1
|
Guillem K, Ahmed SH. Preference for Cocaine is Represented in the Orbitofrontal Cortex by an Increased Proportion of Cocaine Use-Coding Neurons. Cereb Cortex 2019; 28:819-832. [PMID: 28057724 DOI: 10.1093/cercor/bhw398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is a harmful preference for drug use over and at the expense of other nondrug-related activities. Here we identify in the rat orbitofrontal cortex (OFC) a mechanism that explains individual preferences between cocaine use and an alternative, nondrug action. OFC neuronal activity was recorded while rats performed each of these 2 actions separately or while they chose between them. First, we found that these actions are encoded by 2 nonoverlapping neuronal populations and that the relative size of the cocaine population represented individual preferences. A larger relative size was only observed in cocaine-preferring individuals. Second, OFC neurons encoding a given individual's preferred action progressively fired more than other action-coding neurons few seconds before the preferred action was actually chosen, suggesting a prechoice neuronal competition for action selection. In cocaine-preferring rats, this manifested by a prechoice ramping-up activity in favor of the cocaine population. Finally, pharmacological manipulation of prechoice activity in favor of the cocaine population caused nondrug-preferring rats to shift their choice to cocaine. Overall, this study suggests that an individual preference for cocaine is represented in the OFC by a population size bias that systematically advantages cocaine use-coding neurons during prechoice competition for action selection.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| |
Collapse
|
2
|
|
3
|
Zhou Y, Li C, Li R, Zhou C. Exercise improves nicotine reward‐associated cognitive behaviors and related α7 nAChR‐mediated signal transduction in adolescent rats. J Cell Physiol 2018; 233:5756-5767. [DOI: 10.1002/jcp.26295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yuehui Zhou
- School of Sport ScienceQufu Normal UniversityShandongChina
| | - Cuicui Li
- Department of Sport PsychologySchool of Sport Science, Shanghai University of SportShanghaiChina
| | - Rena Li
- Department of Sport PsychologySchool of Sport Science, Shanghai University of SportShanghaiChina
- Center for Hormone Advanced Science and EducationRoskamp InstituteSarasotaFlorida
| | - Chenglin Zhou
- Department of Sport PsychologySchool of Sport Science, Shanghai University of SportShanghaiChina
| |
Collapse
|
4
|
Warren BL, Suto N, Hope BT. Mechanistic Resolution Required to Mediate Operant Learned Behaviors: Insights from Neuronal Ensemble-Specific Inactivation. Front Neural Circuits 2017; 11:28. [PMID: 28484375 PMCID: PMC5401897 DOI: 10.3389/fncir.2017.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many learned behaviors are directed by complex sets of highly specific stimuli or cues. The neural mechanisms mediating learned associations in these behaviors must be capable of storing complex cue information and distinguishing among different learned associations—we call this general concept “mechanistic resolution”. For many years, our understanding of the circuitry of these learned behaviors has been based primarily on inactivation of specific cell types or whole brain areas regardless of which neurons were activated during the cue-specific behaviors. However, activation of all cells or specific cell types in a brain area do not have enough mechanistic resolution to encode or distinguish high-resolution learned associations in these behaviors. Instead, these learned associations are likely encoded within specific patterns of sparsely distributed neurons called neuronal ensembles that are selectively activated by the cues. This review article focuses on studies of neuronal ensembles in operant learned responding to obtain food or drug rewards. These studies suggest that the circuitry of operant learned behaviors may need to be re-examined using ensemble-specific manipulations that have the requisite level of mechanistic resolution.
Collapse
Affiliation(s)
- Brandon L Warren
- Behavioral Neuroscience Branch, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Department of Health and Human Services (DHHS)Baltimore, MD, USA
| | - Nobuyoshi Suto
- Department of Molecular and Cellular Neuroscience, The Scripps Research InstituteLa Jolla, CA, USA
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Department of Health and Human Services (DHHS)Baltimore, MD, USA
| |
Collapse
|
5
|
Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, Sombers LA. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum. ACS Chem Neurosci 2017; 8:272-280. [PMID: 27984698 DOI: 10.1021/acschemneuro.6b00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.
