1
|
Mouli K, Liopo AV, McHugh EA, Underwood E, Zhao J, Dash PK, Vo ATT, Malojirao V, Hegde M, Tour JM, Derry PJ, Kent TA. Oxidized Carbon Nanoparticles Enhance Cellular Energetics With Application to Injured Brain. Adv Healthc Mater 2024:e2401629. [PMID: 39329414 DOI: 10.1002/adhm.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Pro-energetic effects of functionalized, oxidized carbon nanozymes (OCNs) are reported. OCNs, derived from harsh acid oxidation of single-wall carbon nanotubes or activated charcoal are previously shown to possess multiple nanozymatic activities including mimicking superoxide dismutase and catalyzing the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to NAD+. These actions are predicted to generate a glycolytic shift and enhance mitochondrial energetics under impaired conditions. Impaired mitochondrial energy metabolism is increasingly recognized as an important facet of traumatic brain injury (TBI) pathophysiology and decreases the efficiency of electron transport chain (ETC)-coupled adenosine triphosphate (ATP) and NAD+ regeneration. In vitro, OCNs promote a pro-aerobic shift in energy metabolism that persists through ETC inhibition and enhances glycolytic flux, glycolytic ATP production, and cellular generation of lactate, a crucial auxiliary substrate for energy metabolism. To address specific mechanisms of iron injury from hemorrhage, OCNs with the iron chelator, deferoxamine (DEF), covalently-linked were synthesized. DEF-linked OCNs induce a glycolytic shift in-vitro and in-vivo in tissue sections from a rat model of TBI complicated by hemorrhagic contusion. OCNs further reduced hemorrhage volumes 3 days following TBI. These results suggest OCNs are promising as pleiotropic mediators of cell and tissue resilience to injury.
Collapse
Affiliation(s)
- Karthik Mouli
- Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Erica Underwood
- Department of Neurobiology and Anatomy, The University of TX McGovern Medical School, Houston, TX, 77030, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of TX McGovern Medical School, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of TX McGovern Medical School, Houston, TX, 77030, USA
| | - Anh T T Vo
- Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Vikas Malojirao
- Center for Neuroregeneration, Department of Neurosurgery, Division of DNA Repair Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Muralidhar Hegde
- Center for Neuroregeneration, Department of Neurosurgery, Division of DNA Repair Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY, USA
- EnMed, School of Engineering Medicine, Texas A&M University, Houston, 77030, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, Houston, TX, 77005, USA
- The NanoCarbon Center, Rice University, Houston, TX, 77005, USA
| | - Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
- EnMed, School of Engineering Medicine, Texas A&M University, Houston, 77030, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Faisal M, Rusetskaya A, Väli L, Taba P, Minajeva A, Hickey MA. No Evidence of Sensory Neuropathy in a Traditional Mouse Model of Idiopathic Parkinson's Disease. Cells 2024; 13:799. [PMID: 38786023 PMCID: PMC11120514 DOI: 10.3390/cells13100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.
Collapse
Affiliation(s)
- Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
| | - Anna Rusetskaya
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Liis Väli
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (L.V.); (P.T.)
- Estonia and Clinic of Neurology, Tartu University Hospital, 50406 Tartu, Estonia
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (L.V.); (P.T.)
- Estonia and Clinic of Neurology, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ave Minajeva
- Department of Pathological Anatomy and Forensic Medicine, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia;
| | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
| |
Collapse
|
3
|
Uhelski ML, Johns ME, Horrmann A, Mohamed S, Sohail A, Khasabova IA, Simone DA, Banik RK. Adverse effects of methylene blue in peripheral neurons: An in vitro electrophysiology and cell culture study. Mol Pain 2022; 18:17448069221142523. [PMID: 36408567 PMCID: PMC9730009 DOI: 10.1177/17448069221142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methylene blue (MB) is an effective treatment for methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning, and refractory vasoplegia. However, clinical case reports and preclinical studies indicate potentially neurotoxic activity of MB at certain concentrations. The exact mechanisms of MB neurotoxicity are not known, and while the effects of MB on neuronal tissue from different brain regions and myenteric ganglia have been examined, its effects on primary afferent neurons from dorsal root ganglia (DRG) have not been studied. Mouse DRG were exposed to MB (0.3-10 μM) in vitro to assess neurite outgrowth. Increasing concentrations of MB (0.3-10 μM) were associated with neurotoxicity as shown by a substantial loss of cells with neurite formation, particularly at 10 μM. In parallel experiments, cultured rat DRG neurons were treated with MB (100 μM) to examine how MB affects electrical membrane properties of small-diameter sensory neurons. MB decreased peak inward and outward current densities, decreased action potential amplitude, overshoot, afterhyperpolarization, increased action potential rise time, and decreased action potential firing in response to current stimulation. MB induced dose-dependent toxicity in peripheral neurons, in vitro. These findings are consistent with studies in brain and myenteric ganglion neurons showing increased neuronal loss and altered membrane electrical properties after MB application. Further research is needed to parse out the toxicity profile for MB to minimize damage to neuronal structures and reduce side effects in clinical settings.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Malcolm E Johns
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alec Horrmann
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sadiq Mohamed
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ayesha Sohail
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ratan K Banik
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA,Ratan K Banik, Department of Anesthesiology, University of Minnesota, B515 Mayo Memorial Building, 420 Delaware Street S.E., MMC 294, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Bouillaud F, Ransy C, Moreau M, Benhaim J, Lombès A, Haouzi P. Methylene blue induced O 2 consumption is not dependent on mitochondrial oxidative phosphorylation: Implications for salvage pathways during acute mitochondrial poisoning. Respir Physiol Neurobiol 2022; 304:103939. [PMID: 35777722 DOI: 10.1016/j.resp.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
While administration of the cyclic redox agent methylene blue (MB) during intoxication by mitochondrial poisons (cyanide, hydrogen sulfide, rotenone) increases survival, the mechanisms behind these antidotal properties remain poorly understood. The objective of the studies presented in this paper was to characterize the interactions between the redox properties of MB, the intermediate metabolism and the mitochondrial respiration. We first show that intra-venous administration of micromolar levels of methylene blue in sedated and mechanically ventilated rats, increases not only resting oxygen consumption but also CO2 production (by ~ 50%), with no change in their ratio. This hypermetabolic state could be reproduced in a cellular model, where we found that the rate of electron transfer to MB was of the same order of magnitude as that of normal cellular metabolism. Notably, the large increase in cellular oxygen consumption caused by MB was relatively indifferent to the status of the mitochondrial respiratory chain: oxygen consumption persisted even when the respiratory chain was inhibited or absent (using inhibitors and cells deficient in mitochondrial oxidative phosphorylation); yet MB did not impede mitochondrial ATP production in control conditions. We present evidence that after being reduced into leuco-methylene blue (LMB) in presence of reducing molecules that are physiologically found in cells (such as NADH), the re-oxidation of LMB by oxygen can account for the increased oxygen consumption observed in vivo. In conditions of acute mitochondrial dysfunction, these MB redox cycling properties allow the rescue of the glycolysis activity and Krebs cycle through an alternate route of oxidation of NADH (or other potential reduced molecules), which accumulation would have otherwise exerted negative feedback on these metabolic pathways. Our most intriguing finding is that re-oxidization of MB by oxygen ultimately results in an in vivo matching between the increase in the rate of O2 consumed, by MB re-oxidation, and the rate of CO2, produced by the intermediate metabolism, imitating the fundamental coupling between the glycolysis/Krebs cycle and the mitochondrial respiration.
