1
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Wu Q, Shan X, Li X, Guan J, Song F, Zhou X, Fan Y, Guo L. Salidroside ameliorates neuroinflammation in autistic rats by inhibiting NLRP3/Caspase-1/GSDMD signal pathway. Brain Res Bull 2025; 220:111132. [PMID: 39557220 DOI: 10.1016/j.brainresbull.2024.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder that place a huge economic and emotional burden on society. Salidroside (Sal) has been reported to have therapeutic effects in a variety of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), however no studies have been conducted to show whether salidroside is effective in ASD. Pyroptosis is involved in the pathology of a variety of neurological disorders, but has not been reported in ASD. OBJECTIVES The aim of this study was to investigate whether pyroptosis is involved in the pathological mechanisms of ASD, and whether salidroside has an impact on the pathological process of ASD by regulating pyroptosis. METHODS We obtained a rat model of offspring ASD by prenatal intraperitoneal administration of valproic acid (VPA, 500 mg/kg) to pregnant rats, and we treated seven-day-old offspring ASD with salidroside (Sal, 30 mg/kg once daily) by gavage for 28 days as the salidroside treatment group. We examined the hippocampal state of ASD rats and the effect of salidroside on the hippocampus of VPA-induced ASD rats. In addition, in BV2 cells treated with LPS/Nig, we explored the mechanisms by which salidroside regulates neuroinflammation and pyroptosis in vitro. RESULTS In vivo, we observed VPA-induced hippocampal neuronal damage and activation of the NLRP3/Caspase-1/GSDMD signalling pathway in ASD rats, while salidroside alleviated neuronal damage in ASD rats. In vitro, we found that salidroside inhibited LPS/Nig-induced neuroinflammation and activation of the NLRP3/Caspase-1/GSDMD signalling pathway. These results suggest that the therapeutic effect of salidroside on hippocampal damage in ASD rats may be related to NLRP3/Caspase-1/GSDMD-mediated pyroptosis. CONCLUSIONS Our work showed that salidroside ameliorates hippocampal neurological damage in ASD rats by targeting NLRP3/Caspase-1/GSDMD-mediated pyroptosis, providing a potential therapy drug for ASD.
Collapse
Affiliation(s)
- Qingwei Wu
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xiaohang Shan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xuemei Li
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Jian Guan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Fanxu Song
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xinyu Zhou
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Yingying Fan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Lanmin Guo
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China.
| |
Collapse
|
3
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Farrag EAE, Askar MH, Abdallah Z, Mahmoud SM, Abdulhai EA, Abdelrazik E, Nashar EME, Alasiri FM, Alqahtani ANS, Eldesoqui M, Eldib AM, Magdy A. Comparative effect of atorvastatin and risperidone on modulation of TLR4/NF-κB/NOX-2 in a rat model of valproic acid-induced autism. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:26. [PMID: 39350139 PMCID: PMC11742802 DOI: 10.1186/s12993-024-00250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism. METHODS On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed. RESULTS Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group. CONCLUSIONS The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 31516, Egypt.
| | - Mona H Askar
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Safinaz M Mahmoud
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman A Abdulhai
- Department of Pediatrics, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| | - Eman Abdelrazik
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | | | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ali M Eldib
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
- Al Rayan National College of Medicine, Hejrah Street-Madinah, P.O. Box 41411, Al-Madinah, Kingdom of Saudi Arabia
| | - Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Xu X, Li F, Liu C, Wang Y, Yang Z, Xie G, Zhang T. Low-frequency repetitive transcranial magnetic stimulation alleviates abnormal behavior in valproic acid rat model of autism through rescuing synaptic plasticity and inhibiting neuroinflammation. Pharmacol Biochem Behav 2024; 240:173788. [PMID: 38734150 DOI: 10.1016/j.pbb.2024.173788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Fangjuan Li
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Chunhua Liu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Yue Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Guoming Xie
- Ningbo Medical Center Lihuili Hospital, 315040 Ningbo, Zhejiang, China.
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
6
|
Adiguzel E, Bozkurt NM, Unal G. Independent and combined effects of astaxanthin and omega-3 on behavioral deficits and molecular changes in a prenatal valproic acid model of autism in rats. Nutr Neurosci 2024; 27:590-606. [PMID: 37534957 DOI: 10.1080/1028415x.2023.2239575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1β, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1β, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.
Collapse
Affiliation(s)
- Emre Adiguzel
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Nuh Mehmet Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
7
|
Jiang R, Huang W, Qiu X, Chen J, Luo R, Zeng R, Tong S, Lyu Y, Sun P, Lian Q, Leung FW, Liu Y, Sha W, Chen H. Unveiling promising drug targets for autism spectrum disorder: insights from genetics, transcriptomics, and proteomics. Brief Bioinform 2024; 25:bbae353. [PMID: 39038939 PMCID: PMC11262832 DOI: 10.1093/bib/bbae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder for which current treatments are limited and drug development costs are prohibitive. Identifying drug targets for ASD is crucial for the development of targeted therapies. Summary-level data of expression quantitative trait loci obtained from GTEx, protein quantitative trait loci data from the ROSMAP project, and two ASD genome-wide association studies datasets were utilized for discovery and replication. We conducted a combined analysis using Mendelian randomization (MR), transcriptome-wide association studies, Bayesian colocalization, and summary-data-based MR to identify potential therapeutic targets associated with ASD and examine whether there are shared causal variants among them. Furthermore, pathway and drug enrichment analyses were performed to further explore the underlying mechanisms and summarize the current status of pharmacological targets for developing drugs to treat ASD. The protein-protein interaction (PPI) network and mouse knockout models were performed to estimate the effect of therapeutic targets. A total of 17 genes revealed causal associations with ASD and were identified as potential targets for ASD patients. Cathepsin B (CTSB) [odd ratio (OR) = 2.66 95, confidence interval (CI): 1.28-5.52, P = 8.84 × 10-3], gamma-aminobutyric acid type B receptor subunit 1 (GABBR1) (OR = 1.99, 95CI: 1.06-3.75, P = 3.24 × 10-2), and formin like 1 (FMNL1) (OR = 0.15, 95CI: 0.04-0.58, P = 5.59 × 10-3) were replicated in the proteome-wide MR analyses. In Drugbank, two potential therapeutic drugs, Acamprosate (GABBR1 inhibitor) and Bryostatin 1 (CASP8 inhibitor), were inferred as potential influencers of autism. Knockout mouse models suggested the involvement of the CASP8, GABBR1, and PLEKHM1 genes in neurological processes. Our findings suggest 17 candidate therapeutic targets for ASD and provide novel drug targets for therapy development and critical drug repurposing opportunities.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, No. 1023 Shatainan Road, Guangzhou 510515, China
- School of Medicine, South China University of Technology, No. 230, West Waihuan Road, Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, No. 1023 Shatainan Road, Guangzhou 510515, China
| | - Xinqi Qiu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Jianyi Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- School of Medicine, South China University of Technology, No. 230, West Waihuan Road, Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Shuangshuang Tong
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- Shantou University Medical College, Shantou University, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Yanlin Lyu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- Shantou University Medical College, Shantou University, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Panpan Sun
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Felix W Leung
- Sepulveda Ambulatory Care Center, VA Greater Los Angeles Healthcare System, 16111 Plummer Street, Los Angeles 91343, California, United States
- University of California Los Angeles David Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles 90095, California, United States
| | - Yufeng Liu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, No 1 Panfu Road, Guangzhou 510000, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, No. 1023 Shatainan Road, Guangzhou 510515, China
- School of Medicine, South China University of Technology, No. 230, West Waihuan Road, Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
- Shantou University Medical College, Shantou University, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, No. 1023 Shatainan Road, Guangzhou 510515, China
- School of Medicine, South China University of Technology, No. 230, West Waihuan Road, Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
- Shantou University Medical College, Shantou University, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| |
Collapse
|
8
|
Valente R, Cordeiro S, Luz A, Melo MC, Rodrigues CR, Baptista PV, Fernandes AR. Doxorubicin-sensitive and -resistant colorectal cancer spheroid models: assessing tumor microenvironment features for therapeutic modulation. Front Cell Dev Biol 2023; 11:1310397. [PMID: 38188017 PMCID: PMC10771845 DOI: 10.3389/fcell.2023.1310397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.
