1
|
Young JK. Ovarian hormones and eating disorders. Front Psychol 2024; 15:1467795. [PMID: 39315050 PMCID: PMC11416966 DOI: 10.3389/fpsyg.2024.1467795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The eating disorders anorexia nervosa and bulimia nervosa are much more common in women than in men. Also, there is evidence for a role of gene mutations in these disorders. This review examines recent data about the possibility that ovarian estrogens may contribute to the symptoms of anorexia nervosa and partly account for the sex difference in incidence of this disorder. Possible mechanisms linking genes that are abnormal in anorexia to pathways that could produce abnormal responses to estrogen are also examined. In addition, recent data pointing to a role of ovarian androgens in the symptoms of bulimia nervosa are reviewed. These data may point to more effective adjustments for the therapy of these difficult to treat disorders.
Collapse
Affiliation(s)
- John K. Young
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
2
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O’Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of Soluble Epoxide Hydrolase Ameliorates Cerebral Blood Flow Autoregulation and Cognition in Alzheimer's Disease and Diabetes-Related Dementia Rat Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610540. [PMID: 39257786 PMCID: PMC11383657 DOI: 10.1101/2024.08.30.610540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Jane J. Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Gilbert C. Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Karen M. Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Philip O’Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jessica A. Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Richard J. Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
3
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Bu Y, Yang S, Wang D, Hu S, Zhang Q, Wu Z, Yang C. Role of soluble epoxide hydrolase in pain and depression comorbidity. Neurobiol Dis 2024; 193:106443. [PMID: 38395315 DOI: 10.1016/j.nbd.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.
Collapse
Affiliation(s)
- Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Feng ZQ, Ding J, Zhu MZ, Xie WS, Liu RC, Liu SS, Liu SM, Yu MJ, Zhu XH, Liang JH. Discovery of a novel lead characterized by a stilbene-extended scaffold against sepsis as soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 266:116113. [PMID: 38215588 DOI: 10.1016/j.ejmech.2023.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Recently, some inhibitors of soluble epoxide hydrolase (sEH) showed limited potential in treating sepsis by increasing survival time, but they have unfortunately failed to improve survival rates. In this study, we initially identified a new hit 11D, belonging to a natural skeleton known as stilbene and having an IC50 of 644 nM on inhibiting murine sEH. Natural scaffold-based sEH inhibitors are paid less attention. A combination of structure-activity relationships (SARs)-guided structural optimization and computer-aided skeleton growth led to a highly effective lead compound 70P (IC50: 4.0 nM). The dose-response study indicated that 70P (at doses of 0.5-5 mg/kg, ip.) significantly increased survival rates and survival time by reducing the levels of the inflammatory factors TNF-α and IL-6 in the liver. Interestingly, 70P exhibited much higher accumulation in the liver than in plasma (AUC ratio: 175). In addition, 70P exhibits equal IC50 value (1.5 nM) on inhibiting human sEH as EC5026 (1.7 nM). In conclusion, the natural scaffold-extended sEH inhibitor 70P has the potential to become a new promising lead for addressing the unmet medical need in sepsis treatment, which highlighted the importance of natural skeleton in developing sEH inhibitors.
Collapse
Affiliation(s)
- Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Si Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
6
|
Duan L, Song L, Qiu C, Li J. Effect of the sEH inhibitor AUDA on arachidonic acid metabolism and NF-κB signaling of rats with postpartum depression-like behavior. J Neuroimmunol 2023; 385:578250. [PMID: 38029646 DOI: 10.1016/j.jneuroim.2023.578250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To investigate whether sEH inhibitor AUDA can mitigate postpartum depression (PPD)-like symptoms in the rat model and regulate the AA/NF-κB pathway to suppress the inflammatory response in the prefrontal lobes of PPD rats. METHODS Five groups of Sprague Dawley rats were used: normal, sham operated, PPD model, AUDA, and paroxetine hydrochloride. During the 21-day treatment period, animals in all groups underwent assessments (open field test, forced swimming test, and sucrose consumption) for depression-like behavior. At the conclusion of the treatment period, animals in all study groups were euthanized and various proteins in the prefrontal lobes were measured. RESULTS Depression-like behavior in rats was attenuated by AUDA. In the prefrontal lobes of PPD rats, levels of 5-LOX, COX-2, sEH, IL-1β, IL- 6, p65, p-p65, P-IκBα, NF-κB p65, and GFAP were increased while levels of epoxyeicosatrienoic acids and 5-HT were decreased. AUDA reversed these changes, thus having a similar effect as the classic antidepressant paroxetine hydrochloride. CONCLUSION AUDA may constrain AA/NF-κB in the prefrontal cortex of PPD rats, thus inhibiting the inflammatory response and ultimately attenuating postpartum depression-like behavior.
Collapse
Affiliation(s)
- Liqin Duan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong Province, PR China
| | - Chao Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
7
|
Pourmand E, Zhang F, Sarparast M, Alan JK, Lee KSS. Quantitative Profiling Method for Oxylipins in Neurodegenerative Diseases by Liquid Chromatography Coupled with Tandem Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560544. [PMID: 37873260 PMCID: PMC10592938 DOI: 10.1101/2023.10.02.560544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Aging is one of the major risk factors for many chronic diseases, including diabetes, neuropathy, hypertension, cancer, and neurodegenerative diseases. However, the mechanism behind aging and how aging affects a variety of disease progression remains unknown. Recent research demonstrated the cytochrome P450 (CYP)-epoxide hydrolase (EH) metabolites of polyunsaturated fatty acids (PUFAs) play a critical role in the abovementioned age-associated diseases. Therefore, aging could affect the abovementioned chronic diseases by modulating CYP-EH PUFA metabolism. Unfortunately, investigating how aging affects CYP-EH metabolism in human and mammalian models poses significant challenges. In this regard, we will use C. elegans as a model organism to investigate the aging effects on CYP-EH metabolism of PUFA, owing to its long history of being used to study aging and its associated benefits of conducting aging research. This project will develop analytical tools to measure the endogenous levels of CYP-EH PUFA metabolites in C. elegans using state-of-the-art ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). These metabolites are very potent but present in low abundance. The dramatic increase in sensitivity in UPLC-MS/MS allows us to monitor these metabolites over the lifespan of C. elegans with minimum samples. Our results show that C. elegans produces similar CYP PUFA metabolites to mammals and humans using our SPE-UPLC-MS/MS method. We will also show that our method successfully determined the CYP-EH PUFA metabolites profile changes induced by the inhibition of C. elegans EH. The method developed from this project will significantly improve our understanding of the role of dietary PUFAs and associated metabolism on aging and neurodegeneration and will uncover new mechanisms of how aging affects neurodegeneration through the modulation of PUFA metabolic pathways.
