1
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Xu Y, Zhi F, Peng Y, Mao J, Balboni G, Yang Y, Xia Y. A Critical Role of δ-Opioid Receptor in Anti-microglial Activation Under Stress. Front Aging Neurosci 2022; 14:847386. [PMID: 35663569 PMCID: PMC9160527 DOI: 10.3389/fnagi.2022.847386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia are involved in the regulation of cerebral homeostasis and pathogen confrontation. There is, however, evidence showing that excessive microglia activation is implicated in various age-related cerebral diseases. On the other hand, microglia may experience complex changes of polarization in pathological insults, i.e., from a proinflammatory M1 to an anti-inflammatory M2 phenotype, which differentially contribute to the exacerbation or alleviation of cellular injury. Remolding the phenotype of microglia or inhibiting the excessive activation of microglia seems to be a promising approach against neurodegenerative pathologies. Since δ-opioid receptor (DOR) activation exhibits a strong protective capacity against various neuronal injuries, especially the hypoxic/ischemic injury, we asked if the DOR-induced neuroprotection is associated with its effect on microglia. We explored this fundamental issue by using pharmacological and genetic approaches in the BV2 cell line, a general type of microglial cells. The results showed that DOR expression significantly increased in the activated microglial M2 phenotype, but slightly decreased in the microglial M1 phenotype. Hypoxia induced dual polarizations of BV2 cells with an increase in DOR expression. Administration of a specific DOR agonist, UFP-512, largely inhibited lipopolysaccharide (LPS) or hypoxia-induced microglial M1 activation and inflammatory activity with high concentrations of UFP-512 being effective to reverse the interleukin-4 (IL4)-induced microglial activation. Consistent with these observations, inhibiting DOR or knocking-down DOR promoted the excessive activation of BV2 cells in both M1 and M2 directions, while DOR overexpression did the opposite. Furthermore, the PC12 cells exposed to the conditioned medium of BV2 cells treated by UFP-512 grew better than those treated directly with UFP-512 under LPS or hypoxic insults. DOR inhibitor naltrindole could block all the effects of DOR activation. The medium from the BV2 cells with DOR knock-down decreased the viability of PC12 cell, while the medium from the BV2 cells with DOR overexpression largely attenuated LPS or hypoxic injury in the PC12 cells. These first data suggest a close linkage between DOR expression/function and microglial polarization and a critical role of DOR in negative controlling microglial activation. Our work provides a novel clue for new protective strategies against neurodegenerative pathophysiology through DOR-mediated regulation of microglia.
Collapse
|
3
|
Kuo CW, Chang MY, Chou MY, Pan CY, Peng CW, Tseng HC, Jen TY, He XK, Liu HH, Nguyen TXD, Chang PK, Hsieh TH. Long-Term Motor Cortical Electrical Stimulation Ameliorates 6-Hydroxydopamine-Induced Motor Dysfunctions and Exerts Neuroprotective Effects in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2022; 14:848380. [PMID: 35250550 PMCID: PMC8888954 DOI: 10.3389/fnagi.2022.848380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Cortical electrical stimulation (CES) can modulate cortical excitability through a plasticity-like mechanism and is considered to have therapeutic potentials in Parkinson's disease (PD). However, the precise therapeutic value of such approach for PD remains unclear. Accordingly, we adopted a PD rat model to determine the therapeutic effects of CES. The current study was thus designed to identify the therapeutic potential of CES in PD rats. METHODS A hemiparkinsonian rat model, in which lesions were induced using unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to identify the therapeutic effects of long-term (4-week) CES with intermittent theta-burst stimulation (iTBS) protocol (starting 24 h after PD lesion observation, 1 session/day, 5 days/week) on motor function and neuroprotection. After the CES intervention, detailed functional behavioral tests including gait analysis, akinesia, open-field locomotor activity, apomorphine-induced rotation as well as degeneration level of dopaminergic neurons were performed weekly up to postlesion week 4. RESULTS After the CES treatment, we found that the 4-week CES intervention ameliorated the motor deficits in gait pattern, akinesia, locomotor activity, and apomorphine-induced rotation. Immunohistochemistry and tyrosine hydroxylase staining analysis demonstrated that the number of dopamine neurons was significantly greater in the CES intervention group than in the sham treatment group. CONCLUSION This study suggests that early and long-term CES intervention could reduce the aggravation of motor dysfunction and exert neuroprotective effects in a rat model of PD. Further, this preclinical model of CES may increase the scope for the potential use of CES and serve as a link between animal and PD human studies to further identify the therapeutic mechanism of CES for PD or other neurological disorders.