Collapse
Affiliation(s)
- Ruben Valente
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra Cordeiro
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria C. Melo
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina Roma Rodrigues
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
9
|
Jeong HW, Chang DS, Kim JS, Hwang YS. Role of cathepsin D induced by Porphyromonas gingivalis lipopolysaccharide in periodontitis. Eur J Oral Sci 2023; 131:e12923. [PMID: 36788303 DOI: 10.1111/eos.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
Periodontitis is an inflammatory disease of tooth-supporting tissues caused by oral bacteria. Periodontal ligament loss and alveolar bone destruction occur in progressive periodontitis. Since gingival crevicular fluids (GCF) reflects the inflammatory environment of the periodontal pocket, it is a very important specimen for developing targets for periodontitis diagnosis. An antibody array was performed using GCF collected from healthy participants and patients with periodontitis to identify the proteolytic enzymes involved in periodontitis. Of 21 targets on the antibody array membrane, kallikrein 6 (KLK6), kallikrein 10 (KLK10), cathepsin A (CathA), and cathepsin D (CathD) showed higher levels in periodontitis GCF than in GCF from healthy participants. Lipopolysaccharide stimulation of Porphyromonas gingivalis (PG-LPS) in immortalized gingival fibroblasts only increased CathD protein levels among the four targets. The substrate cleavage activity of CathD was increased in PG-LPS-treated immortalized gingival fibroblast extract. The PG-LPS-induced substrate cleavage effect was abolished by the CathD inhibitor pepstatin A. Osteoclast formation was promoted by treatment with conditioned media from PG-LPS- treated immortalized gingival fibroblasts but inhibited by the CathD inhibitor pepstatin A. These results suggest that PG-LPS affected the osteoclast formation process by increasing CathD expression in cells around the alveolar bone, thereby participating in periodontitis progression.
Collapse
Affiliation(s)
- Hyun Woong Jeong
- Department of Dental Hygiene, College of Health, Science, Eulji University, Seongnam, Korea
| | - Dong Sik Chang
- Department of Otorhinolaryngology, Eulji University Hospital, Eulji University, Daejeon, Korea
| | | | - Young Sun Hwang
- Department of Dental Hygiene, College of Health, Science, Eulji University, Seongnam, Korea
| |
Collapse
|
10
|
Moghaddam AH, Eslami A, Jelodar SK, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res 2023; 441:114300. [PMID: 36642103 DOI: 10.1016/j.bbr.2023.114300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
The autism is an abnormality in the neuronal advance which starts before age 3 recognized by defective behaviors. This study aimed to make quercetin-loaded nanophytosomes (QNP) on behavioral deficits, cerebellar oxidative stress and apoptosis in an autistic-like model caused by maternal separation (MS). The newborn rats are randomly categorized into seven groups, including control, positive control, disease, and diseases treated with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg). Pups exposed to MS for 3 h per day from postnatal days (PND) 1-9 showed behavioral impairment in adult rats compared to control group. The oral administration of quercetin and QNP was constantly started after the lactation period (21 postnatal days) for three weeks. Autistic-like behaviors, antioxidant parameters, and Nrf2, Bax/Bcl-2, and Caspase-3 expressions were surveyed in the cerebellum. Quercetin (40 mg/kg) treated improved some behavioral disorders. Also, the improvement of oxidative stress parameters, Nrf2 and apoptotic factors gene expression was observed in the cerebellum of quercetin (40 mg/kg) treated (p < 0.01). QNP treatment (10 and 40 mg/kg) significantly ameliorated anxiety-like behaviors, line crossing, and grooming index (p < 0.001), lipid peroxidation (p < 0.001), and increased catalase (CAT) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.001) activity, and glutathione (GSH) levels (p < 0.05). Moreover, QNP significantly reduced Caspase-3 and Bax expression (p < 0.001), but increased Bcl-2, and Nrf2 expressions (p < 0.001). These findings indicated that QNP due to its high bioavailability was more effective than quercetin can be reduced autistic-like behavior, oxidative and apoptotic damages in the model of MS rats.
Collapse
Affiliation(s)
| | - Ali Eslami
- Department of Animal Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Vahid Hasantabar
- Department of Organic Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
11
|
Tie H, Lu X, Yu D, Yang F, Jiang Q, Xu Y, Xia W. Apoptosis Inducing Factors Involved in the Changes of Flesh Quality in Postmortem Grass Carp ( Ctenopharyngodon idella) Muscle. Foods 2022; 12:foods12010140. [PMID: 36613356 PMCID: PMC9818144 DOI: 10.3390/foods12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022] Open
Abstract
Alterations of apoptosis have notable influences on flesh quality, but the mechanism is still unclear. Thus, apoptotic behaviors and related triggering mechanisms need to be explored. Fish muscle was prepared and stored at 4 °C for 0, 24, 48, 72, 96, and 120 h for apoptosis analysis. Results showed that positive apoptotic nuclei were positively correlated with drop loss and negatively correlated with shear force and water holding capacity (p < 0.05). Results showed that the triggering apoptotic mechanisms were involved with enhanced transcriptional levels of caspase-2, 3, 7, 8, and 9 through mitochondria and death receptor pathways in the muscle of grass carp. The decreased ATP content, changed cytochrome c redox state, increased protein levels of HSP27 and HSP 90, and enhanced activity of cathepsin (B, L, and D), calpain, and serine proteinase were involved in apoptosis activations. Results indicated that caspases, energy metabolism, cytochrome c redox state, heat shock protein expressions, and protease activities played critical roles in apoptosis alterations in carp muscle during refrigerated storage.