Collapse
Affiliation(s)
- Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Fan Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Glaser ST, Jayanetti K, Oubraim S, Hillowe A, Frank E, Jong J, Wang L, Wang H, Ojima I, Haj-Dahmane S, Kaczocha M. Fatty acid binding proteins are novel modulators of synaptic epoxyeicosatrienoic acid signaling in the brain. Sci Rep 2023; 13:15234. [PMID: 37709856 PMCID: PMC10502087 DOI: 10.1038/s41598-023-42504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fatty acid binding proteins (FABPs) govern intracellular lipid transport to cytosolic organelles and nuclear receptors. More recently, FABP5 has emerged as a key regulator of synaptic endocannabinoid signaling, suggesting that FABPs may broadly regulate the signaling of neuroactive lipids in the brain. Herein, we demonstrate that brain-expressed FABPs (FABP3, FABP5, and FABP7) interact with epoxyeicosatrienoic acids (EETs) and the peroxisome proliferator-activated receptor gamma agonist 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Among these lipids, EETs displayed highest affinities for FABP3 and FABP5, and 11,12-EET was identified as the preferred FABP ligand. Similarly, 15d-PGJ2 interacted with FABP3 and FABP5 while binding to FABP7 was markedly lower. Molecular modeling revealed unique binding interactions of the ligands within the FABP binding pockets and highlighted major contributions of van der Waals clashes and acyl chain solvent exposure in dictating FABP affinity and specificity. Functional studies demonstrated that endogenous EETs gate the strength of CA1 hippocampal glutamate synapses and that this function was impaired following FABP inhibition. As such, the present study reveals that FABPs control EET-mediated synaptic gating, thereby expanding the functional roles of this protein family in regulating neuronal lipid signaling.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrew Hillowe
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Elena Frank
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jason Jong
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Wang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
9
|
Luo A, Wu Z, Li S, McReynolds CB, Wang D, Liu H, Huang C, He T, Zhang X, Wang Y, Liu C, Hammock BD, Hashimoto K, Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J Transl Med 2023; 21:71. [PMID: 36732752 PMCID: PMC9896784 DOI: 10.1186/s12967-023-03917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1β (IL-1β) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.
Collapse
Affiliation(s)
- Ailin Luo
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shan Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Cindy B. McReynolds
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Di Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Hanyu Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061 China
| | - Teng He
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xinying Zhang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yuanyuan Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Cunming Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Bruce D. Hammock
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Jarne-Ferrer J, Griñán-Ferré C, Bellver-Sanchis A, Vázquez S, Muñoz-Torrero D, Pallàs M. A Combined Chronic Low-Dose Soluble Epoxide Hydrolase and Acetylcholinesterase Pharmacological Inhibition Promotes Memory Reinstatement in Alzheimer’s Disease Mice Models. Pharmaceuticals (Basel) 2022; 15:ph15080908. [PMID: 35893732 PMCID: PMC9394299 DOI: 10.3390/ph15080908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological disorder with multifactorial and heterogeneous causes. AD involves several etiopathogenic mechanisms such as aberrant protein accumulation, neurotransmitter deficits, synaptic dysfunction and neuroinflammation, which lead to cognitive decline. Unfortunately, the currently available anti-AD drugs only alleviate the symptoms temporarily and provide a limited therapeutic effect. Thus, new therapeutic strategies, including multitarget approaches, are urgently needed. It has been demonstrated that a co-treatment of acetylcholinesterase (AChE) inhibitor with other neuroprotective agents has beneficial effects on cognition. Here, we have assessed the neuroprotective effects of chronic dual treatment with a soluble epoxide hydrolase (sEH) inhibitor (TPPU) and an AChE inhibitor (6-chlorotacrine or rivastigmine) in in vivo studies. Interestingly, we have found beneficial effects after chronic low-dose co-treatment with TPPU and 6-chlorotacrine in the senescence-accelerated mouse prone 8 (SAMP8) mouse model as well as with TPPU and rivastigmine co-treatment in the 5XFAD mouse model, in comparison with the corresponding monotherapy treatments. In the SAMP8 model, no substantial improvements in synaptic plasticity markers were found, but the co-treatment of TPPU and 6-chlorotacrine led to a significantly reduced gene expression of neuroinflammatory markers, such as interleukin 6 (Il-6), triggering receptor expressed on myeloid cell 2 (Trem2) and glial fibrillary acidic protein (Gfap). In 5XFAD mice, chronic low-dose co-treatment of TPPU and rivastigmine led to enhanced protein levels of synaptic plasticity markers, such as the phospho-cAMP response element-binding protein (p-CREB) ratio, brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and also to a reduction in neuroinflammatory gene expression. Collectively, these results support the neuroprotectant role of chronic low-dose co-treatment strategy with sEH and AChE inhibitors in AD mouse models, opening new avenues for effective AD treatment.
Collapse
Affiliation(s)
- Júlia Jarne-Ferrer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Santiago Vázquez
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Diego Muñoz-Torrero
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
- Correspondence:
| |
Collapse
|
12
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
14
|
Nerella SG, Bhattacharya A, Thacker PS, Tulja S. Synthetic methodologies and PET imaging applications of fluorine-18 radiotracers: a patent review. Expert Opin Ther Pat 2022; 32:455-473. [DOI: 10.1080/13543776.2022.2032649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru–560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru–560 029, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad–500 037, India
| | - Sanam Tulja
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore-560 065, India
| |
Collapse
|
15
|
Kumar G, Saini M, Kundu S. Therapeutic enzymes as non-conventional targets in cardiovascular impairments:A Comprehensive Review. Can J Physiol Pharmacol 2021; 100:197-209. [PMID: 34932415 DOI: 10.1139/cjpp-2020-0732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Manisha Saini
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Suman Kundu
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| |
Collapse
|
16
|
He YY, Xie XM, Zhang HD, Ye J, Gencer S, van der Vorst EPC, Döring Y, Weber C, Pang XB, Jing ZC, Yan Y, Han ZY. Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension. Front Pharmacol 2021; 12:753727. [PMID: 34803695 PMCID: PMC8602807 DOI: 10.3389/fphar.2021.753727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Pulmonary hypertension (PH) associated with hypoxia and lung disease (Group 3) is the second most common form of PH and associated with increased morbidity and mortality. This study was aimed to identify hypoxia induced metabolism associated genes (MAGs) for better understanding of hypoxic PH. Methods: Rat pulmonary arterial smooth muscle cells (PASMCs) were isolated and cultured in normoxic or hypoxic condition for 24 h. Cells were harvested for liquid chromatography-mass spectrometry analysis. Functional annotation of distinguishing metabolites was performed using Metaboanalyst. Top 10 enriched metabolite sets were selected for the identification of metabolism associated genes (MAGs) with a relevance score >8 in Genecards. Transcriptomic data from lungs of hypoxic PH in mice/rats or of PH patients were accessed from Gene Expression Omnibus (GEO) database or open-access online platform. Connectivity Map analysis was performed to identify potential compounds to reverse the metabolism associated gene profile under hypoxia stress. The construction and module analysis of the protein-protein interaction (PPI) network was performed. Hub genes were then identified and used to generate LASSO model to determine its accuracy to predict occurrence of PH. Results: A total of 36 altered metabolites and 1,259 unique MAGs were identified in rat PASMCs under hypoxia. 38 differentially expressed MAGs in mouse lungs of hypoxic PH were revealed, with enrichment in multi-pathways including regulation of glucose metabolic process, which might be reversed by drugs such as blebbistatin. 5 differentially expressed MAGs were displayed in SMCs of Sugen 5416/hypoxia induced PH rats at the single cell resolution. Furthermore, 6 hub genes (Cat, Ephx1, Gpx3, Gstm4, Gstm5, and Gsto1) out of 42 unique hypoxia induced MAGs were identified. Higher Cat, Ephx1 and lower Gsto1 were displayed in mouse lungs under hypoxia (all p < 0.05), in consistent with the alteration in lungs of PH patients. The hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.90). Conclusion: Our findings revealed six hypoxia-induced metabolism associated hub genes, and shed some light on the molecular mechanism and therapeutic targets in hypoxic PH.