Collapse
Affiliation(s)
- F Bouillaud
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, F75014, France.
| | - C Ransy
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, F75014, France
| | - M Moreau
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, F75014, France
| | - J Benhaim
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, F75014, France
| | - A Lombès
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, F75014, France
| | - P Haouzi
- Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2022; 43:1499-1518. [PMID: 35951210 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
|
6
|
Xue H, Thaivalappil A, Cao K. The Potentials of Methylene Blue as an Anti-Aging Drug. Cells 2021; 10:cells10123379. [PMID: 34943887 PMCID: PMC8699482 DOI: 10.3390/cells10123379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
Methylene blue (MB), as the first fully man-made medicine, has a wide range of clinical applications. Apart from its well-known applications in surgical staining, malaria, and methemoglobinemia, the anti-oxidative properties of MB recently brought new attention to this century-old drug. Mitochondrial dysfunction has been observed in systematic aging that affects many different tissues, including the brain and skin. This leads to increaseding oxidative stress and results in downstream phenotypes under age-related conditions. MB can bypass Complex I/III activity in mitochondria and diminish oxidative stress to some degree. This review summarizes the recent studies on the applications of MB in treating age-related conditions, including neurodegeneration, memory loss, skin aging, and a premature aging disease, progeria.
Collapse
|
7
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
8
|
Wen S, Aki T, Unuma K, Uemura K. Chemically Induced Models of Parkinson's Disease: History and Perspectives for the Involvement of Ferroptosis. Front Cell Neurosci 2020; 14:581191. [PMID: 33424553 PMCID: PMC7786020 DOI: 10.3389/fncel.2020.581191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a newly discovered form of necrotic cell death characterized by its dependency on iron and lipid peroxidation. Ferroptosis has attracted much attention recently in the area of neurodegeneration since the involvement of ferroptosis in Parkinson’s disease (PD), a major neurodegenerative disease, has been indicated using animal models. Although PD is associated with both genetic and environmental factors, sporadic forms of PD account for more than 90% of total PD. Following the importance of environmental factors, various neurotoxins are used as chemical inducers of PD both in vivo and in vitro. In contrast to other neurodegenerative diseases such as Alzheimer’s and Huntington’s diseases (AD and HD), many of the characteristics of PD can be reproduced in vivo by the use of specific neurotoxins. Given the indication of ferroptosis in PD pathology, several studies have been conducted to examine whether ferroptosis plays role in the loss of dopaminergic neurons in PD. However, there are still few reports showing an authentic form of ferroptosis in neuronal cells during exposure to the neurotoxins used as PD inducers. In this review article, we summarize the history of the uses of chemicals to create PD models in vivo and in vitro. Besides, we also survey recent reports examining the possible involvement of ferroptosis in chemical models of PD.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Fung JCL, Cho EYP. Methylene blue promotes survival and GAP-43 expression of retinal ganglion cells after optic nerve transection. Life Sci 2020; 262:118462. [PMID: 32961228 DOI: 10.1016/j.lfs.2020.118462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
AIMS Neurodegeneration of the optic nerve and retinal ganglion cells (RGCs) leads to progressive vision loss. As part of the central nervous system, RGCs show limited ability to regenerate and there is extensive search for neuroprotective agents for optic nerve damage. Methylene blue (MB) exhibits beneficial effects against various neurodegenerative diseases of the central nervous system. However, the mechanisms associated with its putative protection on neuronal survival and regeneration remain obscure. This study used the optic nerve transection model to examine the effects of MB on RGC survival, the expression of regenerative marker GAP-43 in RGCs and microglial activation. MAIN METHODS Axons of RGCs were injured by cutting the optic nerve. MB was injected intravitreally either immediately post-injury or delayed to 3 days post-injury. Using immunohistochemical staining, surviving RGCs, GAP-43-positive RGCs and microglial cells were quantified in wholemount retinas 7 days post-injury. KEY FINDINGS Both immediate and delayed (a more clinically realistic situation) intravitreal injection of MB promoted RGC survival. MB also increased the number of GAP-43-positive RGCs, suggesting an enhanced ability of RGCs to regenerate. This was exemplified by the regenerative sprouting of axon-like processes from injured RGCs after MB treatment. The increase in RGC survival and GAP-43 expression correlated with an increase in the number of microglial cells. SIGNIFICANCE These results reveal that MB has survival-promoting and growth-promoting effects on RGCs after optic nerve injury. Together with the established safety profile of MB in humans, MB is a promising treatment for neurodegeneration and injury of the optic nerve.
Collapse
Affiliation(s)
- Jacqueline C L Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Eric Y P Cho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
10
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Auchter AM, Barrett DW, Monfils MH, Gonzalez-Lima F. Methylene Blue Preserves Cytochrome Oxidase Activity and Prevents Neurodegeneration and Memory Impairment in Rats With Chronic Cerebral Hypoperfusion. Front Cell Neurosci 2020; 14:130. [PMID: 32508596 PMCID: PMC7251060 DOI: 10.3389/fncel.2020.00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic cerebral hypoperfusion in neurocognitive disorders diminishes cytochrome oxidase activity leading to neurodegenerative effects and impairment of learning and memory. Methylene blue at low doses stimulates cytochrome oxidase activity and may thus counteract the adverse effects of cerebral hypoperfusion. However, the effects of methylene blue on cytochrome oxidase activity during chronic cerebral hypoperfusion have not been described before. To test this hypothesis, rats underwent bilateral carotid artery occlusion or sham surgery, received daily 4 mg/kg methylene blue or saline injections, and learned a visual water task. Brain mapping of cytochrome oxidase activity was done by quantitative enzyme histochemistry. Permanent carotid occlusion for 1 month resulted in decreased cytochrome oxidase activity in visual cortex, prefrontal cortex, perirhinal cortex, hippocampus and amygdala, and weaker interregional correlation of cytochrome oxidase activity between these regions. Methylene blue preserved cytochrome oxidase activity in regions affected by carotid occlusion and strengthened their interregional correlations of cytochrome oxidase activity, which prevented neurodegenerative effects and facilitated task-specific learning and memory. Brain-behavior correlations revealed positive correlations between performance and brain regions in which cytochrome oxidase activity was preserved by methylene blue. These results are the first to demonstrate that methylene blue prevents neurodegeneration and memory impairment by preserving cytochrome oxidase activity and interregional correlation of cytochrome oxidase activity in brain regions susceptible to chronic hypoperfusion. This demonstration provides further support for the hypothesis that lower cerebral blood flow results in an Alzheimer's-like syndrome and that stimulating cytochrome oxidase activity with low-dose methylene blue is neuroprotective.