Collapse
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuan Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Zhang X, Liu S, Liu X, Wang J. Inhibiting silence information regulator 2 and glutaminase in the amygdala can improve social behavior in autistic rats. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:707-715. [PMID: 36915976 PMCID: PMC10262010 DOI: 10.3724/zdxbyxb-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the underlying molecular mechanisms by which silence information regulator (SIRT) 2 and glutaminase (GLS) in the amygdala regulate social behaviors in autistic rats. METHODS Rat models of autism were established by maternal sodium valproic acid (VPA) exposure in wild-type rats and SIRT2-knockout ( SIRT2 -/-) rats. Glutamate (Glu) content, brain weight, and expression levels of SIRT2, GLS proteins and apoptosis-associated proteins in rat amygdala at different developmental stages were examined, and the social behaviors of VPA rats were assessed by a three-chamber test. Then, lentiviral overexpression or interference vectors of GLS were injected into the amygdala of VPA rats. Brain weight, Glu content and expression level of GLS protein were measured, and the social behaviors assessed. RESULTS Brain weight, amygdala Glu content and the levels of SIRT2, GLS protein and pro-apoptotic protein caspase-3 in the amygdala were increased in VPA rats, while the level of anti-apoptotic protein Bcl-2 was decreased (all P<0.01). Compared with the wild-type rats, SIRT2 -/- rats displayed decreased expression of SIRT2 and GLS proteins in the amygdala, reduced Glu content, and improved social dysfunction (all P<0.01). Overexpression of GLS increased brain weight and Glu content, and aggravated social dysfunction in VPA rats (all P<0.01). Knockdown of GLS decreased brain weight and Glu content, and improved social dysfunction in VPA rats (all P<0.01). CONCLUSIONS The glutamate circulatory system in the amygdala of VPA induced autistic rats is abnormal. This is associated with the upregulation of SIRT2 expression and its induced increase of GLS production; knocking out SIRT2 gene or inhibiting the expression of GLS is helpful in maintaining the balanced glutamate cycle and in improving the social behavior disorder of rats.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- 1. Children's Hospital, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shizhang Liu
- 2. Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiaomei Liu
- 3. Nursing Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jieying Wang
- 1. Children's Hospital, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
13
|
de la Torre-Aguilar MJ, Gomez-Fernandez A, Flores-Rojas K, Martin-Borreguero P, Mesa MD, Perez-Navero JL, Olivares M, Gil A, Gil-Campos M. Docosahexaenoic and Eicosapentaenoic Intervention Modifies Plasma and Erythrocyte Omega-3 Fatty Acid Profiles But Not the Clinical Course of Children With Autism Spectrum Disorder: A Randomized Control Trial. Front Nutr 2022; 9:790250. [PMID: 35425788 PMCID: PMC9002234 DOI: 10.3389/fnut.2022.790250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
BackgroundThe pathogenesis of autism spectrum disorder (ASD) is under investigation and one of the main alterations relates to the metabolic and inflammatory system dysfunctions. Indeed, based on a possible deficit of omega-3 fatty acids (FAs) of patients with ASD and looking for an anti-inflammatory effect, dietary supplements with omega-3 fatty acids have been proposed. We aimed to evaluate differences in plasma and erythrocyte FA profiles and plasma cytokines in patients with infantile ASD after supplementation with docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids or placebo and both compared at baseline with a reference healthy group.MethodsA double-blind, randomized placebo-controlled intervention with DHA/EPA for 6 months was carried out in 54 children between 2 and 6 years diagnosed with ASD. They were selected and randomly assigned into two groups: 19 children received 800 mg/day of DHA and 25 mg/day of EPA, or placebo. In addition, another reference group of 59 healthy children of the same age was included. Plasma lipids and cytokines, and FA profiles in plasma and erythrocytes were measured at baseline and after 6 months of treatment in ASD children, and at baseline in the reference group.ResultsThere were no differences in demographic, anthropometric characteristics, and omega-3 intake between the healthy reference group and the ASD children at baseline. Children with ASD showed the higher plasma percentages of palmitic acid and total saturated FA and lower total omega-6 polyunsaturated FA (PUFA) compared with healthy children. An increased level of DHA and reduced EPA level in erythrocytes were detected in the ASD group vs. the reference group. After 6 months of treatment, the ASD group that received DHA enriched product significantly increased the plasma and erythrocyte percentages of DHA, but no differences were observed in the clinical test scores and other parameters as plasma cytokines between the two groups of ASD related to the intervention.ConclusionSpanish children with ASD exhibit an appropriate omega-3 FA status in plasma and erythrocytes. Neither a clinical improvement of ASD children nor a better anti-inflammatory or fatty acid state has been found after an intervention with DHA/EPA for 6 months. So, the prescription of n-3 LC-PUFA and other dietary supplements in ASD should be only indicated after a confirmed alteration of FA metabolism or omega-3 LC-PUFA deficiency evaluated by specific erythrocyte FA.Clinical Trial Registration[www.ClinicalTrials.gov], identifier [NCT03620097].
Collapse
Affiliation(s)
- Maria Jose de la Torre-Aguilar
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Antonio Gomez-Fernandez
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Katherine Flores-Rojas
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Pilar Martin-Borreguero
- Department of Child and Adolescent Clinical Psychiatry and Psychology, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
| | - María Dolores Mesa
- Department of Biochemistry and Molecular Biology II University of Granada, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix,” University of Granada, Parque Tecnológico de la Salud, Granada, Spain
| | - Juan Luis Perez-Navero
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBERER (Ciber Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Juan Luis Perez-Navero, ,
| | | | - Angel Gil
- Department of Biochemistry and Molecular Biology II University of Granada, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix,” University of Granada, Parque Tecnológico de la Salud, Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Gil-Campos
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
14
|
Wang L, Chen J, Hu Y, Liao A, Zheng W, Wang X, Lan J, Shen J, Wang S, Yang F, Wang Y, Li Y, Chen D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl Psychiatry 2022; 12:114. [PMID: 35318322 PMCID: PMC8941112 DOI: 10.1038/s41398-022-01875-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3β pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.
Collapse
Affiliation(s)
- Lili Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Hu
- Qujiang No. 2 Middle School, Xi'an, 710000, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Deficiency of nde1 in zebrafish induces brain inflammatory responses and autism-like behavior. iScience 2022; 25:103876. [PMID: 35243238 PMCID: PMC8861649 DOI: 10.1016/j.isci.2022.103876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
The cytoskeletal protein NDE1 plays an important role in chromosome segregation, neural precursor differentiation, and neuronal migration. Clinical studies have shown that NDE1 deficiency is associated with several neuropsychiatric disorders including autism. Here, we generated nde1 homologous deficiency zebrafish (nde1−/−) to elucidate the cellular molecular mechanisms behind it. nde1−/− exhibit increased neurological apoptotic responses at early infancy, enlarged ventricles, and shrank valvula cerebelli in adult brain tissue. Behavioral analysis revealed that nde1−/− displayed autism-like behavior traits such as increased locomotor activity and repetitive stereotype behaviors and impaired social and kin recognition behaviors. Furthermore, nde1 mRNA injection rescued apoptosis in early development, and minocycline treatment rescued impaired social behavior and overactive motor activity by inhibiting inflammatory cytokines. In this study, we revealed that nde1 homozygous deletion leads to abnormal neurological development with autism-related behavioral phenotypes and that inflammatory responses in the brain are an important molecular basis behind it. nde1−/− zebrafish display autism-like behavior features nde1 deficiency results in immune responses in the brain Minocycline treatment inhibits immune responses in the adult nde1−/− brain Minocycline rescued the impaired social behavior and locomotor activity
Collapse
|
16
|
Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021; 8:629-639. [PMID: 34291134 PMCID: PMC8278534 DOI: 10.1016/j.gendis.2020.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Autism is a heterogeneous neurodevelopmental and neuropsychiatric disorder with no precise etiology. Deficits in cognitive functions uncover at early stages and are known to have an environmental and genetic basis. Since autism is multifaceted and also linked with other comorbidities associated with various organs, there is a possibility that there may be a fundamental cellular process responsible for this. These reasons place mitochondria at the point of interest as it is involved in multiple cellular processes predominantly involving metabolism. Mitochondria encoded genes were taken into consideration lately because it is inherited maternally, has its own genome and also functions the time of embryo development. Various researches have linked mitochondrial mishaps like oxidative stress, ROS production and mt-DNA copy number variations to autism. Despite dramatic advances in autism research worldwide, the studies focusing on mitochondrial dysfunction in autism is rather minimal, especially in India. India, owing to its rich diversity, may be able to contribute significantly to autism research. It is vital to urge more studies in this domain as it may help to completely understand the basics of the condition apart from a genetic standpoint. This review focuses on the worldwide and Indian scenario of autism research; mitochondrial abnormalities in autism and possible therapeutic approaches to combat it.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kamarajan Rajagopalan
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| | - Madesh Jeevanandam
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Department of Biochemistry, PSG College of Arts and Sciences, Coimbatore, Tamil Nadu 641014, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| |
Collapse
|
17
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
18
|
Piro E, Serra G, Giuffrè M, Schierz IAM, Corsello G. 2q13 microdeletion syndrome: Report on a newborn with additional features expanding the phenotype. Clin Case Rep 2021; 9. [DOI: 10.1002/ccr3.4289] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractWe describe an additional newborn with craniofacial dysmorphisms, congenital heart disease, hypotonia, and a 2q13 deletion of 1.7 Mb. The clinical and genomic findings observed are consistent with the diagnosis of 2q13 microdeletion syndrome.