Collapse
Affiliation(s)
- Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jue Ye
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Zhi-Cheng Jing
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Tian Y, Yuan X, Wang Y, Wu Q, Fang Y, Zhu Z, Song G, Xu L, Wang W, Xie M. Soluble epoxide hydrolase inhibitor attenuates BBB disruption and neuroinflammation after intracerebral hemorrhage in mice. Neurochem Int 2021; 150:105197. [PMID: 34592333 DOI: 10.1016/j.neuint.2021.105197] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity. Soluble epoxide hydrolase (sEH) is the key enzyme in the epoxyeicosatrienoic acids (EETs) signaling. sEH inhibition has been demonstrated to have neuroprotective effects against multiple brain injuries. However, its role in the secondary injuries after ICH has not been fully elucidated. Here we tested the hypothesis that 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent and highly selective sEH inhibitor, suppresses inflammation and the secondary injuries after ICH. Adult male C57BL/6 mice were subjected to a collagenase-induced ICH model. TPPU alleviated blood-brain barrier damage, inhibited inflammatory response, increased M2 polarization of microglial cells, reduced the infiltration of peripheral neutrophils. In addition, TPPU attenuated neuronal injury and promoted functional recovery. The results suggest that sEH may represent a potential therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiao Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
18
|
Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. Sci Rep 2021; 11:18764. [PMID: 34548575 PMCID: PMC8455677 DOI: 10.1038/s41598-021-98236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44-/- and sEH-/- mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.
Collapse
|
19
|
Gautheron J, Morisseau C, Chung WK, Zammouri J, Auclair M, Baujat G, Capel E, Moulin C, Wang Y, Yang J, Hammock BD, Cerame B, Phan F, Fève B, Vigouroux C, Andreelli F, Jeru I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 2021; 10:68445. [PMID: 34342583 PMCID: PMC8331186 DOI: 10.7554/elife.68445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.
Collapse
Affiliation(s)
- Jeremie Gautheron
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States.,Deparment of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Jamila Zammouri
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Auclair
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Genevieve Baujat
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Capel
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Celia Moulin
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Barbara Cerame
- Goryeb Children's Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States
| | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Corinne Vigouroux
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizio Andreelli
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Isabelle Jeru
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
20
|
Wu T, Xi X, Chen Y, Jiang C, Zhang Q, Dai G, Bai Y, Zhang W, Ni T, Zou J, Ju W, Xu M. Absolute protein assay for the simultaneous quantification of two epoxide hydrolases in rats by mass spectrometry-based targeted proteomics. J Sep Sci 2021; 44:2754-2763. [PMID: 34008891 DOI: 10.1002/jssc.202100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Abstract
Epoxide hydrolases catalyze the hydrolysis of both exogenous and endogenous epoxides to the corresponding vicinal diols by adding water. Microsomal and soluble epoxide hydrolase are two main mammalian enzymes that have been intensely characterized. The purpose of this investigation was to develop and validate a proteomics assay allowing the simultaneous quantification of microsomal and soluble epoxide hydrolase in rats. Protein quantification was realized through targeted proteomics using liquid chromatography with tandem mass spectrometry for the determination of trypsin-specific surrogate peptides after digestion. Stable isotope-labeled peptides were used as the internal standards. The chromatography of the surrogate peptides was performed on an Agilent SB C18 column (100 mm × 4.6 mm, 1.8 µm) with gradient elution. Acetonitrile containing 0.1% formic acid and 0.1% formic acid aqueous solution were used as mobile phases. A multiple reaction monitoring method in a positive ionization mode was used for the simultaneous detection of the peptides. The method was validated concerning the specificity, linearity, within-day and between-day accuracy and precision, matrix effect, stability, and digestion efficiency. The developed assay was successfully used to quantify the protein levels of microsomal and soluble epoxide hydrolase in rat liver, kidney, and heart S9 samples.
Collapse
Affiliation(s)
- Ting Wu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Xiaoyun Xi
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Ying Chen
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Chao Jiang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Qian Zhang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Yongtao Bai
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, P. R. China
| | - Weidong Zhang
- Department of Pharmacy, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, P. R. China
| | - Ting Ni
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Jiandong Zou
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Meijuan Xu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
21
|
Soluble Epoxide Hydrolase Blockade after Stroke Onset Protects Normal but Not Diabetic Mice. Int J Mol Sci 2021; 22:ijms22115419. [PMID: 34063817 PMCID: PMC8196561 DOI: 10.3390/ijms22115419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) is abundant in the brain, is upregulated in type 2 diabetes mellitus (DM2), and is possible mediator of ischemic injury via the breakdown of neuroprotective epoxyeicosatrienoic acids (EETs). Prophylactic, pre-ischemic sEH blockade with 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (tAUCB) reduces stroke-induced infarct in normal and diabetic mice, with larger neuroprotection in DM2. The present study tested whether benefit occurs in normal and DM2 mice if tAUCB is administered after stroke onset. We performed 60 min middle cerebral artery occlusion in young adult male C57BL mice divided into four groups: normal or DM2, with t-AUCB 2 mg/kg or vehicle 30 min before reperfusion. Endpoints were (1) cerebral blood flow (CBF) by laser Doppler, and (2) brain infarct at 24 h. In nondiabetic mice, t-AUCB reduced infarct size by 30% compared to vehicle-treated mice in the cortex (31.4 ± 4 vs. 43.8 ± 3 (SEM)%, respectively) and 26% in the whole hemisphere (26.3 ± 3 vs. 35.2 ± 2%, both p < 0.05). In contrast, in DM2 mice, tAUCB failed to ameliorate either cortical or hemispheric injury. No differences were seen in CBF. We conclude that tAUCB administered after ischemic stroke onset exerts brain protection in nondiabetic but not DM2 mice, that the neuroprotection appears independent of changes in gross CBF, and that DM2-induced hyperglycemia abolishes t-AUCB-mediated neuroprotection after stroke onset.
Collapse
|
22
|
Edin ML, Zeldin DC. Regulation of cardiovascular biology by microsomal epoxide hydrolase. Toxicol Res 2021; 37:285-292. [PMID: 34295793 DOI: 10.1007/s43188-021-00088-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Microsomal epoxide hydrolase/epoxide hydrolase 1 (mEH/EPHX1) works in conjunction with cytochromes P450 to metabolize a variety of compounds, including xenobiotics, pharmaceuticals and endogenous lipids. mEH has been most widely studied for its role in metabolism of xenobiotic and pharmaceutical compounds where it converts hydrophobic and reactive epoxides to hydrophilic diols that are more readily excreted. Inhibition or genetic disruption of mEH can be deleterious in the face of many industrial, environmental or pharmaceutical exposures and EPHX1 polymorphisms are associated with the development of exposure-related cancers. The role of mEH in endogenous epoxy-fatty acid (EpFA) metabolism has been less well studied. In vitro, mEH metabolizes most EpFAs at a far slower rate than soluble epoxide hydrolase (sEH) and has thus been generally considered to exert a minor role in EpFA metabolism in vivo. Indeed, sEH inhibitors or sEH-deficiency increase EpFA levels and are protective in animal models of cardiovascular disease. Recently, however, mEH was found to have a previously unrecognized and substantial role in EpFA metabolism in vivo. While few studies have examined the role of mEH in cardiovascular homeostasis, there is now substantial evidence that mEH can regulate cardiovascular function through regulation of EpFA metabolism. The discovery of a prominent role for mEH in epoxyeicosatrienoic acid (EET) metabolism, in particular, suggests that additional studies on the role of mEH in cardiovascular biology are warranted.