Collapse
Affiliation(s)
| | | | | | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 2019; 177:73-93. [DOI: 10.1016/j.pneurobio.2018.09.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
13
|
Haouzi P, Tubbs N, Cheung J, Judenherc-Haouzi A. Methylene Blue Administration During and After Life-Threatening Intoxication by Hydrogen Sulfide: Efficacy Studies in Adult Sheep and Mechanisms of Action. Toxicol Sci 2019; 168:443-459. [PMID: 30590764 PMCID: PMC6516679 DOI: 10.1093/toxsci/kfy308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to toxic levels of hydrogen sulfide (H2S) produces an acute cardiac depression that can be rapidly fatal. We sought to characterize the time course of the cardiac effects produced by the toxicity of H2S in sheep, a human sized mammal, and to describe the in vivo and in vitro antidotal properties of methylene blue (MB), which has shown efficacy in sulfide intoxicated rats. Infusing NaHS (720 mg) in anesthetized adult sheep produced a rapid dilation of the left ventricular with a decrease in contractility, which was lethal within about 10 min by pulseless electrical activity. MB (7 mg/kg), administered during sulfide exposure, maintained cardiac contractility and allowed all of the treated animals to recover. At a dose of 350 mg NaHS, we were able to produce an intoxication, which led to a persistent decrease in ventricular function for at least 1 h in nontreated animals. Administration of MB, 3 or 30 min after the end of exposure, whereas all free H2S had already vanished, restored cardiac contractility and the pyruvate/lactate (P/L) ratio. We found that MB exerts its antidotal effects through at least 4 different mechanisms: (1) a direct oxidation of free sulfide; (2) an increase in the pool of "trapped" H2S in red cells; (3) a restoration of the mitochondrial substrate-level phosphorylation; and (4) a rescue of the mitochondrial electron chain. In conclusion, H2S intoxication produces acute and long persisting alteration in cardiac function in large mammals even after all free H2S has vanished. MB exerts its antidotal effects against life-threatening sulfide intoxication via multifarious properties, some of them unrelated to any direct interaction with free H2S.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joseph Cheung
- Center of Translational Medicine
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
14
|
Bariotto-Dos-Santos K, Padovan-Neto FE, Bortolanza M, Dos-Santos-Pereira M, Raisman-Vozari R, Tumas V, Del Bel E. Repurposing an established drug: an emerging role for methylene blue in L-DOPA-induced dyskinesia. Eur J Neurosci 2018; 49:869-882. [PMID: 30022547 DOI: 10.1111/ejn.14079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
The nitric oxide (NO) system has been proven to be a valuable modulator of L-DOPA-induced dyskinesia in Parkinsonian rodents. NO activates the enzyme soluble guanylyl cyclase and elicits the synthesis of the second-messenger cGMP. Although we have previously described the anti-dyskinetic potential of NO synthase inhibitors on L-DOPA-induced dyskinesia, the effect of soluble guanylyl cyclase inhibitors remains to be evaluated. The aim of this study was to analyze whether the clinically available non-selective inhibitor methylene blue, or the selective soluble guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), could mitigate L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Here, we demonstrated that methylene blue was able to reduce L-DOPA-induced dyskinesia incidence when chronically co-administered with L-DOPA during 3 weeks. Methylene blue chronic (but not acute) administration (2 weeks) was effective in attenuating L-DOPA-induced dyskinesia in rats rendered dyskinetic by a previous course of L-DOPA chronic treatment. Furthermore, discontinuous methylene blue treatment (e.g., co-administration of methylene blue and L-DOPA for 2 consecutive days followed by vehicle and L-DOPA co-administration for 5 days) was effective in attenuating dyskinesia. Finally, we demonstrated that microinjection of methylene blue or ODQ into the lateral ventricle effectively attenuated L-DOPA-induced dyskinesia. Taken together, these results demonstrate an important role of NO-soluble guanylyl cyclase-cGMP signaling on L-DOPA-induced dyskinesia. The clinical implications of this discovery are expected to advance the treatment options for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Keila Bariotto-Dos-Santos
- Department of Morphology, Physiology and Pathology, Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Behavioral Neurosciences, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Eduardo Padovan-Neto
- Department of Morphology, Physiology and Pathology, Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Behavioral Neurosciences, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil.,Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Morphology, Physiology and Pathology, Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil
| | - Maurício Dos-Santos-Pereira
- Department of Morphology, Physiology and Pathology, Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil.,Department of Physiology, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rita Raisman-Vozari
- INSERM, UPMC, Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière - ICM, Paris, France
| | - Vitor Tumas
- Department of Behavioral Neurosciences, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil
| | - Elaine Del Bel
- Department of Morphology, Physiology and Pathology, Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Behavioral Neurosciences, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, SP, Brazil.,Department of Physiology, Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Bhurtel S, Katila N, Neupane S, Srivastav S, Park PH, Choi DY. Methylene blue protects dopaminergic neurons against MPTP-induced neurotoxicity by upregulating brain-derived neurotrophic factor. Ann N Y Acad Sci 2018; 1431:58-71. [PMID: 29882218 DOI: 10.1111/nyas.13870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
Abstract
The relatively old, yet clinically used, drug methylene blue (MB) is known to possess neuroprotective properties by reducing aggregated proteins, augmenting the antioxidant response, and enhancing mitochondrial function and survival in various models of neurodegenerative diseases. In this study, we aimed to examine the effects of MB in Parkinson's disease (PD) in vivo and in vitro models by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+ ) with a focus on possible effects on induction of neurotrophic factors. Our results indicate that pretreatment with MB significantly attenuated MPTP-induced loss of dopaminergic neurons, glial cell activation, and depletion of dopamine. We also found that MB upregulated brain-derived neurotrophic factor (BDNF) and activated its downstream signaling pathways, suggesting that BDNF might be a contributor to MB-associated neuroprotection. Specific inhibition of the BDNF receptor or extracellular signal-regulated kinase (Erk) reversed the MB-mediated protection against MPP+ toxicity, thus implying a role for BDNF and the Erk pathway in the neuroprotective effects. Taken together, our data suggest that MB protects neurons from MPTP neurotoxicity via induction of BDNF. Further study to determine whether MB preserves dopaminergic neurons in the brains of PD patients is warranted.