Collapse
Affiliation(s)
- Samantha K. Smith
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christie A. Lee
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Matthew E. Dausch
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Brian M. Horman
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Heather B. Patisaul
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Gregory S. McCarty
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
6
|
Opris I, Lebedev MA, Nelson RJ. Neostriatal Neuronal Activity Correlates Better with Movement Kinematics under Certain Rewards. Front Neurosci 2016; 10:336. [PMID: 27579022 PMCID: PMC4986930 DOI: 10.3389/fnins.2016.00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
This study investigated how the activity of neostriatal neurons is related to the kinematics of movement when monkeys performed visually and vibratory cued wrist extensions and flexions. Single-unit recordings of 142/236 neostriatal neurons showed pre-movement activity (PMA) in a reaction time task with unpredictable reward. Monkeys were pseudo-randomly (75%) rewarded for correct performance. A regression model was used to determine whether the correlation between neostriatal neuronal activity and the kinematic variables (position, velocity, and acceleration) of wrist movement changes as a function of reward contingency, sensory cues, and movement direction. The coefficients of determination (CoD) representing the proportion of the variance in neuronal activity explained by the regression model on a trial by trial basis, together with their temporal occurrences (time of best regression/correlation, ToC) were compared across sensory modality, movement direction, and reward contingency. The best relationship (correlation) between neuronal activity and movement kinematic variables, given by the average coefficient of determination (CoD), was: (a) greater during trials in which rewards were certain, called "A" trials, as compared with those in which reward was uncertain called ("R") trials, (b) greater during flexion (Flex) trials as compared with extension (Ext) trials, and (c) greater during visual (VIS) cued trials than during vibratory (VIB) cued trials, for the same type of trial and the same movement direction. These results are consistent with the hypothesis that predictability of reward for correct performance is accompanied by faster linkage between neostriatal PMA and the vigor of wrist movement kinematics. Furthermore, the results provide valuable insights for building an upper-limb neuroprosthesis.
Collapse
Affiliation(s)
- Ioan Opris
- Miami Project, University of FloridaMiami, FL, USA
| | | | - Randall J. Nelson
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
7
|
Opris I, Gerhardt GA, Hampson RE, Deadwyler SA. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 2015; 9:79. [PMID: 26074787 PMCID: PMC4448003 DOI: 10.3389/fnsys.2015.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023] Open
Abstract
Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional' interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of KentuckyKentucky, KY, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
8
|
O’Hara CB, Campbell IC, Schmidt U. A reward-centred model of anorexia nervosa: A focussed narrative review of the neurological and psychophysiological literature. Neurosci Biobehav Rev 2015; 52:131-52. [DOI: 10.1016/j.neubiorev.2015.02.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022]
|
9
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
11
|
Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci 2014; 34:7437-46. [PMID: 24872549 DOI: 10.1523/jneurosci.0238-14.2014] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Environmental contexts previously associated with drug use provoke relapse to drug use in humans and reinstatement of drug seeking in animal models of drug relapse. We examined whether context-induced reinstatement of cocaine seeking is mediated by activation of context-selected nucleus accumbens neurons. We trained rats to self-administer cocaine in Context A and extinguished their lever-pressing in a distinct Context B. On test day, reexposure to the cocaine-associated Context A reinstated cocaine seeking and increased expression of the neural activity marker Fos in 3.3% of accumbens shell and 1.6% of accumbens core neurons. To assess a causal role for these activated neurons, we used the Daun02 inactivation procedure to selectively inactivate these neurons. We trained c-fos-lacZ transgenic rats to self-administer cocaine in Context A and extinguished their lever-pressing in Context B. On induction day, we exposed rats to either Context A or a novel Context C for 30 min and injected Daun02 or vehicle into accumbens shell or core 60 min later. On test day, 3 d after induction day, the ability of Context A to reinstate cocaine seeking and increase neuronal activity in accumbens shell was attenuated when Daun02 was previously injected after exposure to Context A. Daun02 injections after exposure to the novel Context C had no effect on context-induced reinstatement of cocaine seeking despite much greater numbers of Fos-expressing neurons induced by Context C. Daun02 injections in accumbens core had no effect. Our data suggest that context-induced reinstatement of cocaine seeking is mediated by activation of context-selected accumbens shell but not core neuronal ensembles.