Collapse
Affiliation(s)
- Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan City, Taiwan
- Department of Early Childhood and Family Educare, Chung Chou University of Science and Technology, Yuanlin City, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - Hui-Chiun Tseng
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Tsu-Yi Jen
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
| | - Xiao-Kuo He
- Department of Rehabilitation Medicine, The Fifth Hospital of Xiamen, Xiamen, China
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Thi Xuan Dieu Nguyen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Pi-Kai Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
4
|
Zheng M, Choi N, Balboni G, Xia Y, Sung JH. Hair Growth Promotion by δ-Opioid Receptor Activation. Biomol Ther (Seoul) 2021; 29:643-649. [PMID: 34148869 PMCID: PMC8551727 DOI: 10.4062/biomolther.2021.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/05/2022] Open
Abstract
Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/β-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/β-catenin pathway was activated by UFP-512 and siRNA for β-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Nahyun Choi
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Jong-Hyuk Sung
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea.,College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
5
|
Early Repetitive Transcranial Magnetic Stimulation Exerts Neuroprotective Effects and Improves Motor Functions in Hemiparkinsonian Rats. Neural Plast 2021; 2021:1763533. [PMID: 34987572 PMCID: PMC8723880 DOI: 10.1155/2021/1763533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.
Collapse
|
6
|
Abstract
Since ancient times, opioids have been used clinically and abused recreationally. In the early stages (about 1,000 AD) of opium history, an Arab physician, Avicenna, administered opioids to control diarrhea and eye diseases. 1 Opioids have very strong pain relieving properties and they also regulate numerous cellular responses. Opioid receptors are expressed throughout the body, including the nervous system, heart, lungs, liver, gastrointestinal tract, and retina. 2-6 Delta opioid receptors (DORs) are a very attractive target from the perspective of both receptor function and their therapeutic potential. Due to a rapid progress in mouse mutagenesis and development of small molecules as DOR agonist, novel functions and roles of DORs have emerged in recent years. This review article focuses on the recent advances in the neuroprotective roles of DOR agonists in general and retina neuroprotection in particular. Rather than being exhaustive, this review highlights the selected studies of DOR function in neuroprotection. We also highlight our preclinical studies using rodent models to demonstrate the potentials of DOR agonists for retinal neuroprotection. Based on existing literature and our recently published data on the eye, DOR agonists possess therapeutic abilities that protect the retina and optic nerve injury against glaucoma and perhaps other retinopathies as well. This review also highlights the signaling events associated with DOR for neuroprotection in the eye. There is a need for translational research on DORs to recognize their potential for clinical application such as in glaucoma.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
7
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
8
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
9
|
Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y, Nutaitis MJ. PI3K/Akt Pathway: A Role in δ-Opioid Receptor-Mediated RGC Neuroprotection. Invest Ophthalmol Vis Sci 2018; 58:6489-6499. [PMID: 29288267 PMCID: PMC5749243 DOI: 10.1167/iovs.16-20673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose This study examines the role of PI3K/Akt pathway in δ-opioid receptor agonist (SNC-121)-induced RGC neuroprotection in a chronic glaucoma rat model. Methods Injecting hypertonic saline into the limbal veins of Brown Norway rats elevated IOP. Rats were treated either with 1 mg/kg SNC-121 or 3 mg/kg 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY-294002; PI3K/Akt inhibitor) plus SNC-121 once daily for 7 days. Pattern ERGs were recorded in response to contrast reversal of patterned visual stimuli. Retinal ganglion cells (RGC) were visualized by Fluorogold retrograde labeling. Optic nerve head (ONH) astrocytes were pretreated with PI3K/Akt inhibitors for 30 minutes followed by 1-μM SNC-121 treatment. Changes in matrix metalloproteinases (MMP-1, -2, and -3) production and PI3K/Akt activation in optic nerve and TNF-α treated ONH astrocytes were measured by immunohistochemistry and Western blotting. Results SNC-121 activates the PI3K/Akt pathway in ONH astrocytes and the retina. In