Collapse
Affiliation(s)
- Sunil Bhurtel
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nikita Katila
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sunil Srivastav
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
16
|
Biju KC, Evans RC, Shrestha K, Carlisle DCB, Gelfond J, Clark RA. Methylene Blue Ameliorates Olfactory Dysfunction and Motor Deficits in a Chronic MPTP/Probenecid Mouse Model of Parkinson's Disease. Neuroscience 2018; 380:111-122. [PMID: 29684508 DOI: 10.1016/j.neuroscience.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are very prominent and early features in Parkinson's disease (PD) and in animal models of PD. Thus, antioxidant therapy for PD has been proposed, but in clinical trials such strategies have met with very limited success. Methylene blue (MB), a small-molecule synthetic heterocyclic organic compound that acts as a renewable electron cycler in the mitochondrial electron transport chain, manifesting robust antioxidant and cell energetics-enhancing properties, has recently been shown to have significant beneficial effects in reducing nigrostriatal dopaminergic loss and motor impairment in acute toxin models of PD. However, no studies have investigated the impact of this promising agent in chronic models or for olfactory dysfunction, an early non-motor feature of PD. To test the efficacy of low-dose MB for olfactory dysfunction, motor symptoms, and dopaminergic neurodegeneration, mice were injected with ten subcutaneous doses of 25 mg/kg MPTP, plus 250 mg/kg intraperitoneal probenecid or saline/probenecid at 3.5-day intervals. Following the onset of olfactory dysfunction, MPTP/probenecid (MPTP/p) and saline/probenecid mice were provided drinking water with or without 1 mg/kg/day MB. Oral delivery of low-dose MB significantly ameliorated MPTP/p-induced deficits in motor coordination, as well as degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and TH-positive terminals in the striatum. Importantly, olfactory dysfunction was ameliorated by MB treatment, whereas this benefit is not observed with currently available anti-Parkinsonian medications. These results indicate that low-dose MB is a promising neuroprotective intervention for both motor and non-motor features of PD.
Collapse
Affiliation(s)
- K C Biju
- Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Robert C Evans
- Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Kripa Shrestha
- Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Daniel C B Carlisle
- Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Robert A Clark
- Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229, United States.
| |
Collapse
|
17
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
18
|
Smith ES, Clark ME, Hardy GA, Kraan DJ, Biondo E, Gonzalez-Lima F, Cormack LK, Monfils M, Lee HJ. Daily consumption of methylene blue reduces attentional deficits and dopamine reduction in a 6-OHDA model of Parkinson's disease. Neuroscience 2017; 359:8-16. [PMID: 28694175 DOI: 10.1016/j.neuroscience.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Recently, alternative drug therapies for Parkinson's disease (PD) have been investigated as there are many shortcomings of traditional dopamine-based therapies including difficulties in treating cognitive and attentional dysfunction. A promising therapeutic avenue is to target mitochondrial dysfunction and oxidative stress in PD. One option might be the use of methylene blue (MB), an antioxidant and metabolic enhancer. MB has been shown to improve cognitive function in both intact rodents and rodent disease models. Therefore, we investigated whether MB might treat attentional deficits in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). MB also has neuroprotective capabilities against neurotoxic insult, so we also assessed the ability of MB to provide neuroprotection in our PD model. The results show that MB could preserve some dopamine neurons in the substantia nigra par compacta when 6-OHDA was infused into the medial forebrain bundle. This neuroprotection did not yield a significant behavioral improvement when motor functions were measured. However, MB significantly improved attentional performance in the five-choice task designed to measure selective and sustained attention. In conclusion, MB might be useful in improving some attentional function and preserving dopaminergic cells in this model. Future work should continue to study and optimize the abilities of MB for the treatment of PD.
Collapse
Affiliation(s)
- Elizabeth S Smith
- The University of Texas at Austin, Department of Psychology, United States
| | - Madeline E Clark
- The University of Texas at Austin, Department of Psychology, United States
| | - Gwendolyn A Hardy
- The University of Texas at Austin, Department of Psychology, United States
| | - David J Kraan
- The University of Texas at Austin, Department of Psychology, United States
| | - Elisa Biondo
- The University of Texas at Austin, Department of Psychology, United States
| | - F Gonzalez-Lima
- The University of Texas at Austin, Department of Psychology, United States
| | - Lawrence K Cormack
- The University of Texas at Austin, Department of Psychology, United States
| | - Marie Monfils
- The University of Texas at Austin, Department of Psychology, United States
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, United States.
| |
Collapse
|
19
|
Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, Calap-Quintana P, Moltó MD, Paricio N. Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models. Free Radic Biol Med 2017; 108:683-691. [PMID: 28455141 DOI: 10.1016/j.freeradbiomed.2017.04.364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Pablo Calap-Quintana
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
| | - María Dolores Moltó
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; CIBERSAM, INCLIVA. Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
20
|
Zhang ZN, Zhang JS, Xiang J, Yu ZH, Zhang W, Cai M, Li XT, Wu T, Li WW, Cai DF. Subcutaneous rotenone rat model of Parkinson's disease: Dose exploration study. Brain Res 2017; 1655:104-113. [DOI: 10.1016/j.brainres.2016.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
|
21
|
Farrokhi MR, Yazdanpanah H, Gholami M, Farrokhi F, Mesbahi AR. Pain and functional improvement effects of methylene blue injection on the soft tissue around fusion site after traumatic thoracolumbar fixation: A double-blind, randomized placebo-controlled study. Clin Neurol Neurosurg 2016; 150:6-12. [DOI: 10.1016/j.clineuro.2016.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/29/2022]
|
22
|
Preservation of neuromuscular function in symptomatic SOD1-G93A mice by peripheral infusion of methylene blue. Exp Neurol 2016; 285:96-107. [PMID: 27567739 DOI: 10.1016/j.expneurol.2016.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Abstract
In mutant superoxide dismutase 1 (SOD1) mouse models of familial amyotrophic lateral sclerosis (fALS) some of the earliest signs of morphological and functional damage occur in the motor nerve terminals that innervate fast limb muscles. This study tested whether localized peripheral application of a protective drug could effectively preserve neuromuscular junctions in late-stage disease. Methylene blue (MB), which has mitochondria-protective properties, was infused via an osmotic pump into the anterior muscle compartment of one hind limb of late pre- symptomatic SOD1-G93A mice for ≥3weeks. When mice reached end-stage disease, peak twitch and tetanic contractions evoked by stimulation of the muscle nerve were measured in two anterior compartment muscles (tibialis anterior [TA] and extensor digitorum longus [EDL], both predominantly fast muscles). With 400μM MB in the infusion reservoir, muscles on the MB-infused side exhibited on average a ~100% increase in nerve-evoked contractile force compared to muscles on the contralateral non-infused side (p<0.01 for both twitch and tetanus in EDL and TA). Pairwise comparisons of endplate innervation also revealed a beneficial effect of MB infusion, with an average of 65% of endplates innervated in infused EDL, compared to only 35% on the non-infused side (p<0.01). Results suggested that MB's protective effects required an extracellular [MB] of ~1μM, were initiated peripherally (no evidence of retrograde transport into the spinal cord), and involved MB's reduced form. Thus peripherally-initiated actions of MB can help preserve neuromuscular structure and function in SOD1-G93A mice, even at late stages of disease.