Collapse
|
12
|
Santos L, Opris I, Hampson R, Godwin DW, Gerhardt G, Deadwyler S. Functional dynamics of primate cortico-striatal networks during volitional movements. Front Syst Neurosci 2014; 8:27. [PMID: 24653682 PMCID: PMC3947991 DOI: 10.3389/fnsys.2014.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
The motor cortex and dorsal striatum (caudate nucleus and putamen) are key regions in motor processing but the interface between the cortex and striatum is not well understood. While dorsal striatum integrates information from multiple brain regions to shape motor learning and habit formation, the disruption of cortico-striatal circuits compromises the functionality of these circuits resulting in a multitude of neurologic disorders, including Parkinson's disease. To better understand the modulation of the cortico-striatal circuits we recorded simultaneously single neuron activity from four brain regions, primary motor, and sensory cortices, together with the rostral and caudal segments of the putamen in rhesus monkeys performing a visual motor task. Results show that spatial and temporal-task related firing relationships between these cortico-striatal circuit regions were modified by the independent administration of the two drugs (cocaine and baclofen). Spatial tuning and correlated firing of neurons from motor cortex and putamen were severely disrupted by cocaine and baclofen on correct trials, while the two drugs have dramatically decreased the functional connectivity of the motor cortical-striatal network. These findings provide insight into the modulation of cortical-striatal firing related to movement with implications for therapeutic approaches to Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Lucas Santos
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Robert Hampson
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Dwayne W Godwin
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA ; Department of Neurobiology and Anatomy, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Greg Gerhardt
- Department of Neurobiology and Neurology, University of Kentucky Lexington, KY, USA
| | - Samuel Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| |
Collapse
|
13
|
Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. ACTA ACUST UNITED AC 2014; 137:1863-75. [PMID: 24531625 DOI: 10.1093/brain/awt359] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer's and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ioan Opris
- 1 Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Manuel F Casanova
- 2 Department of Psychiatry and Behavioural Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
14
|
Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 2013; 10:066013. [PMID: 24216292 PMCID: PMC3919468 DOI: 10.1088/1741-2560/10/6/066013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer's, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. APPROACH NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. MAIN RESULTS The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. SIGNIFICANCE These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.
Collapse
Affiliation(s)
- Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, LA, CA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lucas M. Santos
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Dae C. Shin
- Department of Biomedical Engineering, University of Southern California, LA, CA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY
| | | | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern California, LA, CA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
15
|
Ross EL, Yoon JH, Mahoney JJ, Omar Y, Newton TF, De La Garza R. The impact of self-reported life stress on current impulsivity in cocaine dependent adults. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:113-9. [PMID: 23796525 PMCID: PMC3955062 DOI: 10.1016/j.pnpbp.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/15/2022]
Abstract
Current cocaine treatments may be enhanced with a better understanding of the underlying mechanisms that contribute to the onset and maintenance of the disease, such as life stress and impulsivity. Life stress and impulsivity have previously been studied independently as contributors to drug use, and the current study expands upon past research by examining how these factors interact with one another. The aim of the current study was to evaluate the role of life stress in predicting impulsivity in a non-treatment seeking cocaine-dependent sample (N=112). Analyses revealed that trait impulsivity (as measured by the Barratt Impulsiveness Scale) was associated with education (r=-3.09, p<0.01), as those who had higher educational attainment also reported lower rates of trait impulsivity. In addition, those over the age of 30 demonstrated lower impulsivity in decision-making (as measured by delay discounting) than those under 30 (t=2.21, p=0.03). Overall exposure to life stress was not significantly correlated to either aspect of impulsivity. However several specific life stressors were significantly related to greater impulsivity including having been put up for adoption or in foster care (t=-2.96, p<0.01), and having a child taken away against their will (t=-2.68, p=0.01). These findings suggest that age and education relate to impulsivity; and that while an overall compilation of life stress scores was not related to impulsivity, specific types of stress related to either being taken away from a parent or having a child taken away were. Future studies should assess these constructs longitudinally to restrict response bias.