Collapse
Affiliation(s)
- Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro” University of Palermo Palermo Italy
| | - Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro” University of Palermo Palermo Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro” University of Palermo Palermo Italy
| | - Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro” University of Palermo Palermo Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro” University of Palermo Palermo Italy
| |
Collapse
|
19
|
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147:105067. [PMID: 33992742 DOI: 10.1016/j.neuint.2021.105067] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
PI3K-AKT/mTOR signaling pathway represents an essential signaling mechanism for mammalian enzyme-related receptors in transducing signals or biological processes such as cell development, differentiation, cell survival, protein synthesis, and metabolism. Upregulation of the PI3K-AKT/mTOR signaling pathway involves many human brain abnormalities, including autism and other neurological dysfunctions. Autism is a neurodevelopmental disorder associated with behavior and psychiatric illness. This research-based review discusses the functional relationship between the neuropathogenic factors associated with PI3K-AKT/mTOR signaling pathway. Ultimately causes autism-like conditions associated with genetic alterations, neuronal apoptosis, mitochondrial dysfunction, and neuroinflammation. Therefore, inhibition of the PI3K-AKT/mTOR signaling pathway may have an effective therapeutic value for autism treatment. The current review also summarizes the involvement of PI3K-AKT/mTOR signaling pathway inhibitors in the treatment of autism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
20
|
Patak J, Faraone SV, Zhang-James Y. Sodium hydrogen exchanger 9 NHE9 (SLC9A9) and its emerging roles in neuropsychiatric comorbidity. Am J Med Genet B Neuropsychiatr Genet 2020; 183:289-305. [PMID: 32400953 DOI: 10.1002/ajmg.b.32787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Variations in SLC9A9 gene expression and protein function are associated with multiple human diseases, which range from Attention-deficit/hyperactivity disorder (ADHD) to glioblastoma multiforme. In an effort to determine the full spectrum of human disease associations with SLC9A9, we performed a systematic review of the literature. We also review SLC9A9's biochemistry, protein structure, and function, as well as its interacting partners with the goal of identifying mechanisms of disease and druggable targets. We report gaps in the literature regarding the genes function along with consistent trends in disease associations that can be used to further research into treating the respective diseases. We report that SLC9A9 has strong associations with neuropsychiatric diseases and various cancers. Interestingly, we find strong overlap in SLC9A9 disease associations and propose a novel role for SLC9A9 in neuropsychiatric comorbidity. In conclusion, SLC9A9 is a multifunctional protein that, through both its endosome regulatory function and its protein-protein interaction network, has the ability to modulate signaling axes, such as the PI3K pathway, among others.
Collapse
Affiliation(s)
- Jameson Patak
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yanli Zhang-James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
21
|
Ayaydın H, Kirmit A, Çelik H, Akaltun İ, Koyuncu İ, Bilgen Ulgar Ş. High Serum Levels of Serum 100 Beta Protein, Neuron-specific Enolase, Tau, Active Caspase-3, M30 and M65 in Children with Autism Spectrum Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:270-278. [PMID: 32329316 PMCID: PMC7242104 DOI: 10.9758/cpn.2020.18.2.270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was therefore to investigate whether neuronal, axonal, and glial cell markers (Neuron-specific enolase [NSE], tau, serum 100 beta protein [S100B], respectively) and apoptosis markers (active caspase 3, M30, M65) and whether these parameters can be used as diagnostic biomarkers in autism spectrum disorders (ASD). Methods This study measured the serum S100B, NSE, tau, active caspase 3, M30, and M65 levels in 43 patients with ASD (aged 3−12 years) and in 41 age- and sex-matched healthy controls. ASD severity was rated using the Childhood Autism Rating Scale. The serum levels were determined in the biochemistry laboratory using the ELISA technique. The receiver operator characteristics curve method was employed to evaluate the accuracy of the parameters in diagnosing ASD. Results Serum S100B, tau, NSE, active caspase-3, M30, and M65 levels were significantly higher in the patient group than in the control group (p < 0.001, p = 0.002, p = 0.002, p = 0.005, p < 0.001, and p = 0.004, respectively). The cut-off value of S100B was 48.085 pg/ml (sensitivity: 74.4%, specificity: 80.5%, areas under the curve: 0.879, p < 0.001). Conclusion Apoptosis increased in children with ASD, and neuronal, axonal, and glial cell injury was observed. In addition, S100B may be an important diagnostic biomarker in patients with ASD. Apoptosis, and neuronal, axonal and astrocyte pathologies may play a significant role in the pathogenesis of ASD, and further studies are now required to confirm this.
Collapse
Affiliation(s)
- Hamza Ayaydın
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Adnan Kirmit
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Hakim Çelik
- Departments of Physiology, Faculty of Medicine, Harran University, Şanlıurfa, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Akaltun
- Department of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Koyuncu
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Şermin Bilgen Ulgar
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| |
Collapse
|
22
|
Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.
Collapse
|
23
|
Niemeyer C, Matosin N, Kaul D, Philipsen A, Gassen NC. The Role of Cathepsins in Memory Functions and the Pathophysiology of Psychiatric Disorders. Front Psychiatry 2020; 11:718. [PMID: 32793006 PMCID: PMC7393989 DOI: 10.3389/fpsyt.2020.00718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023] Open
Abstract
Cathepsins are proteases with functions in cellular homeostasis, lysosomal degradation and autophagy. Their role in the development of neurodegenerative diseases has been extensively studied. It is well established that impairment of proper cathepsin function plays a crucial role in the pathophysiology of neurodegenerative diseases, and in recent years a role for cathepsins in mental disorders has emerged given the involvement of cathepsins in memory function, hyperactivity, and in depression- and anxiety-like behavior. Here we review putative cathepsin functions with a special focus on their role in the pathophysiology of psychiatric diseases. Specifically, cathepsins are crucial for maintaining cellular homeostasis, particularly as part of the autophagy machinery of neural strategies underlying acute stress response. Disruption of cathepsin functions can lead to psychiatric diseases such as major depressive disease (MDD), bipolar disorder, and schizophrenia. Specifically, cathepsins can be excreted via a process called secretory autophagy. Thereby, they are able to regulate extracellular factors such as brain-derived neurotrophic factor and perlecan c-terminal fragment LG3 providing maintenance of neuronal homeostasis and mediating neuronal plasticity in response to acute stress or trauma. In addition, impairment of proper cathepsin function can result in impaired synaptic transmission by compromised recycling and biogenesis of synaptic vesicles. Taken together, further investigations on cathepsin functions and stress response, neuroplasticity, and synaptic transmission will be of great interest in understanding the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Christine Niemeyer
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Natalie Matosin
- Faculty of Science, Medicine and Health, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dominic Kaul
- Faculty of Science, Medicine and Health, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia
| | - Alexandra Philipsen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
24
|
Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased Expression of Kv10.2 in the Hippocampus Attenuates Valproic Acid-Induced Autism-Like Behaviors in Rats. Neurochem Res 2019; 44:2796-2808. [DOI: 10.1007/s11064-019-02903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
|
25
|
Assessment of Apoptosis Pathway in Peripheral Blood of Autistic Patients. J Mol Neurosci 2019; 69:588-596. [PMID: 31363911 DOI: 10.1007/s12031-019-01387-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
Abstract
Autism spectrum disorder (ASD) includes a number of severe neurodevelopmental disorders known by defects in social interaction, impaired verbal and non-verbal interactions, and stereotypic activities and limited interests. Dysregulation of apoptotic pathways have been demonstrated in brain tissues of affected individuals. In the present study, we evaluated expression levels of apoptosis-related genes and miRNAs in peripheral blood of ASD patients compared with healthy subjects. Transcript levels of BCL2, CASP8, and hsa-29c-3p were significantly lower in total ASD patients compared with total normal children (P values = 0.003, 0.002, and 0.01 respectively). When sex of study participants was considered in the analysis, the difference in transcript levels of these genes was significant only in male subjects. Peripheral expression of BCL2 and hsa-29c-3p had 100% sensitivity 92% specificity in ASD diagnosis. The diagnostic power of combination of transcript levels of these genes was estimated to be 78% based on the calculated AUC value. The present study provides evidences for dysregulation of apoptotic pathways in peripheral blood of ASD patients and suggests certain apoptosis-related genes as biomarkers in this regard.