Collapse
Affiliation(s)
- Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| |
Collapse
|
23
|
Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158858. [PMID: 33279658 DOI: 10.1016/j.bbalip.2020.158858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Docosahexaenoic acid (DHA) has been shown to have neuroprotective effects in Parkinson's disease, but the underlying mechanism has not been fully elucidated. DHA is metabolized to DHA epoxides (EDPs) and hydroxides by cytochrome P450s (P450s), and EDPs are further hydroxylated to the corresponding diols, dihydroxydocosapentaenoic acids (DHDPs) by soluble epoxide hydrolase (sEH). In the present study, we investigated the roles of these DHA metabolites in the beneficial effects of DHA supplementation on a rotenone-induced rat model of Parkinson's disease. Metabolite analysis by LC-MS revealed that CYP2A1, 2C11, 2C13, 2C23, and 2E1 contributed to the formation of EDPs, and these P450s and sEH were expressed in the rat brain. We found that DHA supplementation in rats improved the motor dysfunction induced by rotenone. In addition, DHA reversed the decrease in tyrosine hydroxylase and the increase in lipid peroxidation generated by rotenone in the striatum. DHA supplementation also induced mRNA expression of antioxidant genes, such as sod1 and catalase, and Nrf2 protein expression in the striatum. However, these effects of DHA supplementation were eliminated by cosupplementation with the sEH inhibitor TPPU. Supplementation with DHA increased the amount of 19,20-DHDP in the rat brain, while the amount of EDPs was not significantly increased. In addition, TPPU suppressed the increase in DHDPs and increased EDPs in the brain. In PC12 cells, 19,20-DHDP increased the mRNA levels of sod1 and catalase along with Nrf2 induction. This study suggests that DHA metabolites-DHDPs generated by P450s and sEH-have an important role in improving rotenone-induced Parkinson's disease.
Collapse
|
24
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
25
|
Griñán-Ferré C, Codony S, Pujol E, Yang J, Leiva R, Escolano C, Puigoriol-Illamola D, Companys-Alemany J, Corpas R, Sanfeliu C, Pérez B, Loza MI, Brea J, Morisseau C, Hammock BD, Vázquez S, Pallàs M, Galdeano C. Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer's Disease. Neurotherapeutics 2020; 17:1825-1835. [PMID: 32488482 PMCID: PMC7851240 DOI: 10.1007/s13311-020-00854-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The inhibition of the enzyme soluble epoxide hydrolase (sEH) has demonstrated clinical therapeutic effects in several peripheral inflammatory-related diseases, with 3 compounds in clinical trials. However, the role of this enzyme in the neuroinflammation process has been largely neglected. Herein, we disclose the pharmacological validation of sEH as a novel target for the treatment of Alzheimer's disease (AD). Evaluation of cognitive impairment and pathological hallmarks were used in 2 models of age-related cognitive decline and AD using 3 structurally different and potent sEH inhibitors as chemical probes. sEH is upregulated in brains from AD patients. Our findings supported the beneficial effects of central sEH inhibition, regarding reducing cognitive impairment, neuroinflammation, tau hyperphosphorylation pathology, and the number of amyloid plaques. This study suggests that inhibition of inflammation in the brain by targeting sEH is a relevant therapeutic strategy for AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Carmen Escolano
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Rubén Corpas
- Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló, 149, E-08036, Barcelona, Spain
- Centros de Investigacion Biomedica en red Epidemiology and Public Health, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, E-28029, Madrid, Spain
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló, 149, E-08036, Barcelona, Spain
- Centros de Investigacion Biomedica en red Epidemiology and Public Health, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, E-28029, Madrid, Spain
| | - Belen Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, E-08193, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E-15706, Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E-15706, Santiago de Compostela, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
26
|
Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
The choroid plexus (CP) is located in the ventricular system of the brain (one in each ventricle), and the CP epithelial cells form an important barrier between the blood and the cerebrospinal fluid (CSF). Their main function comprises CSF secretion, maintenance of brain homeostasis, signalling, and forming a neuroprotective barrier against harmful external and internal compounds. The CPs mature early and demonstrate expressional changes of barrier-specific genes and proteins related to location and developmental stage of the CP. Important proteins for the barrier function include tight junction proteins, numerous transporters and enzymes. Natural senescence leads to structural changes in the CP cells and reduced or loss of function, while further loss of CP function and changes in immune status may be relevant in neurodegenerative diseases such as Alzheimer's disease and Multiple Sclerosis. Neuroprotective genes expressed at CPs may be unexplored targets for new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Kratzer
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CNRS UMR 5292, University Claude Bernard Lyon 1, 69008 Lyon, France; Friedensgasse 3, 8010 Graz, Austria.
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 40530 Göteborg, Sweden.
| | - Helen Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW0 1TU, UK.
| |
Collapse
|
27
|
Navarro-Mabarak C, Loaiza-Zuluaga M, Hernández-Ojeda SL, Camacho-Carranza R, Espinosa-Aguirre JJ. Neuroinflammation is able to downregulate cytochrome P450 epoxygenases 2J3 and 2C11 in the rat brain. Brain Res Bull 2020; 163:57-64. [PMID: 32707261 DOI: 10.1016/j.brainresbull.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases have been considered the main producers of epoxyeicosatrienoic acids (EETs) through the oxidation of arachidonic acid (AA). EETs display various biological properties, notably their powerful anti-inflammatory activities. In the brain, EETs have proven to be neuroprotective and to improve neuroinflammation. However, it is known that inflammation could modify CYP expression. We have previously reported that an inflammatory process in astrocytes is able to down-regulate CYP2J3 and CYP2C11 mRNA, protein levels, and activity (Navarro-Mabarak et al., 2019). In this work, we evaluated the effect of neuroinflammation in protein expression of CYP epoxygenases in the brain. Neuroinflammation was induced by the intraperitoneal administration of LPS (1 mg/kg) to male Wistar rats and was corroborated by IL-6, GFAP, and Iba-1 protein levels in the cortex over time. CYP2J3 and CYP2C11 protein levels were also evaluated in the cortex after 6, 12, 24, 48, and 72 h of LPS treatment. Our results show for the first time that neuroinflammation is able to downregulate CYP2J3 and CYP2C11 protein expression in the brain cortex.