Collapse
Affiliation(s)
- Elizabeth L. Ross
- The University of Houston, Department of Psychology, United States,Corresponding author at: 126 Heyne Building Houston, TX 77204-5502, United States. Tel.: +1 713 824 2087. (E.L. Ross)
| | - Jin H. Yoon
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, United States
| | - James J. Mahoney
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, United States
| | - Yasmine Omar
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, United States
| | - Thomas F. Newton
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, United States
| | - Richard De La Garza
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, United States
| |
Collapse
|
16
|
Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol Psychiatry 2013; 73:804-10. [PMID: 23098895 DOI: 10.1016/j.biopsych.2012.08.026] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/17/2023]
Abstract
The food addiction model of overeating has been proposed to help explain the widespread advancement of obesity over the last 30 years. Parallels in neural substrates and neurochemistry, as well as corresponding motivational and behavioral traits, are increasingly coming to light; however, there are still key differences between the two disorders that must be acknowledged. We critically examine these common and divergent characteristics using the theoretical framework of prominent drug addiction models, investigating the neurobiological underpinnings of both behaviors in an attempt to justify whether classification of obesity and binge eating as an addictive disorder is merited.
Collapse
Affiliation(s)
- Dana G Smith
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
17
|
Liu HS, Chefer S, Lu H, Guillem K, Rea W, Kurup P, Yang Y, Peoples L, Stein EA. Dorsolateral caudate nucleus differentiates cocaine from natural reward-associated contextual cues. Proc Natl Acad Sci U S A 2013; 110:4093-8. [PMID: 23431137 PMCID: PMC3593870 DOI: 10.1073/pnas.1207531110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic drug administration induces neuroplastic changes within brain circuits regulating cognitive control and/or emotions. Following repeated pairings between drug intake and environmental cues, increased sensitivity to or salience of these contextual cues provoke conscious or unconscious craving and enhance susceptibility to relapse. To explore brain circuits participating in such experience-induced plasticity, we combined functional MRI with a preclinical drug vs. food self-administration (SA) withdrawal model. Specifically, two groups of rats were trained to associate odor cues with the availability of i.v. cocaine or oral sucrose, respectively. After 20 d of cocaine or sucrose SA followed by prolonged (30 d) forced abstinence, animals were presented with odor cues previously associated with or without (S+/S-) reinforcer (cocaine/sucrose) availability while undergoing functional MRI scans. ANOVA results demonstrate that a learning effect distinguishing S+ from S- was seen in the insula and nucleus accumbens, with the insula response reflecting the individual history of cocaine SA intake. A main effect of group, distinguishing cocaine from sucrose, was seen in the medial prefrontal cortex (infralimbic, prelimbic, and cingulate cortex) and dorsolateral striatum. Critically, only the dorsomedial striatum demonstrated a double dissociation between the two SA groups and learning (S+ vs. S-). These findings demonstrate altered cortico-limbic-striatal reward-related processing to learned, environment reward-associated contextual odor cues, which may serve as potential biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Hua-Shan Liu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
| | - Svetlana Chefer
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fredrick, MD 21072
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Karine Guillem
- Institut des Maladies Neurodégénératives, Université de Bordeaux and Centre National de la Recherche Scientifique, 33076 Bordeaux Cedex, France