ONH astrocytes, SNC-121–induced Akt activation was fully inhibited by PI3K/Akt inhibitors. A sustained decline (7–42 days post injury) in Akt activation was seen in the ocular-hypertensive retina and optic nerve. This decline is reversed to normal levels by 1-mg/kg intraperitoneally (i.p.) SNC-121 treatment. Both pattern ERG amplitudes and RGC numbers were reduced in ocular hypertensive eyes, which were significantly increased in SNC-121–treated animals. Interestingly, SNC-121–induced increase in pattern-ERG amplitudes and RGC numbers were inhibited in LY-294002 pretreated animals. Additionally, SNC-121 treatment inhibited MMP-1, -2, and -3 production from the optic nerve of ocular hypertensive rats and TNF-α–treated ONH astrocytes. Conclusions PI3K/Akt pathway plays a crucial role in SNC-121–mediated RGC neuroprotection against glaucomatous injury.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami, Miami, Florida, United States
| | - Sudha Singh
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Carolyn Peterseim
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yasir Abdul
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | - Matthew J Nutaitis
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
10
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that compromises multiple neurochemical substrates including dopamine, norepinephrine, serotonin, acetylcholine, and glutamate systems. Loss of these transmitter systems initiates a cascade of neurological deficits beginning with motor function and ending with dementia. Current therapies primarily address the motor symptoms of the disease via dopamine replacement therapy. Exogenous dopamine replacement brings about additional challenges since after years of treatment it almost invariably gives rise to dyskinesia as a side effect. Therefore there is a clear unmet clinical need for improved PD therapeutics. Opioid receptors and their respective peptides are expressed throughout the basal ganglia and cortex where monoaminergic denervation strongly contributes to PD pathology. Delta opioid receptors are of particular interest because of their dense localization in basal ganglia and because activating this system is known to enhance locomotor activity under a variety of conditions. This chapter will outline much of the work that has demonstrated the effectiveness of delta opioid receptor activation in models of PD and its neuroprotective properties. It also discusses some of the challenges that must be addressed before moving delta opioid receptor agonists into a clinical setting.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Cordon I, Nicolás MJ, Arrieta S, Alegre M, Artieda J, Valencia M. Theta-phase closed-loop stimulation induces motor paradoxical responses in the rat model of Parkinson disease. Brain Stimul 2017; 11:231-238. [PMID: 29051091 DOI: 10.1016/j.brs.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 10/05/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND High-frequency deep brain stimulation (DBS) has become a widespread therapy used in the treatment of Parkinson's Disease (PD) and other diseases. Although it has proved beneficial, much recent attention has been centered around the potential of new closed-loop DBS implementations. OBJECTIVE Here we present a new closed-loop DBS scheme based on the phase of the theta activity recorded from the motor cortex. By testing the implementation on freely moving 6-OHDA lesioned and control rats, we assessed the behavioral and neurophysiologic effects of this implementation and compared it against the classical high-frequency DBS. RESULTS Results show that both stimulation modalities produce significant and opposite changes on the movement and neurophysiological activity. Close-loop stimulation, far from improving the animals' behavior, exert contrary effects to those of high-frequency DBS which reverts the parkinsonian symptoms. Motor improvement during open-loop, high-frequency DBS was accompanied by a reduction in the amount of cortical beta oscillations while akinetic and disturbed behavior during close-loop stimulation coincided with an increase in the amplitude of beta activity. CONCLUSION Cortical-phase-dependent close-loop stimulation of the STN exerts significant behavioral and oscillatory changes in the rat model of PD. Open-loop and close-loop stimulation outcomes differed dramatically, thus suggesting that the scheme of stimulation determines the output of the modulation even if the target structure is maintained. The current framework could be extended in future studies to identify the correct parameters that would provide a suitable control signal to the system. It may well be that with other stimulation parameters, this sort of DBS could be beneficial.