Collapse
Affiliation(s)
- C Navarro-Mabarak
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Loaiza-Zuluaga
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S L Hernández-Ojeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R Camacho-Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
28
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
29
|
Du Y, Minn I, Foss C, Lesniak WG, Hu F, Dannals RF, Pomper MG, Horti AG. PET imaging of soluble epoxide hydrolase in non-human primate brain with [ 18F]FNDP. EJNMMI Res 2020; 10:67. [PMID: 32572592 PMCID: PMC7310027 DOI: 10.1186/s13550-020-00657-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Soluble epoxide hydrolase (sEH) is a promising candidate positron emission tomography (PET) imaging biomarker altered in various disorders, including vascular cognitive impairment (VCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), stroke, and depression, known to regulate levels of epoxyeicosatrienoic acids (EETs) and play an important role in neurovascular coupling. [18F]FNDP, a PET radiotracer for imaging sEH, was evaluated through quantitative PET imaging in the baboon brain, radiometabolite analysis, and radiation dosimetry estimate. Methods Baboon [18F]FNDP dynamic PET studies were performed at baseline and with blocking doses of the selective sEH inhibitor AR-9281 to evaluate sEH binding specificity. Radiometabolites of [18F]FNDP in mice and baboons were measured by high-performance liquid chromatography. Regional brain distribution volume (VT) of [18F]FNDP was computed from PET using radiometabolite-corrected arterial input functions. Full body distribution of [18F]FNDP was studied in CD-1 mice, and the human effective dose was estimated using OLINDA/EXM software. Results [18F]FNDP exhibited high and rapid brain uptake in baboons. AR-9281 blocked [18F]FNDP uptake dose-dependently with a baseline VT of 10.9 ± 2.4 mL/mL and a high-dose blocking VT of 1.0 ± 0.09 mL/mL, indicating substantial binding specificity (91.70 ± 1.74%). The VND was estimated as 0.865 ± 0.066 mL/mL. The estimated occupancy values of AR-9281 were 99.2 ± 1.1% for 1 mg/kg, 88.6 ± 1.3% for 0.1 mg/kg, and 33.8 ± 3.8% for 0.02 mg/kg. Murine biodistribution of [18F]FNDP enabled an effective dose estimate for humans (0.032 mSv/MBq). [18F]FNDP forms hydrophilic radiometabolites in murine and non-human primate plasma. However, only minute amounts of the radiometabolites entered the animal brain (< 2% in mice). Conclusions [18F]FNDP is a highly sEH-specific radiotracer that is suitable for quantitative PET imaging in the baboon brain. [18F]FNDP holds promise for translation to human subjects.
Collapse
Affiliation(s)
- Yong Du
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA.
| | - Il Minn
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Catherine Foss
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Wojciech G Lesniak
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Feng Hu
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Robert F Dannals
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Martin G Pomper
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Andrew G Horti
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA.
| |
Collapse
|
30
|
Wang P, Wang W, Hu Y, Li Y. Prolonged Soluble Epoxide Hydrolase Reactivity in Brain Endothelial Cells Is Associated with Long Cognitive Deficits in Sepsis. Mol Neurobiol 2020; 57:2846-2855. [PMID: 32378122 DOI: 10.1007/s12035-020-01925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is known to cause long-term cognitive deficits which are related to sustained microglial activation, but the mechanisms are unclear. Recently, studies have shown soluble epoxide hydrolase (sEH) affects the chronic cognitive function or participates in long-term neuropsychiatric illness. We hypothesized that sEH may be involved in the long-term cognitive deficits of SAE. Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) and were administered vehicle or sEH inhibitor TPPU. CLP induced prolonged endothelial sEH reactivity and sustained activation of microglia in close vicinity to blood vessels at 14 days. We also observed that persistent loss of endothelial BBB function at 14 days following CLP. However, TPPU-treated septic mice exhibited improved BBB function and declined neuro-inflammation. We confirmed these beneficial effects in vitro, which indicated TPPU resulted in a significant improvement in IL-1β-induced loss of BBB integrity on hCMEC/D3 cell monolayers. Animals were also given a behavior test at 14 days after CLP. Mice showed normal basal locomotor activity in the open field compared with sham-operated animals, but performed fewer entries to the center zone, indicating increased anxiety-like behavior as avoidance of the center. TPPU-treated CLP mice showed normal crossing into the center zone during an open-field test and improved recovery of the ability to learn the novel object recognition (NOR) task compared with saline-treated CLP animals. Our data indicated that prolonged sEH reactivity in brain endothelial cells is associated with long cognitive deficits in sepsis. sEHIs such as TPPU can improve the endothelial barrier function and decrease CLP-induced long-term encephalopathy, at least in part, through anti-inflammatory effects.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenyue Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueyu Hu
- Department of Neurology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Pallàs M, Vázquez S, Sanfeliu C, Galdeano C, Griñán-Ferré C. Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules 2020; 10:E703. [PMID: 32369955 PMCID: PMC7277900 DOI: 10.3390/biom10050703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a crucial process associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Several pieces of evidence suggest an active role of lipid mediators, especially epoxy-fatty acids (EpFAs), in the genesis and control of neuroinflammation; 14,15-epoxyeicosatrienoic acid (14,15-EET) is one of the most commonly studied EpFAs, with anti-inflammatory properties. Soluble epoxide hydrolase (sEH) is implicated in the hydrolysis of 14,15-EET to its corresponding diol, which lacks anti-inflammatory properties. Preventing EET degradation thus increases its concentration in the brain through sEH inhibition, which represents a novel pharmacological approach to foster the reduction of neuroinflammation and by end neurodegeneration. Recently, it has been shown that sEH levels increase in brains of PD patients. Moreover, the pharmacological inhibition of the hydrolase domain of the enzyme or the use of sEH knockout mice reduced the deleterious effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. This paper overviews the knowledge of sEH and EETs in PD and the importance of blocking its hydrolytic activity, degrading EETs in PD physiopathology. We focus on imperative neuroinflammation participation in the neurodegenerative process in PD and the putative therapeutic role for sEH inhibitors. In this review, we also describe highlights in the general knowledge of the role of sEH in the central nervous system (CNS) and its participation in neurodegeneration. We conclude that sEH is one of the most promising therapeutic strategies for PD and other neurodegenerative diseases with chronic inflammation process, providing new insights into the crucial role of sEH in PD pathophysiology as well as a singular opportunity for drug development.
Collapse
Affiliation(s)
- Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, C/Roselló 161, 08036 Barcelona, Spain;
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| |
Collapse
|
32
|
Wu N, Hammock BD, Lee KSS, An G. Simultaneous Target-Mediated Drug Disposition Model for Two Small-Molecule Compounds Competing for Their Pharmacological Target: Soluble Epoxide Hydrolase. J Pharmacol Exp Ther 2020; 374:223-232. [PMID: 32238455 DOI: 10.1124/jpet.120.265330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU) and 1-(4-trifluoro-methoxy-phenyl)-3-(1-cyclopropanecarbonyl-piperidin-4-yl)-urea (TCPU) are potent inhibitors of soluble epoxide hydrolase (sEH) that have much better efficacy in relieving nociceptive response than the Food and Drug Administration-approved drug gabapentin in a rodent model of diabetic neuropathy. Experiments conducted in sEH knockout mice or with coadministration of a potent sEH displacer demonstrated that the pharmacokinetics of TPPU and TCPU were influenced by the specific binding to their pharmacologic target sEH, a phenomenon known as target-mediated drug disposition (TMDD). To quantitatively characterize the complex pharmacokinetics of TPPU and TCPU and gain better understanding on their target occupancy, population pharmacokinetics analysis using a nonlinear mixed-effect modeling approach was performed in the current study. The final model was a novel simultaneous TMDD interaction model, in which TPPU and TCPU compete for sEH, with TCPU binding to an additional unknown target pool with larger capacity that we refer to as a refractory pool. The total amount of sEH enzyme in mice was predicted to be 16.2 nmol, which is consistent with the experimental value of 10 nmol. The dissociate rate constants of TPPU and TCPU were predicted to be 2.24 and 2.67 hours-1, respectively, which is close to the values obtained from in vitro experiments. Our simulation result predicted that 90% of the sEH will be occupied shortly after a low dose of 0.3 mg/kg TPPU administration, with ≥40% of sEH remaining to be bound with TPPU for at least 7 days. Further efficacy experiments are warranted to confirm the predicted target occupancy. SIGNIFICANCE STATEMENT: Although target-mediated drug disposition (TMDD) models have been well documented, most of them were established in a single compound scenario. Our novel model represents the first TMDD interaction model for two small-molecule compounds competing for the same pharmacological target.