Collapse
|
23
|
Rodriguez P, Zhao J, Milman B, Tiwari YV, Duong TQ. Methylene blue and normobaric hyperoxia combination therapy in experimental ischemic stroke. Brain Behav 2016; 6:e00478. [PMID: 27458543 PMCID: PMC4951618 DOI: 10.1002/brb3.478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Ischemic stroke is a global burden that contributes to the disability and mortality of millions of patients. This study aimed to evaluate the efficacy of combined MB (methylene blue) and NBO (normobaric hyperoxia) therapy in experimental ischemic stroke. METHODS Rats with transient (60 min) MCAO (middle cerebral artery occlusion) were treated with: (1) air + vehicle (N = 8), (2) air + MB (N = 8), (3) NBO + vehicle (N = 7), and (4) NBO + MB (N = 9). MB (1 mg/kg) was administered at 30 min, again on days 2, 7, and 14 after stroke. NBO was given during MRI (30-150 min) on day 0, and again 1 h each during MRI on subsequent days. Serial diffusion, perfusion and T2 MRI were performed to evaluate lesion volumes. Foot-fault and cylinder tests were performed to evaluate sensorimotor function. RESULTS The major findings were: (1) NBO + MB therapy showed a greater decrease in infarct volume compared to NBO alone, but similar infarct volume compared to MB alone, (2) NBO + MB therapy accelerated sensorimotor functional recovery compared to NBO or MB alone, (3) Infarct volumes on day 2 did not change significantly from those on day 28 for all four groups, but behavioral function continued to show improved recovery in the NBO + MB group. CONCLUSIONS These findings support the hypothesis that combined NBO + MB further improves functional outcome and reduces infarct volume compared to either treatment alone and these improvements extended up to 28 days.
Collapse
Affiliation(s)
- Pavel Rodriguez
- Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioTexas
- Department of RadiologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Jiang Zhao
- Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioTexas
- Department of Anatomy and EmbryologyPeking University Health Science CenterBeijingChina
| | - Brian Milman
- Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioTexas
| | - Yash Vardhan Tiwari
- Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioTexas
- Department of Biomedical EngineeringUniversity of TexasSan AntonioTexas
| | - Timothy Q. Duong
- Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioTexas
| |
Collapse
|
24
|
Farrokhi MR, Lotfi M, Masoudi MS, Gholami M. Effects of methylene blue on postoperative low-back pain and functional outcomes after lumbar open discectomy: a triple-blind, randomized placebo-controlled trial. J Neurosurg Spine 2016; 24:7-15. [DOI: 10.3171/2015.3.spine141172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Despite advances in surgical and anesthesiology techniques, many patients continue to experience postoperative pain after lumbar disc operations. This study aims to investigate the effects of methylene blue (MB) on preventing postoperative low-back pain (LBP) with or without radicular pain and improving the quality of life (QOL) in patients undergoing lumbar open discectomy.
METHODS
This is a prospective, randomized, triple-blind, placebo-controlled clinical trial, which was conducted at Shiraz University of Medical Sciences between July 2011 to January 2012. Of a total of 130 patients, 115 were eligible for participation; 56 received 1 ml of MB solution at a concentration of 0.5% (MB group) and 59 received an equivalent volume of normal saline (control group). Primary outcomes were the control of LBP with or without radicular pain, which was evaluated preoperatively and at 24 hours and 3 months after surgery with the use of a visual analog scale (VAS), and the improvement of QOL, which was assessed preoperatively and 3 months postoperatively by means of the Persian translation of the Oswestry Disability Index questionnaire.
RESULTS
The mean VAS scores for LBP were significantly lower in the MB group compared with the control group at 24 hours (1.25 ± 0.97 vs 2.80 ± 0.69, p < 0.001) and 3 months (1.02 ± 1.29 vs 2.07 ± 1.10, p = 0.019) after treatment. The mean radicular pain scores decreased significantly in the 2 groups at 24 hours after surgery, but the mean radicular pain score was significantly lower in the MB-treated patients than the control group. However, the difference between radicular pain scores in the MB group (1 ± 1.1) and the control group (1.2 ± 1) was not statistically significant (p = 0.64). The reduction in LBP was greater in the MB group than the control group (8.11 ± 1.74 vs 6.07 ± 1.52, p = 0.023, CI 95% −1.37 to −0.10). The functional QOL improved significantly 3 months after the operation in both groups (p < 0.001). Moderate disability occurred more frequently in the control group than in the MB group (14.5% vs 7.7%, p = 0.004). No toxicity, adverse effects, or complications were found in the group of patients treated with MB injection.
CONCLUSIONS
A single dose of MB (1 ml 0.5%) for coating the dura and surrounding tissues (facet and muscle) shows promising results in terms of safety, reduction of postoperative pain, and functional outcome compared with placebo.
Collapse
Affiliation(s)
| | - Mehrzad Lotfi
- 2Radiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Gholami
- 1Shiraz Neuroscience Research Center and Neurosurgery Department, and
| |
Collapse
|
25
|
Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2015; 157:273-291. [PMID: 26603930 DOI: 10.1016/j.pneurobio.2015.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael Forster
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Medical Center Drive, Morgantown, WV 26506, USA
| | - Ran Liu
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
26
|
Lu Q, Tucker D, Dong Y, Zhao N, Zhang Q. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia. Mol Neurobiol 2015; 53:5344-55. [PMID: 26433378 DOI: 10.1007/s12035-015-9455-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
Transient global cerebral ischemia (GCI) causes delayed neuronal cell death in the vulnerable hippocampus CA1 subfield, as well as behavioral deficits. Ischemia reperfusion (I/R) produces excessive reactive oxygen species and plays a key role in brain injury. The mitochondrial electron respiratory chain is the main cellular source of free radical generation, and dysfunction of mitochondria has a significant impact on the neuronal cell death in ischemic brain. The aim of the present study is to investigate the potential beneficial effects of methylene blue (MB) in a four-vessel occlusion (4VO) GCI model on adult male rats. MB was delivered at a dose of 0.5 mg/kg/day for 7 days, through a mini-pump implanted subcutaneously after GCI. We first found that MB significantly improved ischemic neuronal survival in the hippocampal CA1 region as measured by cresyl violet staining as well as NeuN staining. We also found that MB has the ability to rescue ischemia-induced decreases of cytochrome c oxidase activity and ATP generation in the CA1 region following I/R. Further analysis with labeling of MitoTracker® Red revealed that the depolarization of mitochondrial membrane potential (MMP) was markedly attenuated following MB treatment. In addition, the induction of caspase-3, caspase-8, and caspase-9 activities and the increased numbers of TUNEL-positive cells of the CA1 region were significantly reduced by MB application. Correspondingly, Barnes maze tests showed that the deterioration of spatial learning and memory performance following GCI was significantly improved in the MB-treatment group compared to the ischemic control group. In summary, our study suggests that MB may be a promising therapeutic agent targeting neuronal cell death and cognitive deficits following transient global cerebral ischemia.