Collapse
Affiliation(s)
- Ivan Cordon
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Jesús Nicolás
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Sandra Arrieta
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Manuel Alegre
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain; Neurophysiology Service, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain
| | - Julio Artieda
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain; Neurophysiology Service, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain.
| | - Miguel Valencia
- Neuroscience Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research, 31008 Pamplona, Spain.
| |
Collapse
|
13
|
Raina R, Sen D. Can crosstalk between DOR and PARP reduce oxidative stress mediated neurodegeneration? Neurochem Int 2017; 112:206-218. [PMID: 28739183 DOI: 10.1016/j.neuint.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
The progressive loss of structure and function of neurons leads to neurodegenerative processes which become the causative reason for various neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) etc. These diseases are multifactorial in nature but they have been seen to possess similar causative agents to a certain extent. Oxidative Stress (OS) has been identified as a major stressor and a mediator in most of these diseases. OS not only leads to the generation of free radical species but if persistent, can possibly lead to lipid peroxidation, protein damage, DNA damage, and cell death. Anti-oxidants are endogenously present in our body to tackle oxygen metabolites but their levels reduce greatly under continuous OS conditions. In such a case, dietary supplements to replenish the anti-oxidant levels in our body is a good way of treatment but it is very slow and may not be as effective in chronic stress conditions. Thus, there is a need for more effective mechanisms to attenuate OS. Two such mechanisms which can be considered are the activation of Delta opioid receptor (DOR) and Inhibition of Poly (ADP-ribose)-polymerase1 (PARP1), which have been suggested to protect neurons and increase neuronal cell survivability in both in-vitro and in-vivo disease models. Various signaling pathways have been highlighted to probably play a significant role in attenuating OS by the activation of DOR. It would be an interesting topic of investigation to see if one of the probable mechanisms by which DOR attenuates OS could be by modulation of PARP through a cascade of intracellular signaling reactions.
Collapse
Affiliation(s)
- Rutika Raina
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Abstract
Depression is a pervasive and debilitating mental disorder that is inadequately treated by current pharmacotherapies in a majority of patients. Although opioids have long been known to regulate mood states, the use of opioids to treat depression is rarely discussed. This chapter explores the preclinical and clinical evidence supporting the antidepressant-like effects of opioid ligands, and in particular, delta opioid receptor (DOR) agonists. DOR agonists have been shown to produce antidepressant-like effects in a number of animal models. Some DOR agonists also produce convulsions which has limited their clinical utility. However, DOR agonists that generate antidepressant-like effects without convulsions have recently been developed and these drugs are beginning to be evaluated in humans. Work investigating potential mechanisms of action for the antidepressant-like effects of DOR agonists is also explored. Understanding mechanisms that give rise to DOR-mediated behaviors is critical for the development of DOR drugs with improved safety and clinical utility, and future work should be devoted to elucidating these pathways.
Collapse
|
15
|
Pellissier LP, Pujol CN, Becker JAJ, Le Merrer J. Delta Opioid Receptors: Learning and Motivation. Handb Exp Pharmacol 2016; 247:227-260. [PMID: 28035528 DOI: 10.1007/164_2016_89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delta opioid receptor (DOR) displays a unique, highly conserved, structure and an original pattern of distribution in the central nervous system, pointing to a distinct and specific functional role among opioid peptide receptors. Over the last 15 years, in vivo pharmacology and genetic models have allowed significant advances in the understanding of this role. In this review, we will focus on the involvement of DOR in modulating different types of hippocampal- and striatal-dependent learning processes as well as motor function, motivation, and reward. Remarkably, DOR seems to play a key role in balancing hippocampal and striatal functions, with major implications for the control of cognitive performance and motor function under healthy and pathological conditions.