Collapse
Affiliation(s)
- Nan Wu
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa city, Iowa (N.W., G.A.); Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California (B.D.H.); and Departments of Pharmacology and Toxicology and Chemistry, Michigan State University, East Lansing, Michigan (K.S.S.L.)
| | - Bruce D Hammock
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa city, Iowa (N.W., G.A.); Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California (B.D.H.); and Departments of Pharmacology and Toxicology and Chemistry, Michigan State University, East Lansing, Michigan (K.S.S.L.)
| | - Kin Sing Stephen Lee
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa city, Iowa (N.W., G.A.); Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California (B.D.H.); and Departments of Pharmacology and Toxicology and Chemistry, Michigan State University, East Lansing, Michigan (K.S.S.L.)
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa city, Iowa (N.W., G.A.); Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California (B.D.H.); and Departments of Pharmacology and Toxicology and Chemistry, Michigan State University, East Lansing, Michigan (K.S.S.L.)
| |
Collapse
|
33
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
34
|
Hejazi L, Rezaee E, Tabatabai SA. Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1 H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1759-1769. [PMID: 32184844 PMCID: PMC7059063 DOI: 10.22037/ijpr.2019.112047.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted pyridin-2(1H)-one derivatives were designed and synthesized. The designed compounds fit properly in the active site pocket of this enzyme in docking studies and have appropriate distances for effective hydrogen binding to important amino acids Tyr383, Tyr466, and Asp335. The results of biological evaluation of these compounds against soluble epoxide hydrolase enzyme indicate most compounds have acceptable inhibitory activity and compound 9c is the most potent inhibitor with inhibitory activity of 86%.
Collapse
Affiliation(s)
- Leila Hejazi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Norman JE, Aung HH, Otoki Y, Zhang Z, Taha AY, Rutledge JC. A single meal has the potential to alter brain oxylipin content. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102062. [PMID: 32062416 PMCID: PMC7067679 DOI: 10.1016/j.plefa.2020.102062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Our objective was to determine whether consumption of a single meal has the potential to alter brain oxylipin content. We examined the cerebrum of mice fed a single high-fat/high-sucrose Western meal or a low-fat/low-sucrose control meal, as well as fasted mice. We found no changes in fatty acid composition of cerebrum across the groups. The cerebral oxylipin profile of mice fed a Western meal is distinct from the profile of mice fed a low-fat/low-sucrose meal. Cerebral gene expression of cyclooxygenase 1, cyclooxygenase 2, and epoxide hydrolase 1 were elevated in Western meal-fed mice compared to low-fat/low-sucrose meal-fed mice. Mice that consumed either meal had lower gene expression of cytochrome P450, family 2, subfamily j, polypeptide 12 than fasted mice. Our data in this hypothesis-generating study indicates that the composition of a single meal has the potential to alter brain oxylipins and the gene expression of the enzymes responsible for their production.
Collapse
Affiliation(s)
- J E Norman
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States.
| | - H H Aung
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States
| | - Y Otoki
- University of California, Davis, Department of Food Science and Technology, United States; Tohoku University, Graduate School of Agricultural Science, Food and Biodynamic Chemistry Laboratory, Japan
| | - Z Zhang
- University of California, Davis, Department of Food Science and Technology, United States
| | - A Y Taha
- University of California, Davis, Department of Food Science and Technology, United States
| | - J C Rutledge
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States
| |
Collapse
|
36
|
Jamieson KL, Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Age and Sex Differences in Hearts of Soluble Epoxide Hydrolase Null Mice. Front Physiol 2020; 11:48. [PMID: 32116760 PMCID: PMC7019103 DOI: 10.3389/fphys.2020.00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Biological aging is an inevitable part of life that has intrigued individuals for millennia. The progressive decline in biological systems impacts cardiac function and increases vulnerability to stress contributing to morbidity and mortality in aged individuals. Yet, our understanding of the molecular, biochemical and physiological mechanisms of aging as well as sex differences is limited. There is growing evidence indicating CYP450 epoxygenase-mediated metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) are active lipid mediators regulating cardiac homeostasis. These epoxy metabolites are rapidly hydrolyzed and inactivated by the soluble epoxide hydrolase (sEH). The current study characterized cardiac function in young and aged sEH null mice compared to the corresponding wild-type (WT) mice. All aged mice had significantly increased cardiac hypertrophy, except in aged female sEH null mice. Cardiac function as assessed by echocardiography demonstrated a marked decline in aged WT mice, notably significant decreases in ejection fraction and fractional shortening in both sexes. Interestingly, aged female sEH null mice had preserved systolic function, while aged male sEH null mice had preserved diastolic function compared to aged WT mice. Assessment of cardiac mitochondria demonstrated an increased expression of acetyl Mn-SOD levels that correlated with decreased Sirt-3 activity in aged WT males and females. Conversely, aged sEH null mice had preserved Sirt-3 activity and better mitochondrial ultrastructure compared to WT mice. Consistent with these changes, the activity level of SOD significantly decreased in WT animals but was preserved in aged sEH null animals. Markers of oxidative stress demonstrated age-related increase in protein carbonyl levels in WT and sEH null male mice. Together, these data highlight novel cardiac phenotypes from sEH null mice demonstrating a sexual dimorphic pattern of aging in the heart.
Collapse
Affiliation(s)
- K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Domingues MF, Callai-Silva N, Piovesan AR, Carlini CR. Soluble Epoxide Hydrolase and Brain Cholesterol Metabolism. Front Mol Neurosci 2020; 12:325. [PMID: 32063836 PMCID: PMC7000630 DOI: 10.3389/fnmol.2019.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
The bifunctional enzyme soluble epoxide hydrolase (sEH) is found in all regions of the brain. It has two different catalytic activities, each assigned to one of its terminal domains: the C-terminal domain presents hydrolase activity, whereas the N-terminal domain exhibits phosphatase activity. The enzyme’s C-terminal domain has been linked to cardiovascular protective and anti-inflammatory effects. Cholesterol-related disorders have been associated with sEH, which plays an important role in the metabolism of cholesterol precursors. The role of sEH’s phosphatase activity has been so far poorly investigated in the context of the central nervous system physiology. Given that brain cholesterol disturbances play a role in the onset of Alzheimer’s disease (AD) as well as of other neurodegenerative diseases, understanding the functions of this enzyme could provide pivotal information on the pathophysiology of these conditions. Moreover, the sEH phosphatase domain could represent an underexplored target for drug design and therapeutic strategies to improve symptoms related to neurodegenerative diseases. This review discusses the function of sEH in mammals and its protein structure and catalytic activities. Particular attention was given to the distribution and expression of sEH in the human brain, deepening into the enzyme’s phosphatase activity and its participation in brain cholesterol synthesis. Finally, this review focused on the metabolism of cholesterol and its association with AD.
Collapse
Affiliation(s)
- Michelle Flores Domingues
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natalia Callai-Silva
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
38
|
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy Fatty Acids Are Promising Targets for Treatment of Pain, Cardiovascular Disease and Other Indications Characterized by Mitochondrial Dysfunction, Endoplasmic Stress and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:71-99. [PMID: 32894508 PMCID: PMC7737916 DOI: 10.1007/978-3-030-50621-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.
