1
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
3
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
4
|
Menon R, Süß T, Oliveira VEDM, Neumann ID, Bludau A. Neurobiology of the lateral septum: regulation of social behavior. Trends Neurosci 2021; 45:27-40. [PMID: 34810019 DOI: 10.1016/j.tins.2021.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Social interactions are essential for mammalian life and are regulated by evolutionary conserved neuronal mechanisms. An individual's internal state, experiences, and the nature of the social stimulus are critical for determining apt responses to social situations. The lateral septum (LS) - a structure of the basal forebrain - integrates abundant cortical and subcortical inputs, and projects to multiple downstream regions to generate appropriate behavioral responses. Although incoming cognitive information is indispensable for contextualizing a social stimulus, neuromodulatory information related to the internal state of the organism significantly influences the behavioral outcome as well. This review article provides an overview of the neuroanatomical properties of the LS, and examines its neurochemical (neuropeptidergic and hormonal) signaling, which provide the neuromodulatory information essential for fine-tuning social behavior across the lifespan.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Theresa Süß
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Vinícius Elias de Moura Oliveira
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany; Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Anna Bludau
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 2020; 21:E4471. [PMID: 32586047 PMCID: PMC7352860 DOI: 10.3390/ijms21124471] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The signaling pathway of the microtubule-associated protein kinase or extracellular regulated kinase (MAPK/ERK) is a common mechanism of extracellular information transduction from extracellular stimuli to the intracellular space. The transduction of information leads to changes in the ongoing metabolic pathways and the modification of gene expression patterns. In the central nervous system, ERK is expressed ubiquitously, both temporally and spatially. As for the temporal ubiquity, this signaling system participates in three key moments: (i) Embryonic development; (ii) the early postnatal period; and iii) adulthood. During embryonic development, the system is partly responsible for the patterning of segmentation in the encephalic vesicle through the FGF8-ERK pathway. In addition, during this period, ERK directs neurogenesis migration and the final fate of neural progenitors. During the early postnatal period, ERK participates in the maturation process of dendritic trees and synaptogenesis. During adulthood, ERK participates in social and emotional behavior and memory processes, including long-term potentiation. Alterations in mechanisms related to ERK are associated with different pathological outcomes. Genetic alterations in any component of the ERK pathway result in pathologies associated with neural crest derivatives and mental dysfunctions associated with autism spectrum disorders. The MAP-ERK pathway is a key element of the neuroinflammatory pathway triggered by glial cells during the development of neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as prionic diseases. The process triggered by MAPK/ERK activation depends on the stage of development (mature or senescence), the type of cellular element in which the pathway is activated, and the anatomic neural structure. However, extensive gaps exist with regards to the targets of the phosphorylated ERK in many of these processes.
Collapse
Affiliation(s)
- Héctor Albert-Gascó
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0AH, UK;
| | - Francisco Ros-Bernal
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
| | - Esther Castillo-Gómez
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| | - Francisco E. Olucha-Bordonau
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| |
Collapse
|
6
|
Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Mol Psychiatry 2020; 25:2144-2161. [PMID: 30089788 PMCID: PMC7473847 DOI: 10.1038/s41380-018-0132-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022]
Abstract
Aggression is frequently observed in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Due to a lack of understanding of its underlying mechanisms, effective treatments for abnormal aggression are still missing. Recently, genetic variations in Sialyltransferase 2 (St8sia2) have been linked to these disorders and aggression. Here we identify abnormal aggressive behaviors and concomitant blunted fear learning in St8sia2 knockout (-/-) mice. It is worth noting that the amygdala of St8sia2-/- mice shows diminished threat-induced activation, as well as alterations in synaptic structure and function, including impaired GluN2B-containing NMDA receptor-mediated synaptic transmission and plasticity. Pharmacological rescue of NMDA receptor activity in the amygdala of St8sia2-/- mice with the partial agonist D-cycloserine restores synaptic plasticity and normalizes behavioral aberrations. Pathological aggression and associated traits were recapitulated by specific amygdala neonatal St8sia2 silencing. Our results establish a developmental link between St8sia2 deficiency and a pathological aggression syndrome, specify synaptic targets for therapeutic developments, and highlight D-cycloserine as a plausible treatment.