Collapse
Affiliation(s)
- L P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - C N Pujol
- Département de Neurosciences, Institut de Génomique fonctionnelle, INSERM U-661, CNRS UMR-5203, 34094, Montpellier, France
| | - J A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - J Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
16
|
Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther 2015; 40:155-66. [PMID: 25726896 DOI: 10.1111/jcpt.12244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The endogenous opioid system co-evolved with chemical defences, or at times symbiotic relationships, between plants and other autotrophs and heterotrophic predators - thus, it is not surprising that endogenous opioid ligands and exogenous mimetic ligands produce diverse physiological effects. Among the endogenous opioid peptides (endomorphins, enkephalins, dynorphins and nociception/orphanin FQ) derived from the precursors encoded by four genes (PNOC, PENK, PDYN and POMC) are the pentapeptides Met-enkephalin (Tyr-Gly-Gly-Phe-Met) and Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). The physiological effects of the enkephalins are mediated via 7-transmembrane G protein-coupled receptors, including delta opioid receptor (DOR). We present a concise update on the status of progress and opportunities of this approach. METHODS A literature search of the PUBMED database and a combination of keywords including delta opioid receptor, analgesia, mood and individual compounds identified therein, from industry and other source, and from www.clinicaltrials.com. RESULTS AND DISCUSSION DOR agonist and antagonist ligands have been developed with ever increasing affinity and selectivity for DOR over other opioid receptor subtypes and studied for therapeutic utility, primarily for pain relief, but also for other clinical endpoints. WHAT IS NEW AND CONCLUSION Selective DOR agonists have been designed with a large increase in therapeutic window for a variety of potential CNS applications including pain, depression, and learning and memory among others.
Collapse
Affiliation(s)
- J F Peppin
- Center for Bioethics, Pain Management and Medicine, University City, MO, USA; Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | |
Collapse
|
17
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
18
|
Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 2014; 172:403-19. [PMID: 24665909 DOI: 10.1111/bph.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second-messenger signalling cascades to influence diverse cellular functions in neuronal and non-neuronal cell types. These receptors activate well-known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor-interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Louis Gendron
- Département de physiologie et biophysique, Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
19
|
Finlay CJ, Duty S, Vernon AC. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 2014; 5:95. [PMID: 24971074 PMCID: PMC4053925 DOI: 10.3389/fneur.2014.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson’s disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.
Collapse
Affiliation(s)
- Clare J Finlay
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Susan Duty
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Anthony C Vernon
- Department of Neuroscience, James Black Centre, Institute of Psychiatry, King's College London , London , UK
| |
Collapse
|
20
|
Bosse KE, Jutkiewicz EM, Schultz-Kuszak KN, Mabrouk OS, Kennedy RT, Gnegy ME, Traynor JR. Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism. Neuropharmacology 2013; 77:19-27. [PMID: 24035916 DOI: 10.1016/j.neuropharm.2013.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Glutamate is known to cause the release of dopamine through a Ca(2+)-sensitive mechanism that involves activation of NMDA ionotropic glutamate receptors. In the current study, we tested the hypothesis that the delta opioid agonist SNC80 acts indirectly, via the glutamatergic system, to enhance both amphetamine-stimulated dopamine efflux from striatal preparations and amphetamine-stimulated locomotor activity. SNC80 increased extracellular glutamate content, which was accompanied by a concurrent decrease in GABA levels. Inhibition of NMDA signaling with the selective antagonist MK801 blocked the enhancement of both amphetamine-induced dopamine efflux and hyperlocomotion observed with SNC80 pretreatment. Addition of exogenous glutamate also potentiated amphetamine-stimulated dopamine efflux in a Mg(2+)- and MK801-sensitive manner. After removal of Mg(2+) to relieve the ion conductance inhibition of NMDA receptors, SNC80 both elicited dopamine release alone and produced a greater enhancement of amphetamine-evoked dopamine efflux. The action of SNC80 to enhance amphetamine-evoked dopamine efflux was mimicked by the GABA(B) antagonist 2-hydroxysaclofen. These cumulative findings suggest SNC80 modulates amphetamine-stimulated dopamine efflux through an intra-striatal mechanism involving inhibition of GABA transmission leading to the local release of glutamate followed by subsequent activation of NMDA receptors.