Collapse
Affiliation(s)
- Cindy McReynolds
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
39
|
Can Demirdöğen B, Miçooğulları Y, Türkanoğlu Özçelik A, Adalı O. Missense Genetic Polymorphisms of Microsomal ( EPHX1) and Soluble Epoxide Hydrolase ( EPHX2) and Their Relation to the Risk of Large Artery Atherosclerotic Ischemic Stroke in a Turkish Population. Neuropsychiatr Dis Treat 2020; 16:3251-3265. [PMID: 33994786 PMCID: PMC8114577 DOI: 10.2147/ndt.s233992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Soluble epoxide hydrolase (sEH) and microsomal epoxide hydrolase (mEH) both catalyze the metabolism of epoxyeicosatrienoic acids (EETs), lipid signaling molecules that are protective against ischemic brain injury owing to their participation in the regulation of vascular tone and cerebral blood flow. In addition, mEH metabolizes polycyclic aromatic hydrocarbons, one of the causative factors of atherosclerotic lesion development. In this study, we aimed to investigate the association of enzyme activity-modifying missense single nucleotide polymorphisms (SNPs) of the sEH gene (EPHX2) and mEH gene (EPHX1) and ischemic stroke risk in a Turkish population. PATIENTS AND METHODS Genomic DNA of patients with large artery atherosclerotic ischemic stroke (n=237) and controls (n=120) was isolated from blood samples, and genotypes for Tyr113His (rs1051740) and His139Arg (rs2234922) SNPs of EPHX1 and Arg287Gln (rs751141) SNP of EPHX2 were attained by the PCR/RFLP method. RESULTS Minor allele frequency and genotype distributions for Arg287Gln, Tyr113His and His139Arg SNPs did not differ significantly between stroke patients and controls. However, hypertension- and diabetes-associated ischemic stroke risk was decreased by EPHX1 and increased by EPHX2 variants in stratification analyses. CONCLUSION This study has shown for the first time that the polymorphic alleles of EPHX1 were unlikely to be associated with large artery atherosclerotic ischemic stroke susceptibility; however, protective effects were evident within subgroups of hypertension and diabetes. In addition, EPHX2 Arg287Gln polymorphism, which has been studied for the first time in a Turkish population, was not significantly related to ischemic stroke, but increased the stroke risk in subgroup analysis.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Yağmur Miçooğulları
- Institute of Natural and Applied Sciences, Department of Biology, Middle East Technical University, Ankara, Turkey
| | | | - Orhan Adalı
- Department of Biological Sciences, Joint Graduate Program in Biochemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
40
|
Hanif A, Edin ML, Zeldin DC, Nayeem MA. Ephx2-gene deletion affects acetylcholine-induced relaxation in angiotensin-II infused mice: role of nitric oxide and CYP-epoxygenases. Mol Cell Biochem 2019; 465:37-51. [PMID: 31797255 DOI: 10.1007/s11010-019-03665-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023]
Abstract
Previously, we showed that adenosine A2A receptor induces relaxation independent of NO in soluble epoxide hydrolase-null mice (Nayeem et al. in Am J Physiol Regul Integr Comp Physiol 304:R23-R32, 2013). Currently, we hypothesize that Ephx2-gene deletion affects acetylcholine (Ach)-induced relaxation which is independent of A2AAR but dependent on NO and CYP-epoxygenases. Ephx2-/- aortas showed a lack of sEH (97.1%, P < 0.05) but an increase in microsomal epoxide hydrolase (mEH, 37%, P < 0.05) proteins compared to C57Bl/6 mice, and no change in CYP2C29 and CYP2J protein (P > 0.05). Ach-induced response was tested with nitro-L-arginine methyl ester (L-NAME) NO-inhibitor; 10-4 M), N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH) (CYP-epoxygenase inhibitor; 10-5 M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10-5 M), SCH-58261 (A2AAR-antagonist; 10-6 M), and angiotensin-II (Ang-II, 10-6 M). In Ephx2-/- mice, Ach-induced relaxation was not different from C57Bl/6 mice except at 10-5 M (92.75 ± 2.41 vs. 76.12 ± 3.34, P < 0.05). However, Ach-induced relaxation was inhibited with L-NAME (Ephx2-/-: 23.74 ± 3.76% and C57Bl/6: 11.61 ± 2.82%), MS-PPOH (Ephx2-/-: 48.16 ± 6.53% and C57Bl/6: 52.27 ± 7.47%), and 14,15-EEZE (Ephx2-/-: 44.29 ± 8.33% and C57Bl/6: 39.27 ± 7.47%) vs. non-treated (P < 0.05). But, it did not block with SCH-58261 (Ephx2-/-: 68.75 ± 11.41% and C57Bl/6: 66.26 ± 9.43%, P > 0.05) vs. non-treated (P > 0.05). Interestingly, Ang-II attenuates less relaxation in Ehx2-/- vs. C57Bl/6 mice (58.80 ± 7.81% vs. 45.92 ± 7.76, P < 0.05). Our data suggest that Ach-induced relaxation in Ephx2-/- mice depends on NO and CYP-epoxygenases but not on A2A AR, and Ephx2-gene deletion attenuates less Ach-induced relaxation in Ang-II-infused mice.
Collapse
Affiliation(s)
- Ahmad Hanif
- Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Mohammed A Nayeem
- Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA. .,Department of Pharmaceutical Sciences, Health Science Center-School of Pharmacy, West Virginia University, Biomedical Research Building, 2nd Floor, Room # 220, 1 Medical Center Drive, PO Box 9530, Morgantown, WV, 26506-9530, USA.
| |
Collapse
|
41
|
Liver Soluble Epoxide Hydrolase Regulates Behavioral and Cellular Effects of Chronic Stress. Cell Rep 2019; 29:3223-3234.e6. [DOI: 10.1016/j.celrep.2019.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
|
42
|
Association Analysis of 14 Candidate Gene Polymorphism with Depression and Stress among Gestational Diabetes Mellitus. Genes (Basel) 2019; 10:genes10120988. [PMID: 31801286 PMCID: PMC6947641 DOI: 10.3390/genes10120988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The association of candidate genes and psychological symptoms of depression, anxiety, and stress among women with gestational diabetes mellitus (GDM) in Malaysia was determined in this study, followed by the determination of their odds of getting psychological symptoms, adjusted for socio-demographical background, maternal, and clinical characteristics. Single nucleotide polymorphisms (SNPs) recorded a significant association between SNP of EPHX2 (rs17466684) and depression symptoms (AOR = 7.854, 95% CI = 1.330–46.360) and stress symptoms (AOR = 7.664, 95% CI = 1.579–37.197). Associations were also observed between stress symptoms and SNP of OXTR (rs53576) and (AOR = 2.981, 95% CI = 1.058–8.402) and SNP of NRG1 (rs2919375) (AOR = 9.894, 95% CI = 1.159–84.427). The SNP of EPHX2 (rs17466684) gene polymorphism is associated with depression symptoms among Malaysian women with GDM. SNP of EPHX2 (rs17466684), OXTR (rs53576) and NRG1 (rs2919375) are also associated with stress symptoms.