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - William Rea
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Pradeep Kurup
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Laura Peoples
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
18
|
Ahmed SH, Lenoir M, Guillem K. Neurobiology of addiction versus drug use driven by lack of choice. Curr Opin Neurobiol 2013; 23:581-7. [PMID: 23428657 DOI: 10.1016/j.conb.2013.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Research on the neurobiology of addiction often involves nonhuman animals that are given ready access to drugs for self-administration but without other choices. Here we argue using cocaine as an example that this standard setting may no longer be sufficient and can even lead to the formulation of unrealistic views about the neurobiology of addiction. Addiction as a psychiatric disorder is defined as resulting from brain dysfunctions that affect normal choice-making, not as an expectable response to lack of alternative choices. We encourage neurobiologists involved in addiction research to increase animals' choice during drug access, preferably by supplying alternative rewarding pursuits. Only animals that continue to take and prefer drugs despite and at the expense of other available choices may be considered as having developed an addiction-like behavior in comparison to those that remain able to stop drug use for other pursuits, even after extended drug use. The systematic comparison of these two individual behaviors should reveal new insights about the neurobiology of drug choice and addiction. More generally, this research should also shed a unique light on how the brain 'chooses' among qualitatively different kinds of pursuits.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
19
|
Porrino LJ, Hampson RE, Opris I, Deadwyler SA. Acute cocaine induced deficits in cognitive performance in rhesus macaque monkeys treated with baclofen. Psychopharmacology (Berl) 2013; 225:105-14. [PMID: 22836369 PMCID: PMC3801229 DOI: 10.1007/s00213-012-2798-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/28/2012] [Indexed: 01/24/2023]
Abstract
RATIONALE Acute and/or chronic exposure to cocaine can affect cognitive performance, which may influence rate of recovery during treatment. OBJECTIVE Effects of the GABA-B receptor agonist baclofen were assessed for potency to reverse the negative influence of acute, pre-session, intravenous (IV) injection of cocaine on cognitive performance in Macaca mulatta nonhuman primates. METHODS Animals were trained to perform a modified delayed match to sample (DMS) task incorporating two types of trials with varying degrees of cognitive load that had different decision requirements in order to correctly utilize information retained over the delay interval. The effects of cocaine (0.2, 0.4, and 0.6 mg/kg, IV) alone and in combination with baclofen (0.29 and 0.40 mg/kg, IV) were examined with respect to sustained performance levels. Brain metabolic activity during performance of the task was assessed using PET imaged uptake of [(18) F]-fluorodeoxyglucose. RESULTS Acute cocaine injections produced a dose-dependent decline in DMS performance selective for trials of high cognitive load. The GABA-receptor agonist baclofen, co-administered with cocaine, reversed task performance back to nondrug (saline IV) control levels. Simultaneous assessment of PET-imaged brain metabolic activity in prefrontal cortex (PFC) showed alterations by cocaine compared to PFC metabolic activation in nondrug (saline, IV) control DMS sessions, but like performance, PFC activation was returned to control levels by baclofen (0.40 mg/kg, IV) injected with cocaine. CONCLUSIONS The results show that baclofen, administered at a relatively high dose, reversed the cognitive deficits produced by acute cocaine intoxication that may have implications for use in chronic drug exposure.