Collapse
|
26
|
Wolfe K, McQuillin A, Alesi V, Boudry Labis E, Cutajar P, Dallapiccola B, Dentici ML, Dieux‐Coeslier A, Duban‐Bedu B, Duelund Hjortshøj T, Goel H, Loddo S, Morrogh D, Mosca‐Boidron A, Novelli A, Olivier‐Faivre L, Parker J, Parker MJ, Patch C, Pelling AL, Smol T, Tümer Z, Vanakker O, van Haeringen A, Vanlerberghe C, Strydom A, Skuse D, Bass N. Delineating the psychiatric and behavioral phenotype of recurrent 2q13 deletions and duplications. Am J Med Genet B Neuropsychiatr Genet 2018; 177:397-405. [PMID: 29603867 PMCID: PMC6001478 DOI: 10.1002/ajmg.b.32627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.
Collapse
Affiliation(s)
- Kate Wolfe
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Viola Alesi
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | | | - Peter Cutajar
- Nottinghamshire Healthcare NHS Foundation TrustNottinghamUnited Kingdom
| | - Bruno Dallapiccola
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Maria Lisa Dentici
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Anne Dieux‐Coeslier
- Service de génétique clinique, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | | | - Tina Duelund Hjortshøj
- Kennedy Center, Department of Clinical GeneticsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Himanshu Goel
- Hunter GeneticsWaratahNew South WalesAustralia
- University of NewcastleCallaghanNew South WalesAustralia
| | - Sara Loddo
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Deborah Morrogh
- North East Thames Regional Genetics Service LaboratoryLondonUnited Kingdom
| | | | - Antonio Novelli
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Laurence Olivier‐Faivre
- Centre de référence Anomalies du développement et Syndromes malformatifs, FHU TRANSLADCHU DijonFrance
| | - Jennifer Parker
- North East Thames Regional Genetics Service LaboratoryLondonUnited Kingdom
| | - Michael J. Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western BankSheffieldUnited Kingdom
| | - Christine Patch
- King's College London, Florence Nightingale Faculty of Nursing and MidwiferyLondonUnited Kingdom
- Genomics England, Dawson Hall, Charterhouse SquareLondonUnited Kingdom
| | - Anna L. Pelling
- Information Officer, Unique – The Rare Chromosome Disorder Support Group (www.rarechromo.org), The Stables, Station Road WestOxted, SurreyUnited Kingdom
| | - Thomas Smol
- Institut de génétique médicale, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical GeneticsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Olivier Vanakker
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Arie van Haeringen
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Clémence Vanlerberghe
- Service de génétique clinique, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | - Andre Strydom
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, Kings College LondonLondonUnited Kingdom
| | - David Skuse
- Behavioural and Brain Sciences UnitInstitute of Child Health, University College LondonLondonUnited Kingdom
| | - Nick Bass
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Dong D, Zielke HR, Yeh D, Yang P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res 2018; 11:1076-1090. [PMID: 29761862 DOI: 10.1002/aur.1966] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of autism spectrum disorder, a neurodevelopmental disorder, is still elusive. In this study, we investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. This study compared the activation of ER stress signals (protein kinase R-like endoplasmic reticulum kinase [PERK], activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 alpha [IRE1α]) in different brain regions (prefrontal cortex, hippocampus, cerebellum) in subjects with autism and in age-matched controls. Our data showed that the activation of three signals of ER stress varies in different regions of the autistic brain. IRE1α was activated in cerebellum and prefrontal cortex but ATF6 was activated in hippocampus. PERK was not activated in the three regions. Furthermore, the activation of ER stress was confirmed because the expression of C/EBP-homologous protein (CHOP), which is the common downstream indicators of ER stress signals, and most of ER chaperones were upregulated in the three regions. Consistent with the induction of ER stress, apoptosis was found in the three regions by detecting the cleavage of caspase 8 and poly(ADP-ribose) polymerase as well as using the transferase dUTP nick end labeling assay. Moreover, our data showed that oxidative stress was responsible for ER stress and apoptosis because the levels of 4-Hydroxynonenal and nitrotyrosine-modified proteins were significantly increased in the three regions. In conclusion, these data indicate that cellular stress and apoptosis may play important roles in the pathogenesis of autism. Autism Res 2018, 11: 1076-1090. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Autism results in significant morbidity and mortality in children. The functional and molecular changes in the autistic brains are unclear. The present study utilized autistic brain tissues from the National Institute of Child Health and Human Development's Brain Tissue Bank for the analysis of cellular and molecular changes in autistic brains. Three key brain regions, the hippocampus, the cerebellum, and the frontal cortex, in six cases of autistic brains and six cases of non-autistic brains from 6 to 16 years old deceased children, were analyzed. The current study investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. The activation of three signals of ER stress (protein kinase R-like endoplasmic reticulum kinase, activating transcription factor 6, inositol-requiring enzyme 1 alpha) varies in different regions. The occurrence of ER stress leads to apoptosis in autistic brains. ER stress may result from oxidative stress because of elevated levels of the oxidative stress markers: 4-Hydroxynonenal and nitrotyrosine-modified proteins in autistic brains. These findings suggest that cellular stress and apoptosis may contribute to the autistic phenotype. Pharmaceuticals and/or dietary supplements, which can alleviate ER stress, oxidative stress and apoptosis, may be effective in ameliorating adverse phenotypes associated with autism.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Horst Ronald Zielke
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - David Yeh
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
An atypical autistic phenotype associated with a 2q13 microdeletion: a case report. J Med Case Rep 2018; 12:79. [PMID: 29549886 PMCID: PMC5857311 DOI: 10.1186/s13256-018-1620-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background Autism spectrum disorders are serious neurodevelopmental disorders that affect approximately 1% of the population. These disorders are substantially influenced by genetics. Several recent linkage analyses have examined copy number variations associated with autism risk. Microdeletion of the 2q13 region is considered a pathogenic copy number variation. This microdeletion is involved in developmental delays, congenital heart defects, dysmorphism, and various psychiatric disorders, including autism spectrum disorders. There are only 34 reported cases with this chromosomal deletion, and five cases of autism spectrum disorders have been identified among them. The autistic phenotype associated with this microdeletion has never been described. Case presentation We describe the case of a 44-month-old Caucasian girl with the 2q13 microdeletion and autism spectrum disorders with global development delay but no associated organ anomalies. We examined the autistic phenotype using different workups and observed an atypical phenotype defined by relatively preserved relational competency and imitation abilities. Conclusions The main contribution of this case report is the precise description of the autistic phenotype in the case of this deletion. We observed some atypical clinical features that could be markers of this genetic anomaly. We have discussed the pathophysiology of autism associated with this microdeletion and its incomplete penetrance and variable expressivity.