Collapse
|
43
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
44
|
Chen X, Li Z, Zhang B, Hu R, Li J, Feng M, Yao W, Zhang C, Wan L, Zhang Y. Alleviation of Mechanical Allodynia by 14,15-Epoxyeicosatrienoic Acid in a Central Poststroke Pain Model: Possible Role of Allopregnanolone and δ-Subunit-Containing Gamma-Aminobutyric Acid A Receptors. THE JOURNAL OF PAIN 2019; 20:577-591. [DOI: 10.1016/j.jpain.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
|
45
|
Ren Q. Soluble Epoxide Hydrolase Inhibitor: A Novel Potential Therapeutic or Prophylactic Drug for Psychiatric Disorders. Front Pharmacol 2019; 10:420. [PMID: 31105566 PMCID: PMC6492054 DOI: 10.3389/fphar.2019.00420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric disorders, including depression and schizophrenia, affect millions of individuals worldwide. However, the precise neurobiology of psychiatric disorders remains unclear. Accumulating evidence suggests that various inflammatory processes play a key role in depression and schizophrenia, and that anti-inflammatory drugs exert a therapeutic effect in patients with psychiatric disorders. Epoxyeicosatrienoic acids (EETs) and epoxydocosapentaenoic acids (EDPs) have potent anti-inflammatory properties. These mediators are broken down into their corresponding diols by soluble epoxide hydrolase (sEH), and inhibition of sEH enhances the anti-inflammatory effects of EETs. Therefore, sEH may play a key role in inflammation, which is involved in psychiatric disorders. Recent studies have shown that abnormal levels of sEH may be involved in the pathogenesis of certain psychiatric diseases, and that sEH inhibitors exhibit antidepressant and antipsychotic activity. The present review discusses the extensive evidence supporting sEH as a therapeutic target for psychiatric diseases, and the clinical value of sEH inhibitors as therapeutic or prophylactic drugs.
Collapse
Affiliation(s)
- Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Center of Stem Cell and Immune Cell Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
46
|
Astrocytic Epoxyeicosatrienoic Acid Signaling in the Medial Prefrontal Cortex Modulates Depressive-like Behaviors. J Neurosci 2019; 39:4606-4623. [PMID: 30902874 DOI: 10.1523/jneurosci.3069-18.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder is the most common mental illness. Mounting evidence indicates that astrocytes play a crucial role in the pathophysiology of depression; however, the underlying molecular mechanisms remain elusive. Compared with other neuronal cell types, astrocytes are enriched for arachidonic acid metabolism. Herein, we observed brain-region-specific alterations of epoxyeicosatrienoic acid (EET) signaling, which is an arachidonic acid metabolic pathway, in both a mouse model of depression and postmortem samples from patients with depression. The enzymatic activity of soluble epoxide hydrolase (sEH), the key enzyme in EET signaling, was selectively increased in the mPFC of susceptible mice after chronic social defeated stress and was negatively correlated with the social interaction ratio, which is an indicator of depressive-like behavior. The specific deletion of Ephx2 (encode sEH) in adult astrocytes induced resilience to stress, whereas the impaired EET signaling in the mPFC evoked depressive-like behaviors in response to stress. sEH was mainly expressed on lysosomes of astrocytes. Using pharmacological and genetic approaches performed on C57BL/6J background adult male mice, we found that EET signaling modulated astrocytic ATP release in vitro and in vivo Moreover, astrocytic ATP release was required for the antidepressant-like effect of Ephx2 deletion in adult astrocytes. In addition, sEH inhibitors produced rapid antidepressant-like effects in multiple animal models of depression, including chronic social defeated stress and chronic mild stress. Together, our results highlight that EET signaling in astrocytes in the mPFC is essential for behavioral adaptation in response to psychiatric stress.SIGNIFICANCE STATEMENT Astrocytes, the most abundant glial cells of the brain, play a vital role in the pathophysiology of depression. Astrocytes secrete adenosine ATP, which modulates depressive-like behaviors. Notably, astrocytes are enriched for arachidonic acid metabolism. In the present study, we explored the hypothesis that epoxyeicosatrienoic acid signaling, an arachidonic acid metabolic pathway, modulates astrocytic ATP release and the expression of depressive-like behaviors. Our work demonstrated that epoxyeicosatrienoic acid signaling in astrocytes in the mPFC is essential for behavioral homeostatic adaptation in response to stress, and the extent of astrocyte functioning is greater than expected based on earlier reports.
Collapse
|
47
|
Kodani SD, Morisseau C. Role of epoxy-fatty acids and epoxide hydrolases in the pathology of neuro-inflammation. Biochimie 2019; 159:59-65. [PMID: 30716359 DOI: 10.1016/j.biochi.2019.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a physiologic response aimed at protecting the central nervous system during injury. However, unresolved and chronic neuroinflammation can lead to long term damage and eventually neurologic disease including Parkinson's disease, Alzheimer's disease and dementia. Recently, enhancing the concentration of epoxyeicosatrienoic acids (EETs) through blocking their hydrolytic degradation by soluble epoxide hydrolase (sEH) has been applied towards reducing the long-term damage associated with central neurologic insults. Evidence suggests this protective effect is mediated, at least in part, through polarization of microglia to an anti-inflammatory phenotype that blocks the inflammatory actions of prostaglandins and promotes wound repair. This mini-review overviews the epidemiologic basis for using sEH inhibition towards neuroinflammatory disease and pharmacologic studies testing sEH inhibition in several neurologic diseases. Additionally, the combination of sEH inhibition with other eicosanoid signaling pathways is considered as an enhanced approach for developing potent neuroprotectants.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Park J, Cho MJ, Ha G, Park HJ. Analgesic effects of soluble epoxide hydrolase inhibitor in K/BxN serum transfer arthritis mouse model. Anesth Pain Med (Seoul) 2019. [DOI: 10.17085/apm.2019.14.1.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- JungHyun Park
- Department of Anesthesiology and Pain Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Min-ji Cho
- Department of Anesthesiology and Pain Medicine, Changwon Fatima Hospital, Changwon, Korea
| | - Geol Ha
- Department of Anesthesiology and Pain Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Hue-Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Gilad D, Atiya S, Mozes-Autmazgin Z, Ben-Shushan RS, Ben-David R, Amram E, Tamir S, Chuyun D, Szuchman-Sapir A. Paraoxonase 1 in endothelial cells impairs vasodilation induced by arachidonic acid lactone metabolite. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:386-393. [PMID: 30572120 DOI: 10.1016/j.bbalip.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1. AIM To elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL. RESULTS In mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL. CONCLUSION PON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL.
Collapse
Affiliation(s)
- Dan Gilad
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Shahar Atiya
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Ziv Mozes-Autmazgin
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Rotem Shelly Ben-Shushan
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Raz Ben-David
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Eytan Amram
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | | | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
50
|
Azad BB, Holt DP, Ravert HT, Horti AG, Dannals RF. An optimized radiosynthesis of [ 18 F]FNDP, a positron emission tomography radiotracer for imaging soluble epoxide hydrolase (sEH). J Labelled Comp Radiopharm 2018; 61:567-572. [PMID: 29529708 PMCID: PMC6574083 DOI: 10.1002/jlcr.3620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
Abstract
In this concise practitioner protocol, the radiochemical synthesis of [18 F]FNDP suitable for human positron emission tomography studies is described and the results from validation productions are presented. The high specific activity radiotracer product is prepared as a sterile, apyrogenic solution that conforms to current Good Manufacturing Practice requirements.
Collapse
Affiliation(s)
- Babak Behnam Azad
- Division of Nuclear Medicine, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P Holt
- Division of Nuclear Medicine, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hayden T Ravert
- Division of Nuclear Medicine, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew G Horti
- Division of Nuclear Medicine, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Dannals
- Division of Nuclear Medicine, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|