Collapse
Affiliation(s)
- Kelly E Bosse
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Omar S Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther 2013; 140:112-20. [PMID: 23764370 DOI: 10.1016/j.pharmthera.2013.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/02/2023]
Abstract
Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels.
Collapse
Affiliation(s)
- Paul Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR7104 CNRS/Université de Strasbourg, U964 INSERM, Illkirch, France
| | | |
Collapse
|
22
|
Abdul Y, Akhter N, Husain S. Delta-opioid agonist SNC-121 protects retinal ganglion cell function in a chronic ocular hypertensive rat model. Invest Ophthalmol Vis Sci 2013; 54:1816-28. [PMID: 23404122 DOI: 10.1167/iovs.12-10741] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study examined if the delta-opioid (δ-opioid) receptor agonist, SNC-121, can improve retinal function and retinal ganglion cell (RGC) survival during glaucomatous injury in a chronic ocular hypertensive rat model. METHODS IOP was raised in brown Norway rats by injecting hypertonic saline into the limbal venous system. Rats were treated with 1 mg/kg SNC-121 (intraperitoneally [IP]) once daily for 7 days. Pattern-electroretinograms (PERGs) were obtained in response to contrast reversal of patterned visual stimuli. RGCs were visualized by fluorogold retrograde labeling. Expression of TNF-α and p38 mitogen-activated protein (MAP) kinase was measured by immunohistochemistry and Western blotting. RESULTS PERG amplitudes in ocular hypertensive eyes were significantly reduced (14.3 ± 0.60 μvolts) when compared with healthy eyes (18.0 ± 0.62 μvolts). PERG loss in hypertensive eyes was inhibited by SNC-121 treatment (17.20 ± 0.1.3 μvolts; P < 0.05). There was a 29% loss of RGCs in the ocular hypertensive eye, which was inhibited in the presence of SNC-121. TNF-α production and activation of p38 MAP kinase in retinal sections and optic nerve samples were upregulated in ocular hypertensive eyes and inhibited in the presence of SNC-121. Furthermore, TNF-α induced increase in p38 MAP kinase activation in astrocytes was inhibited in the presence of SNC-121. CONCLUSIONS These data provide evidence that activation of δ-opioid receptors inhibited the loss of PERG amplitudes and rate of RGC loss during glaucomatous injury. Mechanistic data provided clues that TNF-α is mainly produced from glial cells and activates p38 MAP kinase, which was significantly inhibited by SNC-121 treatment. Overall, data indicate that enhancement of δ-opioidergic activity in the eye may provide retina neuroprotection against glaucoma.
Collapse
Affiliation(s)
- Yasir Abdul
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
23
|
Turunc Bayrakdar E, Bojnik E, Armagan G, Kanit L, Benyhe S, Borsodi A, Yalcin A. Kainic acid-induced seizure activity alters the mRNA expression and G-protein activation of the opioid/nociceptin receptors in the rat brain cortex. Epilepsy Res 2013; 105:13-9. [PMID: 23337899 DOI: 10.1016/j.eplepsyres.2012.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 01/30/2023]
Abstract
The opioid/nociceptin receptors are involved in many neurological disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. Kainic acid (KA) is an analog of the excitatory amino acid transmitter glutamate and the systemic administration of KA induces status epilepticus (SE) in rodents. In this study, we examined the alterations in the G-protein activity and the gene expression levels of mu, kappa, delta opioid and nociceptin receptors (MOPr, KOPr, DOPr and NOPr) as well as PNOC, the precursor polypeptide of nociceptin-OFQ (N/OFQ) in KA-induced seizures in the rat brain cortex. KA was used to create seizures with the dose of 10 mg/kg body weight i.p. Following the KA administration, the rats were observed for 3 h to assess seizure activity. Seizures occurred approximately 45 min after the KA injection. Only rats exhibiting full limbic seizures, forelimb clonus with rearing, were used in this study. All animals were decapitated 4 h after the administration of KA. Our [(35)S]GTPγS binding results showed that there was a significant difference in both the affinity and efficacy particularly one of NOPr stimulation following KA treatment. Slight, but significant increase was observed for MOPr. Moreover PNOC, NOPr and MOPr mRNA levels were increased by KA treatment but there were no significant changes in the levels of DOPr and KOPr mRNAs. These results show that the activities of opioid/nociceptin receptors can be modified by KA-treatment, and MOPr, PNOC and NOPr are the most responsive to KA-induced seizures in the rat brain cortex.
