a DNA sequence-specific response in cells transfected with polymorphic APP clones. Our results suggest the Aβ peptide may regulate its own production through feedback on its precursor protein and BACE1, leading to amyloidogenesis in AD.
Collapse
Affiliation(s)
- Jason A Bailey
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
40
|
The Alzheimer's amyloid β-peptide (Aβ) binds a specific DNA Aβ-interacting domain (AβID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 2011; 488:1-12. [PMID: 21699964 DOI: 10.1016/j.gene.2011.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 11/23/2022]
Abstract
Deposition of extracellular plaques, primarily consisting of amyloid β peptide (Aβ), in the brain is the confirmatory diagnostic of Alzheimer's disease (AD); however, the physiological and pathological role of Aβ is not fully understood. Herein, we demonstrate novel Aβ activity as a putative transcription factor upon AD-associated genes. We used oligomers from 5'-flanking regions of the apolipoprotein E (APOE), Aβ-precursor protein (APP) and β-amyloid site cleaving enzyme-1 (BACE1) genes for electrophoretic mobility shift assay (EMSA) with different fragments of the Aβ peptide. Our results suggest that Aβ bound to an Aβ-interacting domain (AβID) with a consensus of "KGGRKTGGGG". This peptide-DNA interaction was sequence specific, and mutation of the first "G" of the decamer's terminal "GGGG" eliminated peptide-DNA interaction. Furthermore, the cytotoxic Aβ25-35 fragment had greatest DNA affinity. Such specificity of binding suggests that the AβID is worth of further investigation as a site wherein the Aβ peptide may act as a transcription factor.
Collapse
|
41
|
Abstract
Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function.
Collapse
Affiliation(s)
- W Gibson Wood
- Department of Pharmacology, University of Minnesota, School of Medicine, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
42
|
Lahiri DK, Maloney B. Beyond the signaling effect role of amyloid-ß42 on the processing of APP, and its clinical implications. Exp Neurol 2010; 225:51-4. [PMID: 20451519 DOI: 10.1016/j.expneurol.2010.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/30/2010] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) currently has over 6 million victims in the USA, alone. The recently FDA approved drugs for AD only provide mild, transient relief for symptoms without addressing underlying mechanisms to a significant extent. Basic understanding of the activities of the amyloid beta peptide (Abeta) and associated proteins such as beta-site APP-cleaving enzyme 1 (BACE1) is necessary to develop effective medical responses to AD. Recently (Exper. Neurol. 2010. 221, 18-25), Tabaton et al. have presented a model of both non-pathological and pathological Abeta activities and suggest potential therapeutic pathways based on their proposed framework of Abeta acting as the signal that induces a kinase cascade, ultimately stimulating transcription factors that upregulate genes such as BACE1. We respond by presenting evidence of Abeta's other activities, including protection against metal-induced reactive oxidizing species (ROS), modification of cholesterol transport, and potential activity as a transcription factor in its own right. We touch upon clinical implications of each of these functions and highlight the currently unexplored implications of our suggested novel function of Abeta as a transcription factor. Abeta appears to be a highly multi-functional peptide, and any or all of the pathways it engages in is a likely candidate for antiAD drug development.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
43
|
Chidlow JH, Sessa WC. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 2010; 86:219-25. [PMID: 20202978 PMCID: PMC2856194 DOI: 10.1093/cvr/cvq075] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 11/13/2022] Open
Abstract
Caveolae are specialized lipid rafts that form flask-shaped invaginations of the plasma membrane. They are involved in cell signalling and transport and have been shown critically regulate vascular reactivity and blood pressure. The organization and functions of caveolae are mediated by coat proteins (caveolins) and support or adapter proteins (cavins). The caveolins, caveolin-1, -2, and -3, form the structural backbone of caveolae. These proteins are also highly integrated into caveolae function and have their own activity independent of caveolae. The cavins, cavins 1-4, are involved in regulation of caveolae and modulate the function of caveolins by promoting the membrane remodelling and trafficking of caveolin-derived structures. The relationships between these different proteins are complex and intersect with many aspects of cell function. Caveolae have also been implicated in chronic inflammatory conditions and other pathologies including atherosclerosis, inflammatory bowel disease, muscular dystrophy, and generalized dyslipidaemia. The pathogenic role of the caveolins is an emerging area, however, the roles of cavins in disease is just beginning to be explored. This review will examine the relationship between caveolins and cavins and explore the role of caveolae in inflammatory signalling mechanisms.
Collapse
Affiliation(s)
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, Amistad Research Building, 10 Amistad Street, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Harris JR, Milton NGN. Cholesterol in Alzheimer's disease and other amyloidogenic disorders. Subcell Biochem 2010; 51:47-75. [PMID: 20213540 DOI: 10.1007/978-90-481-8622-8_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex association of cholesterol metabolism and Alzheimer's disease is presented in depth, including the possible benefits to be gained from cholesterol-lowering statin therapy. Then follows a survey of the role of neuronal membrane cholesterol in Abeta pore formation and Abeta fibrillogenesis, together with the link with membrane raft domains and gangliosides. The contribution of structural studies to Abeta fibrillogenesis, using TEM and AFM, is given some emphasis. The role of apolipoprotein E and its isoforms, in particular ApoE4, in cholesterol and Abeta binding is presented, in relation to genetic risk factors for Alzheimer's disease. Increasing evidence suggests that cholesterol oxidation products are of importance in generation of Alzheimer's disease, possibly induced by Abeta-produced hydrogen peroxide. The body of evidence for a link between cholesterol in atherosclerosis and Alzheimer's disease is increasing, along with an associated inflammatory response. The possible role of cholesterol in tau fibrillization, tauopathies and in some other non-Abeta amyloidogenic disorders is surveyed.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099, Mainz, Germany.
| | | |
Collapse
|