Collapse
Affiliation(s)
- Qing Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA.
| |
Collapse
|
27
|
Gonzalez-Lima F, Auchter A. Protection against neurodegeneration with low-dose methylene blue and near-infrared light. Front Cell Neurosci 2015; 9:179. [PMID: 26029050 PMCID: PMC4428125 DOI: 10.3389/fncel.2015.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Affiliation(s)
- F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin Austin, TX, USA
| | - Allison Auchter
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
28
|
Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 2014; 46:101-16. [PMID: 25514659 DOI: 10.1016/j.neuro.2014.12.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that is characterized by two major neuropathological hallmarks: the degeneration of dopaminergic neurons in the substantia nigra (SN) and the presence of Lewy bodies in the surviving SN neurons, as well as other regions of the central and peripheral nervous system. Animal models have been invaluable tools for investigating the underlying mechanisms of the pathogenesis of PD and testing new potential symptomatic, neuroprotective and neurorestorative therapies. However, the usefulness of these models is dependent on how precisely they replicate the features of clinical PD with some studies now employing combined gene-environment models to replicate more of the affected pathways. The rotenone model of PD has become of great interest following the seminal paper by the Greenamyre group in 2000 (Betarbet et al., 2000). This paper reported for the first time that systemic rotenone was able to reproduce the two pathological hallmarks of PD as well as certain parkinsonian motor deficits. Since 2000, many research groups have actively used the rotenone model worldwide. This paper will review rotenone models, focusing upon their ability to reproduce the two pathological hallmarks of PD, motor deficits, extranigral pathology and non-motor symptoms. We will also summarize the recent advances in neuroprotective therapies, focusing on those that investigated non-motor symptoms and review rotenone models used in combination with PD genetic models to investigate gene-environment interactions.
Collapse
Affiliation(s)
- Michaela E Johnson
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
29
|
The antioxidative, non-psychoactive tricyclic phenothiazine reduces brain damage after experimental traumatic brain injury in mice. Neurosci Lett 2014; 584:253-8. [PMID: 25449871 DOI: 10.1016/j.neulet.2014.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
Abstract
Oxidative stress due to free radical formation is an important mechanism of secondary brain damage following traumatic brain injury (TBI). Phenothiazine has been found to be a strong antioxidant in eukaryotic cells in vitro and in invertebrates in vivo. The present study was designed to determine the neuroprotective potency of unsubstituted phenothiazine in a paradigm of acute brain injury. Thirty minutes after pneumatic, controlled cortical impact (CCI) injury, C57BI6 mice were randomly assigned to "low dose" (3 mg/kg, LD) or "high dose" (30 mg/kg, HD) s.c. phenothiazine or vehicle treatment. Brain lesion, neurofunctional impairment, body weight, and markers of cerebral inflammation were determined 24h after the insult. Phenothiazine treatment dose-dependently reduced brain lesion volume (LD: -19.8%; HD: -26.1%) and posttraumatic body weight loss. There were no significant differences in the neurological function score and in markers of cerebral inflammation (Iba-1 positive cells, TNFα expression), whereas iNOS expression was significantly lower compared to vehicle-treated animals. Phenothiazine appears to modify in a post-treatment protocol certain aspects of secondary brain damage in vivo at unusually low concentrations, in particular the cortical contusion volume after TBI. The potential role of the reduced iNOS expression is unclear at present.
Collapse
|
30
|
Gonzalez-Lima F, Barksdale BR, Rojas JC. Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 2014; 88:584-93. [DOI: 10.1016/j.bcp.2013.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
31
|
Tricoire H, Palandri A, Bourdais A, Camadro JM, Monnier V. Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia. Hum Mol Genet 2014; 23:968-79. [PMID: 24105471 DOI: 10.1093/hmg/ddt493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common hereditary ataxia, is characterized by progressive degeneration of the central and peripheral nervous system, hypertrophic cardiomyopathy and a high risk of diabetes. FRDA is caused by abnormally low levels of frataxin, a highly conserved mitochondrial protein. Drosophila has been previously successfully used to model FRDA in various cell types, including neurons and glial cells. Here, we report the development of a Drosophila cardiac model of FRDA. In vivo heart imaging revealed profound impairments in heart function in frataxin-depleted Drosophila, including a strong increase in end-systolic and end-diastolic diameters and a decrease in fractional shortening (FS). These features, reminiscent of pathological phenotypes in humans, are fully rescued by complementation with human frataxin, suggesting conserved cardiac functions of frataxin between the two organisms. Oxidative stress is not a major factor of heart impairment in frataxin-depleted flies, suggesting the involvement of other pathological mechanisms notably mitochondrial respiratory chain (MRC) dysfunction. Accordingly, we report that methylene blue (MB), a compound known to act as an alternative electron carrier that bypasses mitochondrial complexes I-III, was able to prevent heart dysfunction. MB also partially rescued the phenotype when administered post-symptomatically. Analysis of MB derivatives demonstrates that only compounds with electron carrier properties are able to prevent the heart phenotype. Thus MB, a compound already used for several clinical applications, appears promising for the treatment of the heart dysfunctions that are a major cause of death of FRDA patients. This work provides the grounds for further evaluation of MB action in mammals.