Collapse
Affiliation(s)
- Linda J. Porrino
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Samuel A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
20
|
Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 2012. [PMID: 23189041 PMCID: PMC3504312 DOI: 10.3389/fncir.2012.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of "executive function," hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Striatal volume increases in active methamphetamine-dependent individuals and correlation with cognitive performance. Brain Sci 2012; 2:553-72. [PMID: 24961260 PMCID: PMC4061811 DOI: 10.3390/brainsci2040553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/10/2012] [Accepted: 10/24/2012] [Indexed: 11/16/2022] Open
Abstract
The effect of methamphetamine (MA) dependence on the structure of the human brain has not been extensively studied, especially in active users. Previous studies reported cortical deficits and striatal gains in grey matter (GM) volume of abstinent MA abusers compared with control participants. This study aimed to investigate structural GM changes in the brains of 17 active MA-dependent participants compared with 20 control participants aged 18-46 years using voxel-based morphometry and region of interest volumetric analysis of structural magnetic resonance imaging data, and whether these changes might be associated with cognitive performance. Significant volume increases were observed in the right and left putamen and left nucleus accumbens of MA-dependent compared to control participants. The volumetric gain in the right putamen remained significant after Bonferroni correction, and was inversely correlated with the number of errors (standardised z-scores) on the Go/No-go task. MA-dependent participants exhibited cortical GM deficits in the left superior frontal and precentral gyri in comparison to control participants, although these findings did not survive correction for multiple comparisons. In conclusion, consistent with findings from previous studies of abstinent users, active chronic MA-dependent participants showed significant striatal enlargement which was associated with improved performance on the Go/No-go, a cognitive task of response inhibition and impulsivity. Striatal enlargement may reflect the involvement of neurotrophic effects, inflammation or microgliosis. However, since it was associated with improved cognitive function, it is likely to reflect a compensatory response to MA-induced neurotoxicity in the striatum, in order to maintain cognitive function. Follow-up studies are recommended to ascertain whether this effect continues to be present following abstinence. Several factors may have contributed to the lack of more substantial cortical and subcortical GM changes amongst MA-dependent participants, including variability in MA exposure variables and difference in abstinence status from previous studies.
Collapse
|
22
|
Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA. Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 2012; 24:2334-47. [PMID: 23016850 DOI: 10.1162/jocn_a_00307] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.
Collapse
Affiliation(s)
- Ioan Opris
- Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
23
|
Hampson RE, Gerhardt GA, Marmarelis V, Song D, Opris I, Santos L, Berger TW, Deadwyler SA. Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 2012; 9:056012. [PMID: 22976769 DOI: 10.1088/1741-2560/9/5/056012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Maintenance of cognitive control is a major concern for many human disease conditions; therefore, a major goal of human neuroprosthetics is to facilitate and/or recover the cognitive function when such circumstances impair appropriate decision making. APPROACH Minicolumnar activity from the prefrontal cortex (PFC) was recorded from nonhuman primates trained to perform a delayed match to sample (DMS), via custom-designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in the PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input-multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multicolumnar firing patterns during DMS performance. MAIN RESULTS The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed the substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation improved normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following the pharmacological disruption of decision making in the same task. SIGNIFICANCE These findings provide the first successful application of neuroprosthesis in the primate brain designed specifically to restore or repair the disrupted cognitive function.
Collapse
Affiliation(s)
- Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The temporal derivative of expected utility: a neural mechanism for dynamic decision-making. Neuroimage 2012; 65:223-30. [PMID: 22963852 DOI: 10.1016/j.neuroimage.2012.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 07/28/2012] [Accepted: 08/21/2012] [Indexed: 11/20/2022] Open
Abstract
Real world tasks involving moving targets, such as driving a vehicle, are performed based on continuous decisions thought to depend upon the temporal derivative of the expected utility (∂V/∂t), where the expected utility (V) is the effective value of a future reward. However, the neural mechanisms that underlie dynamic decision-making are not well understood. This study investigates human neural correlates of both V and ∂V/∂t using fMRI and a novel experimental paradigm based on a pursuit-evasion game optimized to isolate components of dynamic decision processes. Our behavioral data show that players of the pursuit-evasion game adopt an exponential discounting function, supporting the expected utility theory. The continuous functions of V and ∂V/∂t were derived from the behavioral data and applied as regressors in fMRI analysis, enabling temporal resolution that exceeded the sampling rate of image acquisition, hyper-temporal resolution, by taking advantage of numerous trials that provide rich and independent manipulation of those variables. V and ∂V/∂t were each associated with distinct neural activity. Specifically, ∂V/∂t was associated with anterior and posterior cingulate cortices, superior parietal lobule, and ventral pallidum, whereas V was primarily associated with supplementary motor, pre and post central gyri, cerebellum, and thalamus. The association between the ∂V/∂t and brain regions previously related to decision-making is consistent with the primary role of the temporal derivative of expected utility in dynamic decision-making.