Collapse
Affiliation(s)
- Ezgi Turunc Bayrakdar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
24
|
Aldrich JV, McLaughlin JP. Opioid Peptides: Potential for Drug Development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 23316256 DOI: 10.1016/j.ddtec.2011.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Opioid receptors are important targets for the treatment of pain and potentially for other disease states (e.g. mood disorders and drug abuse) as well. Significant recent advances have been made in identifying opioid peptide analogs that exhibit promising in vivo activity for treatment of these maladies. This review focuses on the development and evaluation of opioid peptide analogs demonstrating activity after systemic administration, and recent clinical evaluations of opioid peptides for possible therapeutic use.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
| | | |
Collapse
|
25
|
Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL. The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 2011; 32:581-90. [PMID: 21925742 DOI: 10.1016/j.tips.2011.06.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 12/14/2022]
Abstract
Compared to the better-known mu opioid receptor, delta opioid receptors have been relatively understudied. However, the development of highly selective delta opioid agonists and the availability of genetic mouse models have extended our knowledge of delta opioid receptors in vivo. Here we review recent developments in the characterization of delta opioid receptor biology and aspects of delta opioid receptor function that have potential for therapeutic targeting. Preclinical data have confirmed that delta opioid receptor activation reduces persistent pain and improves negative emotional states; clinical trials have been initiated to assess the effectiveness of delta opioid agonists in chronic pain and depression. Furthermore, a possible role for these receptors in neuroprotection is being investigated. The usefulness of targeting delta opioid receptors in drug abuse remains open and a role for these receptors in impulse control disorders is emerging. Finally, the recent demonstration of biased agonism at the delta opioid receptor in vivo opens novel perspectives towards targeting specific therapeutic effects through drug design.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
26
|
Hsieh TH, Chen JJJ, Chen LH, Chiang PT, Lee HY, Denham W, Barrera E, Ujiki MB. Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behav Brain Res 2011; 222:1-9. [DOI: 10.1016/j.bbr.2011.03.031] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 02/06/2023]
|
27
|
Ren T, Yang X, Wu N, Cai Y, Liu Z, Yuan W. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett 2011; 502:117-22. [PMID: 21835223 DOI: 10.1016/j.neulet.2011.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022]
Abstract
Although levodopa remains the most effective drug in the treatment of Parkinson's disease (PD), chronic administration of levodopa in the treatment of PD usually caused levodopa-induced dyskinesia (LID), the pathogenesis of which is poorly understood. It has been demonstrated that continuous dopamine stimulation reduces the expression of LID in PD. In the present study, levodopa methyl ester (LDME) and benserazide were microencapsulated into poly (lactide-co-glycolide) (PLGA) microspheres and then administrated to PD model of rats, which were induced by 6-hydroxydopamine injections. We found that both LDME/benserazide-loaded microspheres achieved sustained-release without burst release during the first day. LDME and benserazide had the same release slope from the second day on in vivo though benserazide released faster than LDME during the whole process. In our pharmacodynamic study, LDME/benserazide-loaded microspheres decreased apomorphine-induced turns and improved stepping of the lesioned forepaw in PD rats. Moreover, western blot analysis showed that the levels of ΔfosB, phosphorylated dopamine, cAMP-regulated phosphoprotein of 32kDa at threonine 34 and extracellular signal-regulated kinases 1 and 2 were decreased by LDME/benserazide-loaded microspheres in PD rats. These data showed that LDME/benserazide-loaded microspheres could be used to treat PD motor symptoms and ameliorate the expression of LID in this rat model of PD.
Collapse
Affiliation(s)
- Tiantian Ren
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|