Collapse
|
29
|
Wu H, Zhang Q, Gao J, Sun C, Wang J, Xia W, Cao Y, Hao Y, Wu L. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism. Psychopharmacology (Berl) 2018; 235:873-886. [PMID: 29218394 DOI: 10.1007/s00213-017-4805-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
RATIONALE Autism spectrum disorders (ASD) are a set of pervasive neurodevelopmental disorders that manifest in early childhood, and it is growing up to be a major cause of disability in children. However, the etiology and treatment of ASD are not well understood. In our previous study, we found that serum levels of sphingosine 1-phosphate (S1P) were increased significantly in children with autism, indicating that S1P levels may be involved in ASD. OBJECTIVE The objective of this study was to identify a link between increased levels of S1P and neurobehavioral changes in autism. METHODS We utilized a valproic acid (VPA) -induced rat model of autism to evaluate the levels of S1P and the expression of sphingosine kinase (SphK), a key enzyme for S1P production, in serum and hippocampal tissue. Furthermore, we assessed cognitive functional changes and histopathological and neurochemical alterations in VPA-exposed rats after SphK blockade to explore the possible link between increased levels of S1P and neurobehavioral changes in autism. RESULTS We found that SphK2 and S1P are upregulated in hippocampal tissue from VPA-exposed rats, while pharmacological inhibition of SphK reduced S1P levels, attenuated spatial learning and memory impairments, increased the expression of phosphorylated CaMKII and CREB and autophagy-related proteins, inhibited cytochrome c release, decreased the expression of apoptosis related proteins, and protected against neuronal loss in the hippocampus. CONCLUSION We have demonstrated that an increased level of SphK2/S1P is involved in the spatial learning and memory impairments of autism, and this signaling pathway represents a novel therapeutic target and direction for future studies.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Nursing, Harbin Medical University in Daqing, Daqing, Heilongjiang, 163319, China
| | - Quanzhi Zhang
- Department of Nursing, Harbin Medical University in Daqing, Daqing, Heilongjiang, 163319, China.,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Jingquan Gao
- Department of Nursing, Harbin Medical University in Daqing, Daqing, Heilongjiang, 163319, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Jia Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Wei Xia
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University in Daqing, Daqing, Heilongjiang, 163319, China
| | - Yanqiu Hao
- Department of pediatrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
30
|
Autophagy mediates glucose starvation-induced glioblastoma cell quiescence and chemoresistance through coordinating cell metabolism, cell cycle, and survival. Cell Death Dis 2018; 9:213. [PMID: 29434213 PMCID: PMC5833690 DOI: 10.1038/s41419-017-0242-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is pivotal to sustain cancer growth and progression. As such dietary restriction therapy represents a promising approach to starve and treat cancers. Nonetheless, tumors are dynamic and heterogeneous populations of cells with metabolic activities modulated by spatial and temporal contexts. Autophagy is a major pathway controlling cell metabolism. It can downregulate cell metabolism, leading to cancer cell quiescence, survival, and chemoresistance. To understand treatment dynamics and provide rationales for better future therapeutic strategies, we investigated whether and how autophagy is involved in the chemo-cytotoxicity and -resistance using two commonly used human glioblastoma (GBM) cell lines U87 and U251 together with primary cancer cells from the GBM patients. Our results suggest that autophagy mediates chemoresistance through reprogramming cancer cell metabolism and promoting quiescence and survival. Further unbiased transcriptome profiling identified a number of clinically relevant pathways and genes, strongly correlated with TCGA data. Our analyses have not only reported many well-known tumor players, but also uncovered a number of genes that were not previously implicated in cancers and/or GBM. The known functions of these genes are highly suggestive. It would be of high interest to investigate their potential involvement in GBM tumorigenesis, progression, and/or drug resistance. Taken together, our results suggest that autophagy inhibition could be a viable approach to aid GBM chemotherapy and combat drug resistance.
Collapse
|
31
|
Bjørklund G, Kern JK, Urbina MA, Saad K, El-Houfey AA, Geier DA, Chirumbolo S, Geier MR, Mehta JA, Aaseth J. Cerebral hypoperfusion in autism spectrum disorder. Acta Neurobiol Exp (Wars) 2018; 78:21-29. [PMID: 29694338 DOI: 10.21307/ane-2018-005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cerebral hypoperfusion, or insufficient blood flow in the brain, occurs in many areas of the brain in patients diagnosed with autism spectrum disorder (ASD). Hypoperfusion was demonstrated in the brains of individuals with ASD when compared to normal healthy control brains either using positron emission tomography (PET) or single‑photon emission computed tomography (SPECT). The affected areas include, but are not limited to the: prefrontal, frontal, temporal, occipital, and parietal cortices; thalami; basal ganglia; cingulate cortex; caudate nucleus; the limbic system including the hippocampal area; putamen; substantia nigra; cerebellum; and associative cortices. Moreover, correlations between symptom scores and hypoperfusion in the brains of individuals diagnosed with an ASD were found indicating that the greater the autism symptom pathology, the more significant the cerebral hypoperfusion or vascular pathology in the brain. Evidence suggests that brain inflammation and vascular inflammation may explain a part of the hypoperfusion. There is also evidence of a lack of normal compensatory increase in blood flow when the subjects are challenged with a task. Some studies propose treatments that can address the hypoperfusion found among individuals diagnosed with an ASD, bringing symptom relief to some extent. This review will explore the evidence that indicates cerebral hypoperfusion in ASD, as well as the possible etiological aspects, complications, and treatments.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway,
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CONEM US Autism Research Group, Allen, TX, USA
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira A El-Houfey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Egypt
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| | - Jyutika A Mehta
- Department of Communication Sciences and Disorders, Texas Woman's University, Denton, Texas, USA
| | - Jan Aaseth
- Faculty of Public Health, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
32
|
Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, Xia W, Cao Y, Wu L. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 2017; 173:43-54. [PMID: 28161158 DOI: 10.1016/j.lfs.2017.01.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
AIMS To investigate the effect of FTY720 on the valproic acid (VPA) rat model of autism. MAIN METHODS As an animal model of autism, we used intraperitoneal injection of VPA on embryonic day 12.5 in Wistar rats. The pups were given FTY720 orally at doses of 0.25, 0.5 and 1mg/kg daily from postnatal day 15 to 35. Social behavior, spatial learning and memory were assessed at the end of FTY720 treatment. The histological change, oxidative stress, neuroinflammatory responses, and apoptosis-related proteins in the hippocampus were evaluated. KEY FINDINGS FTY720 (1mg/kg) administration to VPA-exposed rats (1) improved social behavior, spatial learning and memory impairment; (2) resulted in a reduction in neuronal loss and apoptosis of pyramidal cells in hippocampal CA1 regions; (3) inhibited activation of microglial cells, in turn lowering the level of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-6 in the hippocampus; (4) changed Malondialdehyde (MDA) levels, Glutathione (GSH) levels, superoxide dismutase (SOD) activity and Glutathione Peroxidase (GSH-Px) activity in the hippocampus; (6) inhibited the elevated Bax and caspase-3 protein levels and enhanced the relative expression level of Bcl-2 in the hippocampus; and (7) increased phospho-Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), phospho-cAMP-response element binding protein (p-CREB) and Brain Derived Neurotrophic Factor (BDNF) protein expression in the hippocampus. SIGNIFICANCE FTY720 rescues social deficit, spatial learning and memory impairment in VPA-exposed rats. FTY720 exerts both a direct protection for neurons and an indirect modulation of inflammation-mediated neuron loss as a possible mechanism of neuroprotection.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xuelai Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jingquan Gao
- Department of Nursing, Harbin Medical University in Daqing, Daqing, Heilongjiang 163319, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanqiu Hao
- Department of pediatrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wei Xia
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University in Daqing, Daqing, Heilongjiang 163319, China.
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
33
|
Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis. J Autism Dev Disord 2017; 47:1018-1029. [DOI: 10.1007/s10803-016-3024-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
35
|
Selection of Suitable Reference Genes for Analysis of Salivary Transcriptome in Non-Syndromic Autistic Male Children. Int J Mol Sci 2016; 17:ijms17101711. [PMID: 27754318 PMCID: PMC5085743 DOI: 10.3390/ijms17101711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
Childhood autism is a severe form of complex genetically heterogeneous and behaviorally defined set of neurodevelopmental diseases, collectively termed as autism spectrum disorders (ASD). Reverse transcriptase quantitative real-time PCR (RT-qPCR) is a highly sensitive technique for transcriptome analysis, and it has been frequently used in ASD gene expression studies. However, normalization to stably expressed reference gene(s) is necessary to validate any alteration reported at the mRNA level for target genes. The main goal of the present study was to find the most stable reference genes in the salivary transcriptome for RT-qPCR analysis in non-syndromic male childhood autism. Saliva samples were obtained from nine drug naïve non-syndromic male children with autism and also sex-, age-, and location-matched healthy controls using the RNA-stabilizer kit from DNA Genotek. A systematic two-phased measurement of whole saliva mRNA levels for eight common housekeeping genes (HKGs) was carried out by RT-qPCR, and the stability of expression for each candidate gene was analyzed using two specialized algorithms, geNorm and NormFinder, in parallel. Our analysis shows that while the frequently used HKG ACTB is not a suitable reference gene, the combination of GAPDH and YWHAZ could be recommended for normalization of RT-qPCR analysis of salivary transcriptome in non-syndromic autistic male children.