Collapse
|
25
|
Hyatt CJ, Assaf M, Muska CE, Rosen RI, Thomas AD, Johnson MR, Hylton JL, Andrews MM, Reynolds BA, Krystal JH, Potenza MN, Pearlson GD. Reward-related dorsal striatal activity differences between former and current cocaine dependent individuals during an interactive competitive game. PLoS One 2012; 7:e34917. [PMID: 22606228 PMCID: PMC3351439 DOI: 10.1371/journal.pone.0034917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; n = 30) and former (FCD; n = 28) cocaine dependent subjects as well as healthy control (HC; n = 31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses).
Collapse
Affiliation(s)
- Christopher J Hyatt
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liang J, Ma SS, Li YJ, Ping XJ, Hu L, Cui CL. Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochem Res 2012; 37:1482-9. [PMID: 22396106 DOI: 10.1007/s11064-012-0739-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
Abstract
Our previous study demonstrated that morphine dose- and time-dependently elevated dopamine (DA) concentrations in the nucleus accumbens (NAc) during the expression of morphine-induced conditioned place preference (CPP) in rats. However, still unknown are how DA concentrations dynamically change during the morphine-induced CPP test and whether tyrosine hydroxylase (TH) activity in the ventral tegmental area (VTA) plays a vital role in this process. In the present study, we measured dynamic changes in TH and phosphorylated TH serine 40 (pTH Ser(40)) and pTH Ser(31) proteins in the VTA, and DA concentrations in the NAc at 5 min intervals during a 30 min morphine-induced CPP test. Rats that underwent morphine-induced CPP training significantly preferred the morphine-paired chamber during the CPP expression test, an effect that lasted at least 30 min in the drug-free state. DA concentrations in the NAc markedly increased at 15 min when the rats were returned to the CPP boxes to assess the expression of preference for the previously drug-paired chamber. DA concentrations then declined 2 h after the CPP test. TH and pTH Ser(40) levels, but not pTH Ser(31) levels, in the VTA were enhanced during the CPP test. These results indicated that TH and the phosphorylation of TH Ser(40) in the VTA may be responsible for DA synthesis and release in the NAc during the behavioral expression of conditioned reward elicited by a drug-associated context.
Collapse
Affiliation(s)
- Jing Liang
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Santos L, Opris I, Fuqua J, Hampson RE, Deadwyler SA. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. J Neurosci Methods 2012; 205:368-74. [PMID: 22326226 DOI: 10.1016/j.jneumeth.2012.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/29/2022]
Abstract
A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders.
Collapse
Affiliation(s)
- Lucas Santos
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | | | | | |
Collapse
|
28
|
McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, España RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S. Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behav Brain Res 2011; 225:348-57. [PMID: 21816177 DOI: 10.1016/j.bbr.2011.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
On April 24-27, 2010, the Motivational Neuronal Networks meeting took place in Wrightsville Beach, North Carolina. The conference was devoted to "Emerging, re-emerging, and forgotten brain areas" of the reward circuit. A central feature of the conference was four scholarly discussions of cutting-edge topics related to the conference's theme. These discussions form the basis of the present review, which summarizes areas of consensus and controversy, and serves as a roadmap for the next several years of research.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Neurobiology, Stanford University, Stanford, CA 94305-5125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Opris I, Lebedev M, Nelson RJ. Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity. Front Neurosci 2011; 5:61. [PMID: 21720519 PMCID: PMC3118484 DOI: 10.3389/fnins.2011.00061] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/14/2011] [Indexed: 11/13/2022] Open
Abstract