Collapse
Affiliation(s)
- Hervé Tricoire
- Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Richardson TE, Kelly HN, Yu AE, Simpkins JW. Therapeutic strategies in Friedreich's ataxia. Brain Res 2013; 1514:91-7. [PMID: 23587934 PMCID: PMC4461031 DOI: 10.1016/j.brainres.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
First established as a diagnosis by Nikolaus Friedreich in 1863, Friedreich's ataxia (FA) is an autosomal recessive progressive neurodegenerative disorder cause by a trinucleotide repeat expansion. FA begins with the functional absence of the FXN gene product frataxin, a protein whose exact function still remains unknown. This absence results in impaired intracellular antioxidant defenses, dysregulation of iron-sulfur cluster proteins, depression of aerobic electron transport chain respiration, massive mitochondrial dysfunction, and ultimately cell death in the brain, spinal cord and heart. Herein, we review the molecular and cellular pathogenesis leading to widespread organ system dysfunction, as well as current therapeutic research aimed at preventing the debilitating effects of frataxin loss and preventing the signs and symptoms associated of FA. We also discuss the ongoing treatment strategies employed by our laboratory to prevent mitochondrial damage using synergistic effects of 17β-estradiol and methylene blue, previously shown by our group and others to have protective effects in human FA fibroblasts. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Heather N. Kelly
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amanda E. Yu
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W. Simpkins
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
33
|
Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH. Neuroprotective actions of methylene blue and its derivatives. PLoS One 2012; 7:e48279. [PMID: 23118969 PMCID: PMC3485214 DOI: 10.1371/journal.pone.0048279] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/21/2012] [Indexed: 01/08/2023] Open
Abstract
Methylene blue (MB), the first lead chemical structure of phenothiazine and other derivatives, is commonly used in diagnostic procedures and as a treatment for methemoglobinemia. We have previously demonstrated that MB could function as an alternative mitochondrial electron transfer carrier, enhance cellular oxygen consumption, and provide protection in vitro and in rodent models of Parkinson's disease and stroke. In the present study, we investigated the structure-activity relationships of MB in vitro using MB and six structurally related compounds. MB reduces mitochondrial superoxide production via alternative electron transfer that bypasses mitochondrial complexes I-III. MB mitigates reactive free radical production and provides neuroprotection in HT-22 cells against glutamate, IAA and rotenone toxicity. Distinctly, MB provides no protection against direct oxidative stress induced by glucose oxidase. Substitution of a side chain at MB's 10-nitrogen rendered a 1000-fold reduction of the protective potency against glutamate neurototoxicity. Compounds without side chains at positions 3 and 7, chlorophenothiazine and phenothiazine, have distinct redox potentials compared to MB and are incapable of enhancing mitochondrial electron transfer, while obtaining direct antioxidant actions against glutamate, IAA, and rotenone insults. Chlorophenothiazine exhibited direct antioxidant actions in mitochondria lysate assay compared to MB, which required reduction by NADH and mitochondria. MB increased complex IV expression and activity, while 2-chlorphenothiazine had no effect. Our study indicated that MB could attenuate superoxide production by functioning as an alternative mitochondrial electron transfer carrier and as a regenerable anti-oxidant in mitochondria.
Collapse
Affiliation(s)
- Ethan Poteet
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
| | - Ali Winters
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
| | - Kyle Shufelt
- Department of Chemistry, Texas Christian University, Fort Worth, Texas, United States of America
| | - Kayla N. Green
- Department of Chemistry, Texas Christian University, Fort Worth, Texas, United States of America
| | - James W. Simpkins
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
| | - Yi Wen
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Alzheimer’s Disease and Aging Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P, Kabashi E, Parker JA. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 2012; 7:e42117. [PMID: 22848727 PMCID: PMC3407135 DOI: 10.1371/journal.pone.0042117] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022] Open
Abstract
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Shunmoogum A. Patten
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Sorana Ciura
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Claudia Maios
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
| | - Martine Therrien
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Pierre Drapeau
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Edor Kabashi
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- * E-mail: (EK); (JAP)
| | - J. Alex Parker
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
- * E-mail: (EK); (JAP)
| |
Collapse
|
35
|
Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 2012; 8:609-22. [PMID: 22361619 DOI: 10.4161/auto.19048] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.
Collapse
Affiliation(s)
- Erin E Congdon
- Taub Institute/Department of Pathology, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Spaeth C, Fan J, Spaeth E, Robison T, Wilcott R, Bittner G. Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair. J Neurosci Res 2011; 90:945-54. [DOI: 10.1002/jnr.22823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Wang Z, Pang RD, Hernandez M, Ocampo MA, Holschneider DP. Anxiolytic-like effect of pregabalin on unconditioned fear in the rat: an autoradiographic brain perfusion mapping and functional connectivity study. Neuroimage 2011; 59:4168-88. [PMID: 22155030 DOI: 10.1016/j.neuroimage.2011.11.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 12/15/2022] Open
Abstract
Clinical and preclinical evidence suggests anxiolytic-like efficacy of pregabalin (PGB, Lyrica). However, its mechanism of action remains under investigation. The current study applied [(14)C]-iodoantipyrine cerebral blood flow (CBF) mapping to examine the effect of PGB on neural substrates underlying unconditioned fear in a rat model of footshock-induced fear. Regional CBF (rCBF) was analyzed by statistical parametric mapping. Functional connectivity and graph theoretical analysis were used to investigate how footshock and PGB affect brain activation at the network level. Pregabalin significantly attenuated footshock-induced ultrasonic vocalization, but showed no significant effect on freezing behavior. Footshock compared to no-shock controls elicited significant increases in rCBF in limbic/paralimbic regions implicated in the processing of unconditioned fear and ultrasonic vocalization, including the amygdala, hypothalamus, lateral septum, dorsal periaqueductal gray, the anterior insular (aINS) and medial prefrontal cortex (mPFC). The activation pattern was similar in vehicle- and PGB-treated subjects, with PGB significantly attenuating activation in the amygdala, hypothalamus, and aINS. The vehicle/no-shock group showed strong, positive intra-structural correlations within the cortex, hypothalamus, amygdala, thalamus, and brainstem. The cortex was negatively correlated with the hypothalamus and brainstem. Footshock reduced the total number of significant correlations, but induced greater intra-cortical connectivity of the aINS and mPFC, and new positive correlations between the hypothalamus and amygdala. In no-shock controls, PGB significantly reduced the positive intra-structural correlations within the cortex and amygdala, as well as the negative cortico-subcortical correlations. Following footshocks, PGB disrupted both the network recruitment of aINS and mPFC, and the positive hypothalamic-amygdaloid correlations. Our findings suggest that PGB may exert anxiolytic effect by attenuating cortico-cortical and cortico-subcortical communication and inhibiting network recruitment of the aINS, mPFC, amygdala, and hypothalamus following a fear-inducing stimulus. Functional brain mapping in rodents may provide new endpoints for preclinical evaluation of anxiolytic drug candidates with potentially improved translational power compared to behavioral measurements alone.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
38
|
Rojas JC, Bruchey AK, Gonzalez-Lima F. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 2011; 96:32-45. [PMID: 22067440 DOI: 10.1016/j.pneurobio.2011.10.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue's action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, USA
| | | | | |
Collapse
|
39
|
Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124:225-50. [PMID: 21914720 DOI: 10.1093/toxsci/kfr239] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration describes the loss of neuronal structure and function. Numerous neurodegenerative diseases are associated with neurodegeneration. Many are rare and stem from purely genetic causes. However, the prevalence of major neurodegenerative diseases is increasing with improvements in treating major diseases such as cancers and cardiovascular diseases, resulting in an aging population. The neurological consequences of neurodegeneration in patients can have devastating effects on mental and physical functioning. The causes of most cases of prevalent neurodegenerative diseases are unknown. The role of neurotoxicant exposures in neurodegenerative disease has long been suspected, with much effort devoted to identifying causative agents. However, causative factors for a significant number of cases have yet to be identified. In this review, the role of environmental neurotoxicant exposures on neurodegeneration in selected major neurodegenerative diseases is discussed. Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis were chosen because of available data on environmental influences. The special sensitivity the nervous system exhibits to toxicant exposure and unifying mechanisms of neurodegeneration are explored.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
40
|
Klein A, Gidyk DC, Shriner AM, Colwell KL, Tatton NA, Tatton WG, Metz GA. Dose-dependent loss of motor function after unilateral medial forebrain bundle rotenone lesion in rats: A cautionary note. Behav Brain Res 2011; 222:33-42. [DOI: 10.1016/j.bbr.2011.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
|
41
|
Abstract
Parkinson's disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology in the Center for Translational Neuromedicine, University of Rochester, Rochester, New York 14625, USA.