Collapse
|
36
|
The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer. Biomolecules 2015; 5:3260-79. [PMID: 26610586 PMCID: PMC4693277 DOI: 10.3390/biom5043260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.
Collapse
|
37
|
Mahfouz A, Ziats MN, Rennert OM, Lelieveldt BPF, Reinders MJT. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome. J Mol Neurosci 2015; 57:580-94. [PMID: 26399424 PMCID: PMC4644211 DOI: 10.1007/s12031-015-0641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains unclear. We hypothesized that understanding functional relationships between autism candidate genes during normal human brain development may provide convergent mechanistic insight into the genetic heterogeneity of ASD. We analyzed the co-expression relationships of 455 genes previously implicated in autism using the BrainSpan human transcriptome database, across 16 anatomical brain regions spanning prenatal life through adulthood. We discovered modules of ASD candidate genes with biologically relevant temporal co-expression dynamics, which were enriched for functional ontologies related to synaptogenesis, apoptosis, and GABA-ergic neurons. Furthermore, we also constructed co-expression networks from the entire transcriptome and found that ASD candidate genes were enriched in modules related to mitochondrial function, protein translation, and ubiquitination. Hub genes central to these ASD-enriched modules were further identified, and their functions supported these ontological findings. Overall, our multi-dimensional co-expression analysis of ASD candidate genes in the normal developing human brain suggests the heterogeneous set of ASD candidates share transcriptional networks related to synapse formation and elimination, protein turnover, and mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Mark N Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,University of Cambridge, Cambridge, UK.,Baylor College of Medicine, Houston, TX, USA
| | - Owen M Rennert
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Boudewijn P F Lelieveldt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
38
|
Hladilkova E, Barøy T, Fannemel M, Vallova V, Misceo D, Bryn V, Slamova I, Prasilova S, Kuglik P, Frengen E. A recurrent deletion on chromosome 2q13 is associated with developmental delay and mild facial dysmorphisms. Mol Cytogenet 2015; 8:57. [PMID: 26236398 PMCID: PMC4521466 DOI: 10.1186/s13039-015-0157-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/05/2015] [Indexed: 11/24/2022] Open
Abstract
We report two unrelated patients with overlapping chromosome 2q13 deletions (patient 1 in chr2:111415137-113194067 bp and patient 2 in chr2:110980342-113007823 bp, hg 19). Patient 1 presents with developmental delay, microcephaly and mild dysmorphic facial features, and patient 2 with autism spectrum disorder, borderline cognitive abilities, deficits in attention and executive functions and mild dysmorphic facial features. The mother and maternal grandmother of patient 1 were healthy carriers of the deletion. Previously, 2q13 deletions were reported in 27 patients, and the interpretation of its clinical significance varied. Our findings support that the 2q13 deletion is associated with a developmental delay syndrome manifesting with variable expressivity and reduced penetrance which poses a challenge for genetic counselling as well as the clinical recognition of 2q13 deletion patients.
Collapse
Affiliation(s)
- Eva Hladilkova
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway.,Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic
| | - Tuva Barøy
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Madeleine Fannemel
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Vladimira Vallova
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic.,Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic
| | - Doriana Misceo
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Vesna Bryn
- Department of Habilitation, Sykehuset Innlandet HF, Lillehammer, Norway
| | - Iva Slamova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic.,Sanatorium Helios ltd., Laboratory of Medical Genetics, Brno, Czech Republic
| | - Sarka Prasilova
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic
| | - Petr Kuglik
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic.,Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic
| | - Eirik Frengen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
39
|
Pereira H, Oliveira CSF, Castro L, Preto A, Chaves SR, Côrte-Real M. Yeast as a tool to explore cathepsin D function. MICROBIAL CELL 2015; 2:225-234. [PMID: 28357298 PMCID: PMC5349170 DOI: 10.15698/mic2015.07.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cathepsin D has garnered increased attention in recent years, mainly since it has been associated with several human pathologies. In particular, cathepsin D is often overexpressed and hypersecreted in cancer cells, implying it may constitute a therapeutic target. However, cathepsin D can have both anti- and pro-survival functions depending on its proteolytic activity, cellular context and stress stimulus. Therefore, a more detailed understanding of cathepsin D regulation and how to modulate its apoptotic functions is clearly needed. In this review, we provide an overview of the role of cathepsin D in physiological and pathological scenarios. We then focus on the opposing functions of cathepsin D in apoptosis, particularly relevant in cancer research. Emphasis is given to the role of the yeast protease Pep4p, the vacuolar counterpart of cathepsin D, in life and death. Finally, we discuss how insights from yeast cathepsin D and its role in regulated cell death can unveil novel functions of mammalian cathepsin D in apoptosis and cancer.
Collapse
Affiliation(s)
- H Pereira
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - C S F Oliveira
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. ; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - L Castro
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - A Preto
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - S R Chaves
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Côrte-Real
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
40
|
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:111-44. [PMID: 25621659 DOI: 10.1146/annurev-pathol-012414-040405] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is defined by impaired social interaction and communication accompanied by stereotyped behaviors and restricted interests. Although ASD is common, its genetic and clinical features are highly heterogeneous. A number of recent breakthroughs have dramatically advanced our understanding of ASD from the standpoint of human genetics and neuropathology. These studies highlight the period of fetal development and the processes of chromatin structure, synaptic function, and neuron-glial signaling. The initial efforts to systematically integrate findings of multiple levels of genomic data and studies of mouse models have yielded new clues regarding ASD pathophysiology. This early work points to an emerging convergence of disease mechanisms in this complex and etiologically heterogeneous disorder.
Collapse
|
41
|
Zhao G, Gao J, Liang S, Wang X, Sun C, Xia W, Hao Y, Li X, Cao Y, Wu L. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate-induced autism model. Int J Dev Neurosci 2015; 44:14-21. [PMID: 25916973 DOI: 10.1016/j.ijdevneu.2015.04.350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022] Open
Abstract
To investigate whether the decreased level of serum polyunsaturated fatty acids (PUFAs) in patients with autism is associated with the expression of related liver metabolic enzymes, we selected rats that were exposed to valproic acid (VPA) on embryonic day 12.5 (E12.5) as a model of autism. We observed the serum levels of PUFAs and the expression of related liver metabolic enzymes, including Δ5-desaturase, Δ6-desaturase and elongase (Elovl2), in VPA-exposed and control rats on postnatal day 35 (PND35) and conducted sex dimorphic analysis. We found that the levels of serum PUFAs and related liver metabolic enzymes in the VPA rats were significantly reduced, in association with autism-like behavioral changes, the abnormal expression of apoptosis-related proteins and hippocampal neuronal injury, compared to the control rats and showed sex difference in VPA group. This finding indicated that rats exposed to VPA at the embryonic stage may exhibit reduced synthesis of serum PUFAs due to the down-regulation of liver metabolic enzymes, thereby inducing nervous system injury and behavioral changes, which is affected by sex in the meantime.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Jingquan Gao
- Department of Nursing, Daqing Campus of Harbin Medical University, Daqing 163319, China
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Xuelai Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Yanqiu Hao
- Department of Pediatric, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Yonggang Cao
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing 163319, China.