Although reward probability is an important factor that shapes animal's behavior, it is not well understood how the brain translates reward expectation into the vigor of movement [reaction time (RT) and speed]. To address this question, we trained two monkeys in a RT task that required wrist movements in response to vibrotactile and visual stimuli, with a variable reward schedule. Correct performance was rewarded in 75% of the trials. Monkeys were certain that they would be rewarded only in the trials immediately following withheld rewards. In these trials, the animals responded sooner and moved faster. Single-unit recordings from the dorsal striatum revealed modulations in neural firing that reflected changes in movement vigor. First, in the trials with certain rewards, striatal neurons modulated their firing rates earlier. Second, magnitudes of changes in neuronal firing rates depended on whether or not monkeys were certain about the reward. Third, these modulations depended on the sensory modality of the cue (visual vs. vibratory) and/or movement direction (flexions vs. extensions). We conclude that dorsal striatum may be a part of the mechanism responsible for the modulation of movement vigor in response to changes of reward predictability.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Winston Salem, NC, USA
| | | | | |
Collapse
|
30
|
Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology (Berl) 2011; 213:105-18. [PMID: 20865250 PMCID: PMC3126099 DOI: 10.1007/s00213-010-2017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Investigations of the neural consequences of the effects of cocaine on cognition have centered on specific brain circuits including prefrontal cortex, medial temporal lobe and striatum and their roles in controlling drug dependent behavior and addiction. These regions are critical to many aspects of drug abuse; however recent investigations in addicted individuals have reported possible cognitive deficits that impact recovery and other therapeutic interventions. OBJECTIVES Therefore a direct assessment of the effects of cocaine as a reward for cognitive function provides a means of determining how brain systems involved such as prefrontal cortex are affected under normal vs. conditions of acute drug exposure as a precursor to the final impaired function in the addicted state. METHODS Nonhuman primates (NHPs) were tested in a delayed-match-to-sample decision making task to determine effects of high vs. low cognitive load trials on single neuron activity and fluorodeoxyglucose-positron emission tomography (FDG-PET) determined metabolic activation of prefrontal cortex when juice vs. intravenous cocaine were employed as rewards for successful performance. RESULTS Cognitive processing in prefrontal cortex was altered primarily on high load trials in which cocaine was randomly presented as the signaled and delivered reward on particular trials. The detrimental actions of cocaine rewards were also shown to persist and impair task performance on subsequent juice rewarded trials. CONCLUSIONS The findings indicate that one of the ways in which cocaine use may disrupt performance of a cognitive task is to alter neural processing in prefrontal cortex when involved in discriminating circumstances on the basis of low vs. high cognitive demand.
Collapse
|
31
|
Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA. Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 2010; 23:1507-21. [PMID: 20695762 DOI: 10.1162/jocn.2010.21534] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The mammalian frontal cortex (FCx) is at the top of the brain's sensorimotor hierarchy and includes cells in the supragranular Layer 2/3, which integrate convergent sensory information for transmission to infragranular Layer 5 cells to formulate motor system outputs that control behavioral responses. Functional interaction between these two layers of FCx was examined using custom-designed ceramic-based microelectrode arrays (MEAs) that allowed simultaneous recording of firing patterns of FCx neurons in Layer 2/3 and Layer 5 in nonhuman primates performing a simple go/no-go discrimination task. This unique recording arrangement showed differential encoding of task-related sensory events by cells in each layer with Layer 2/3 cells exhibiting larger firing peaks during presentation of go target and no-go target task images, whereas Layer 5 cells showed more activity during reward contingent motor responses in the task. Firing specificity to task-related events was further demonstrated by synchronized firing between pairs of cells in different layers that occupied the same vertically oriented "column" on the MEA. Pairs of cells in different layers recorded at adjacent "noncolumnar" orientations on the MEA did not show synchronized firing during the same task-related events. The results provide required evidence in support of previously suggested task-related sensorimotor processing in the FCx via functionally segregated minicolumns.
Collapse
Affiliation(s)
- Ioan Opris
- Wake Forest University Medical School, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
32
|
Lohoff FW, Bloch PJ, Hodge R, Nall AH, Ferraro TN, Kampman KM, Dackis CA, O’Brien CP, Pettinati HM, Oslin DW. Association analysis between polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes with cocaine dependence. Neurosci Lett 2010; 473:87-91. [DOI: 10.1016/j.neulet.2010.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/29/2022]
|
33
|
|