Collapse
|
7
|
Perea-Rodriguez JP, de Jong TR, Kung E, Horrell ND, Saltzman W. Consequences of placentophagia by adult virgin male California mice (Peromyscus californicus). Behav Processes 2019; 166:103889. [DOI: 10.1016/j.beproc.2019.103889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
8
|
Sex-Dimorphic Behavioral Alterations and Altered Neurogenesis in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Int J Mol Sci 2019; 20:ijms20143543. [PMID: 31331069 PMCID: PMC6678158 DOI: 10.3390/ijms20143543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Mutant mice with respect to the splicing factor Zrsr1 present altered spermatogenesis and infertility. To investigate whether Zrsr1 is involved in the homeostatic control that the hypothalamus exerts over reproductive functions, we first analyzed both differential gene and isoform expression and alternative splicing alterations in Zrsr1 mutant (Zrsr1mu) hypothalamus; second, we analyzed the spontaneous and social behavior of Zrsr1mu mice; and third, we analyzed adult cell proliferation and survival in the Zrsr1mu hypothalamus. The Zrsr1mu hypothalamus showed altered expression of genes and isoforms related to the glutathione metabolic process, synaptonemal complex assembly, mRNA transport, and altered splicing events involving the enrichment of U12-type intron retention (IR). Furthermore, increased IR in U12-containing genes related with the prolactin, progesterone, and gonadotropin-releasing hormone (GnRH) reproductive signaling pathway was observed. This was associated with a hyperactive phenotype in both males and females, with an anxious phenotype in females, and with increased social interaction in males, instead of the classical aggressive behavior. In addition, Zrsr1mu females but not males exhibited reduced cell proliferation in both the hypothalamus and the subventricular zone. Overall, these results suggest that Zrsr1 expression and function are relevant to organization of the hypothalamic cell network controlling behavior.
Collapse
|
9
|
Smithers HE, Terry JR, Brown JT, Randall AD. Sex-associated differences in excitability within the bed nucleus of the stria terminalis are reflective of cell-type. Neurobiol Stress 2019; 10:100143. [PMID: 30937349 PMCID: PMC6430407 DOI: 10.1016/j.ynstr.2018.100143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic brain region which plays a key role in stress, anxiety, and anxiety-related disorders. Human females have an increased susceptibility to anxiety-related disorders, however the physiological basis of this is not fully understood. Here we examined the effect of the oestrous cycle and sex on the electrophysiological properties of Type I and Type II cells in the anterolateral area of the BNST (BNSTALG) in unstressed animals. There was no significant effect of oestrous cycle on any of the parameters examined in either cell type. Compared to males, the female cohort had lower capacitance in Type I cells while having a higher capacitance in Type II cells. Type II cells also displayed decreased excitability in the female cohort. In order to confirm the effect of these populations on stress and anxiety, a correlation with behaviour on the elevated zero maze was carried out. We observed that increased excitability in Type II neurons correlated with a decrease in anxiety-like behaviour. These sex-specific differences in excitability may contribute to altered susceptibility to anxiety-related disorders.
Collapse
Affiliation(s)
- Hannah E. Smithers
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - John R. Terry
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Living Systems Institute, EX4 4QD, UK
| | - Jonathan T. Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Andrew D. Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| |
Collapse
|
10
|
Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 2018; 224:453-469. [PMID: 30368554 DOI: 10.1007/s00429-018-1763-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
In mammals, the extended amygdala is a neural hub for social and emotional information processing. In the rat, the extended amygdala receives inhibitory GABAergic projections from the nucleus incertus (NI) in the pontine tegmentum. NI neurons produce the neuropeptide relaxin-3, which acts via the Gi/o-protein-coupled receptor, RXFP3. A putative role for RXFP3 signalling in regulating social interaction was investigated by assessing the effect of intracerebroventricular infusion of the RXFP3 agonist, RXFP3-A2, on performance in the 3-chamber social interaction paradigm. Central RXFP3-A2, but not vehicle, infusion, disrupted the capacity to discriminate between a familiar and novel conspecific subject, but did not alter differentiation between a conspecific and an inanimate object. Subsequent studies revealed that agonist-infused rats displayed increased phosphoERK(pERK)-immunoreactivity in specific amygdaloid nuclei at 20 min post-infusion, with levels similar to control again after 90 min. In parallel, we used immunoblotting to profile ERK phosphorylation dynamics in whole amygdala after RXFP3-A2 treatment; and multiplex histochemical labelling techniques to reveal that after RXFP3-A2 infusion and social interaction, pERK-immunopositive neurons in amygdala expressed vesicular GABA-transporter mRNA and displayed differential profiles of RXFP3 and oxytocin receptor mRNA. Overall, these findings demonstrate that central relaxin-3/RXFP3 signalling can modulate social recognition in rats via effects within the amygdala and likely interactions with GABA and oxytocin signalling.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/enzymology
- Animals
- Behavior, Animal/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GABAergic Neurons/drug effects
- GABAergic Neurons/enzymology
- Infusions, Intraventricular
- Intercellular Signaling Peptides and Proteins
- Male
- Oxytocin/metabolism
- Peptides/administration & dosage
- Phosphorylation
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recognition, Psychology/drug effects
- Signal Transduction/drug effects
- Social Behavior
- Vesicular Inhibitory Amino Acid Transport Proteins/genetics
- Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Hector Albert-Gasco
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sandra Sanchez-Sarasua
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cristina García-Díaz
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ana M Sanchez-Perez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain.
| | - Francisco E Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain.