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
42
|
Bollino D, Balan I, Aurelian L. Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 2015; 133:174-86. [PMID: 25581256 DOI: 10.1111/jnc.13029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis-inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. A growing body of evidence indicates that valproic acid (VPA) has neurotoxic activity, the mechanism of which is still poorly understood. We report, for the first time, that VPA activates a previously unrecognized calpain-dependent necroptosis cascade that initiates with JNK1 activation and involves AIF cleavage/nuclear translocation and H2AX phosphorylation as well as an altered Smac/DIABLO to XIAP balance.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Pharmacology, University of Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
43
|
Wei H, Alberts I, Li X. The apoptotic perspective of autism. Int J Dev Neurosci 2014; 36:13-8. [DOI: 10.1016/j.ijdevneu.2014.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hongen Wei
- Central LaboratoryShanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanChina
| | - Ian Alberts
- Department of Natural SciencesLaGuardia CC, CUNYNew YorkNY11101USA
| | - Xiaohong Li
- Department of NeurochemistryNY State Institute for Basic Research in Developmental DisabilitiesNew YorkNY10314USA
| |
Collapse
|
44
|
Yin A, Qiu Y, Jia B, Song T, Yu Y, Alberts I, Zhong M. The developmental pattern of the RAS/RAF/Erk1/2 pathway in the BTBR autism mouse model. Int J Dev Neurosci 2014; 39:2-8. [PMID: 24631207 DOI: 10.1016/j.ijdevneu.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/01/2022] Open
Abstract
BTBR mice exhibit several autistic-like behaviors and are currently used as a model for understanding mechanisms that may be responsible for the pathogenesis of autism. Ras/Raf/ERK1/2 signaling has been suggested to play an important role in neural development, learning, memory, and cognition. Two studies reported that a deletion of a locus on chromosome 16 containing the mitogen-activated protein kinase 3 (MAPK3) gene, which encodes ERK1, is associated with autism. In the present study, Ras/Raf/ERK1/2 signaling was found to be up-regulated in BTBR mice relative to matched control B6 mice, to further suggest involvement in the pathogenesis of autism. To further characterize the developmental pattern of Ras/Raf/ERK1/2 signaling, varying stages during development were sampled to reveal an up-regulation in newborn and 2-week old BTBR mice relative to age-matched B6 mice. By the age of 3-week, Ras/Raf/ERK1/2 signaling in the brain of BTBR mice was unaltered relative to B6 mice, with this trend maintained in 6-week samples. These results suggest that the alteration of Ras/Raf/ERK signaling in the early developmental stages in mice could contribute to the noted autistic phenotype. Furthermore, these findings support the value of BTBR mice to serve as a human analog for autistic etiological research and aid in a better understanding of the developmental mechanisms of autism.
Collapse
Affiliation(s)
- Ailan Yin
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China; Southern Medical University, Guangzhou, China
| | - Yuwen Qiu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Bei Jia
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Tianrong Song
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Yanhong Yu
- Southern Medical University, Guangzhou, China
| | - Ian Alberts
- Department of Natural Sciences, LarGuardia CC, CUNY, NY, NY 11101, USA
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China.
| |
Collapse
|
45
|
Autism’s cancer connection: The anti-proliferation hypothesis and why it may matter. Med Hypotheses 2014; 82:26-35. [DOI: 10.1016/j.mehy.2013.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
|
46
|
Bauer AZ, Kriebel D. Prenatal and perinatal analgesic exposure and autism: an ecological link. Environ Health 2013; 12:41. [PMID: 23656698 PMCID: PMC3673819 DOI: 10.1186/1476-069x-12-41] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 04/02/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Autism and Autism Spectrum Disorder (ASD) are complex neurodevelopmental disorders. Susceptibility is believed to be the interaction of genetic heritability and environmental factors. The synchronous rises in autism/ASD prevalence and paracetamol (acetaminophen) use, as well as biologic plausibility have led to the hypothesis that paracetamol exposure may increase autism/ASD risk. METHODS To explore the relationship of antenatal paracetamol exposure to ASD, population weighted average autism prevalence rates and paracetamol usage rates were compared. To explore the relationship of early neonatal paracetamol exposure to autism/ASD, population weighted average male autism prevalence rates for all available countries and U.S. states were compared to male circumcision rates - a procedure for which paracetamol has been widely prescribed since the mid-1990s. Prevalence studies were extracted from the U.S. Centers for Disease Control and Prevention Summary of Autism/ASD Prevalence Studies database. Maternal paracetamol usage and circumcision rates were identified by searches on Pub Med. RESULTS Using all available country-level data (n = 8) for the period 1984 to 2005, prenatal use of paracetamol was correlated with autism/ASD prevalence (r = 0.80). For studies including boys born after 1995, there was a strong correlation between country-level (n = 9) autism/ASD prevalence in males and a country's circumcision rate (r = 0.98). A very similar pattern was seen among U.S. states and when comparing the 3 main racial/ethnic groups in the U.S. The country-level correlation between autism/ASD prevalence in males and paracetamol was considerably weaker before 1995 when the drug became widely used during circumcision. CONCLUSIONS This ecological analysis identified country-level correlations between indicators of prenatal and perinatal paracetamol exposure and autism/ASD. State level correlation was also identified for the indicator of perinatal paracetamol exposure and autism/ASD. Like all ecological analyses, these data cannot provide strong evidence of causality. However, biologic plausibility is provided by a growing body of experimental and clinical evidence linking paracetamol metabolism to pathways shown to be important in autism and related developmental abnormalities. Taken together, these ecological findings and mechanistic evidence suggest the need for formal study of the role of paracetamol in autism.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Work Environment, School of Health and Environment, University of Massachusetts- Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| | - David Kriebel
- Department of Work Environment, School of Health and Environment, University of Massachusetts- Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| |
Collapse
|
47
|
Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:123-131. [PMID: 23416409 DOI: 10.1016/j.aquatox.2013.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) is a widespread persistent pollutant in aquatic ecosystems. We investigated the protein profiles of medaka (Oryzias melastigma) liver chronically exposed to different mercuric chloride (HgCl2) concentrations (1 or 10 μg/L) for 60 d using two-dimensional difference gel electrophoresis (2D-DIGE), as well as cell ultrastructure and Hg content analysis of the hepatic tissue. The results showed that Hg exposure significantly increased metal accumulation in the liver, and subsequently damaged liver ultrastructure. Comparison of the 2D-DIGE protein profiles of the exposed and control groups revealed that the abundance of 45 protein spots was remarkably altered in response to Hg treatment. The altered spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 33 spots. These proteins were mainly involved in cytoskeleton assembly, oxidative stress, and energy production. Among them, several proteins related to mitochondrial function (e.g. respiratory metabolism) were significantly altered in the treated hepatocytes, implying that this organelle might be the primary target for Hg attack in the cells. This study provided new insights into the molecular mechanisms and/or toxic pathways by which chronic Hg hepatotoxicity affects aquatic organisms, and also provided basic information for screening potential biomarkers for aquatic Hg monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
48
|
Yang K, Cao F, Sheikh AM, Malik M, Wen G, Wei H, Ted Brown W, Li X. Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct 2012; 218:669-82. [PMID: 22555958 DOI: 10.1007/s00429-012-0420-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/18/2012] [Indexed: 11/26/2022]
Abstract
The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. Recent studies have suggested that abnormal apoptosis in the central nervous system may be involved in the pathogenesis of autism. Two studies reported that both a microdeletion and microduplication on chromosome 16, which includes the MAPK3 gene that encodes ERK1, are associated with autism. In addition, our recent work showed that Ras/Raf/ERK1/2 signaling activities were significantly up-regulated in the frontal cortex of autistic individuals and in the BTBR murine model of autism. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of autism, we developed a cellular model of Raf/ERK up-regulation by over-expressing c-Raf in cultured cortical neurons (CNs) and cerebellar granule cells (CGCs). We found that Raf/ERK up-regulation stimulates the migration of both CNs and CGCs, and impairs the formation of excitatory synapses in CNs. In addition, we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in CNs. Investigating the possible mechanisms through which Raf/ERK up-regulation affects excitatory synapse formation and dendritic spine development, we discovered that Raf/ERK up-regulation suppresses the development and maturation of CNs. Together, these results suggest that the up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of autism through both its impairment of cortical neuron development and causing neural circuit imbalances.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, NY, 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012; 7:e35414. [PMID: 22567102 PMCID: PMC3342283 DOI: 10.1371/journal.pone.0035414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type-specific amount. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ(17-40/42) in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ(1-40/42) detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques. CONCLUSIONS/SIGNIFICANCE The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.
Collapse
|
50
|
Ghanizadeh A. Acetaminophen may mediate oxidative stress and neurotoxicity in autism. Med Hypotheses 2012; 78:351. [DOI: 10.1016/j.mehy.2011.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/10/2011] [Indexed: 11/16/2022]
|