| |
Collapse
|
42
|
Herraiz T, Guillén H. Inhibition of the bioactivation of the neurotoxin MPTP by antioxidants, redox agents and monoamine oxidase inhibitors. Food Chem Toxicol 2011; 49:1773-81. [DOI: 10.1016/j.fct.2011.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/06/2023]
|
43
|
Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson's disease recent advances. PROGRESS IN BRAIN RESEARCH 2011; 184:17-33. [PMID: 20887868 DOI: 10.1016/s0079-6123(10)84002-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal models have been invaluable to Parkinson's disease (PD) research. Of these, neurotoxin models have historically been the most widely utilized. The goal of this chapter is to give a brief historical description of classic PD models and then to identify the most recent important advances in modeling human PD in animals. Indeed, significant advances in modeling additional features of PD and expansion to new species have occurred in both older and newer models. The roles these new advances in modeling may have in future PD research are examined in this chapter.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
44
|
Riha PD, Rojas JC, Gonzalez-Lima F. Beneficial network effects of methylene blue in an amnestic model. Neuroimage 2010; 54:2623-34. [PMID: 21087672 DOI: 10.1016/j.neuroimage.2010.11.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 11/29/2022] Open
Abstract
Posterior cingulate/retrosplenial cortex (PCC) hypometabolism is a common feature in amnestic mild cognitive impairment and Alzheimer's disease. In rats, PCC hypometabolism induced by mitochondrial dysfunction induces oxidative damage, neurodegeneration and memory deficits. USP methylene blue (MB) is a diaminophenothiazine drug with antioxidant and metabolic-enhancing properties. In rats, MB facilitates memory and prevents neurodegeneration induced by mitochondrial dysfunction. This study tested the memory-enhancing properties of systemic MB in rats that received an infusion of sodium azide, a cytochrome oxidase inhibitor, directly into the PCC. Lesion volumes were estimated with unbiased stereology. MB's network-level mechanism of action was analyzed using graph theory and structural equation modeling based on cytochrome oxidase histochemistry-derived metabolic mapping data. Sodium azide infusions induced PCC hypometabolism and impaired visuospatial memory in a holeboard food-search task. Isolated PCC cytochrome oxidase inhibition disrupted the cingulo-thalamo-hippocampal effective connectivity, decreased the PCC functional networks and created functional redundancy within the thalamus. An intraperitoneal dose of 4 mg/kg MB prevented the memory impairment, reduced the PCC metabolic lesion volume and partially restored the cingulo-thalamo-hippocampal network effects. The effects of MB were dependent upon the local sub-network necessary for memory retrieval. The data support that MB's metabolic-enhancing effects are contingent upon the neural context, and that MB is able to boost coherent and orchestrated adaptations in response to physical alterations to the network involved in visuospatial memory. These results implicate MB as a candidate intervention to improve memory. Because of its neuroprotective properties, MB may have disease-modifying effects in amnestic conditions associated with hypometabolism.
Collapse
Affiliation(s)
- Penny D Riha
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
45
|
Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm (Vienna) 2010; 118:87-114. [PMID: 20963453 DOI: 10.1007/s00702-010-0486-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/23/2022]
Abstract
Brief cardiac arrest and survival is often associated with marked neurological alterations related to cognitive and sensory motor functions. However, detail studies using selective vulnerability of brain after cardiac arrest in animal models are still lacking. We examined selective vulnerability of five brain regions in our well-established cardiac arrest model in pigs. Using light and electron microscopic techniques in combinations with immunohistochemistry, we observed that 5, 30, 60 and 180 min after cardiac arrest results in progressive neuronal damage that was most marked in the thalamus followed by cortex, hippocampus, hypothalamus and the brain stem. The neuronal damages are largely evident in the areas showing leakage of serum albumin in the neuropil. Furthermore, a tight correlation was seen between neuronal damage and increase in brain water content and Na(+) indicating vasogenic edema formation after cardiac arrest. Damage to myelinated fibers and loss of myelin as seen using Luxol fast blue and myelin basic protein (MBP) immunoreactivity is clearly evident in the brain areas exhibiting neuronal damage. Upregulation of GFAP positive astrocytes closely corresponds with neuronal damages in different brain areas after cardiac arrest. At the ultrastructural level, perivascular edema together with neuronal, glial and endothelia cell damages is frequent in the brain areas showing albumin leakage. Damage to both pre- and post-synaptic membrane is also common. Treatment with methylene blue, an antioxidant markedly reduced neuronal damage, leakage of albumin, overexpression of GFAP and damage to myelin following cardiac arrest. Taken together, these observations suggest that (a) cardiac arrest is capable to induce selective neuronal, glial and myelin damage in different parts of the pig brain, and (b) antioxidant methylene blue is capable to induce neuroprotection by reducing BBB disruption. These observations strongly suggest that the model could be used to explore new therapeutic agents to enhance neurorepair following cardiac arrest-induced brain damage for therapeutic purposes.
Collapse
|
46
|
Rojas JC, Gonzalez-Lima F. Mitochondrial optic neuropathy: In vivo model of neurodegeneration and neuroprotective strategies. Eye Brain 2010; 2:21-37. [PMID: 28539759 PMCID: PMC5436181 DOI: 10.2147/eb.s9363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review summarizes the characteristics of a rodent toxicologic model of optic neuropathy induced by the mitochondrial complex I inhibitor rotenone. This model has been developed to fulfill the demand for a drug-screening tool providing a sound mechanistic context to address the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative disorders. It features biochemical, structural, and functional retinal deficits that resemble those of patients with Leber's hereditary optic neuropathy, a mitochondrial disease characterized by selective degeneration of retinal ganglion cells, and for which an environmental component is believed to play a major triggering role. The available data support the efficiency, sensitivity, and versatility of the model for providing insights into the mechanisms of neurodegeneration, including mitochondrial dysfunction, oxidative stress and excitotoxicity. Screening work with this model has provided proof-of-principle that interventions targeting the electron transport chain, such as USP methylene blue and near-infrared light therapy, are effective at preventing neurodegeneration induced by mitochondrial dysfunction in vivo. Prospective developments of this model include the use of neuronal reporter genes for in vivo non-invasive assessment of retinal degeneration at different time points, and its combination with genetic approaches to elucidate the synergism of environmental and genetic factors in neurodegeneration.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Francisco Gonzalez-Lima
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|