| |
Collapse
|
11
|
Heimovics SA, Merritt JR, Jalabert C, Ma C, Maney DL, Soma KK. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Horm Behav 2018; 104:41-51. [PMID: 29605636 PMCID: PMC6344317 DOI: 10.1016/j.yhbeh.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. 17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Collapse
Affiliation(s)
| | | | - Cecilia Jalabert
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada
| | - Chunqi Ma
- University of British Columbia, Department of Psychology, Vancouver, BC, Canada
| | - Donna L Maney
- Emory University, Department of Psychology, Atlanta, GA, USA
| | - Kiran K Soma
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada; University of British Columbia, Department of Psychology, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Canada
| |
Collapse
|
12
|
Fuxjager MJ, Trainor BC, Marler CA. What can animal research tell us about the link between androgens and social competition in humans? Horm Behav 2017; 92:182-189. [PMID: 27914879 DOI: 10.1016/j.yhbeh.2016.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
A contribution to a special issue on Hormones and Human Competition. The relationship between androgenic hormones, like testosterone (T), and aggression is extensively studied in human populations. Yet, while this work has illuminated a variety of principals regarding the behavioral and phenotypic effects of T, it is also hindered by inherent limitations of performing research on people. In these instances, animal research can be used to gain further insight into the complex mechanisms by which T influences aggression. Here, we explore recent studies on T and aggression in numerous vertebrate species, although we focus primarily on males and on a New World rodent called the California mouse (Peromyscus californicus). This species is highly territorial and monogamous, resembling the modern human social disposition. We review (i) how baseline and dynamic T levels predict and/or impact aggressive behavior and disposition; (ii) how factors related to social and physical context influence T and aggression; (iii) the reinforcing or "rewarding" aspects of aggressive behavior; and (iv) the function of T on aggression before and during a combative encounter. Included are areas that may need further research. We argue that animal studies investigating these topics fill in gaps to help paint a more complete picture of how androgenic steroids drive the output of aggressive behavior in all animals, including humans.
Collapse
Affiliation(s)
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, CA, USA; Department of Psychology, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Witchey SK, Stevenson EL, Caldwell HK. Genotypic differences in intruder-evoked immediate early gene activation in male, but not female, vasopressin 1b receptor knockout mice. BMC Neurosci 2016; 17:75. [PMID: 27881080 PMCID: PMC5122005 DOI: 10.1186/s12868-016-0310-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
Background The neuropeptide arginine vasopressin (Avp) modulates social behaviors via its two centrally expressed receptors, the Avp 1a receptor and the Avp 1b receptor (Avpr1b). Recent work suggests that, at least in mice, Avp signaling through Avpr1b within the CA2 region of the hippocampus is critical for normal aggressive behaviors and social recognition memory. However, this brain area is just one part of a larger neural circuit that is likely to be impacted in Avpr1b knockout (−/−) mice. To identify other brain areas that are affected by altered Avpr1b signaling, genotypic differences in immediate early gene activation, i.e. c-FOS and early growth response factor 1 (EGR-1), were quantified using immunocytochemistry following a single exposure to an intruder. Results In females, no genotypic differences in intruder-evoked c-FOS or EGR-1 immunoreactivity were observed in any of the brain areas measured. In males, while there were no intruder-evoked genotypic differences in c-FOS immunoreactivity, genotypic differences were observed in EGR-1 immunoreactivity within the ventral bed nucleus of the stria terminalis and the anterior hypothalamus; with Avpr1b −/− males having less EGR-1 immunoreactivity in these regions than controls. Conclusions These data are the first to identify specific brain areas that may be a part of a neural circuit that includes Avpr1b-expressing cells in the CA2 region of the hippocampus. It is thought that this circuit, when working properly, plays a role in how an animal evaluates its social context. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0310-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shannah K Witchey
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Erica L Stevenson
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,Laboratory of Neuroendocrinology and Behavior, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA. .,Laboratory of Neuroendocrinology and Behavior, School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
14
|
Duque-Wilckens N, Steinman MQ, Laredo SA, Hao R, Perkeybile AM, Bales KL, Trainor BC. Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects. Neuropharmacology 2016; 110:59-68. [PMID: 27452721 DOI: 10.1016/j.neuropharm.2016.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023]
Abstract
Vasopressin V1a receptors (V1aR) are thought to contribute to the pathophysiology of psychiatric disorders such as anxiety and depression, sparking interest in V1aR as a therapeutic target. Although the global effects of V1aR have been documented, less is known about the specific neural circuits mediating these effects. Moreover, few studies have examined context-specific V1aR function in both males and females. By using the California mouse, we first studied the effects of sex and social defeat stress on V1aR binding in the forebrain. In females but not males, V1aR binding in the bed nucleus of the stria terminalis (BNST) was negatively correlated to social interaction behavior. In females stress also increased V1aR binding in the nucleus accumbens (NAc). Infusions of V1aR antagonist in to the medioventral BNST (BNSTmv) had anxiogenic effects only in animals naïve to defeat. For males, inhibition of V1aR in BNSTmv had anxiogenic effects in social and nonsocial contexts, but for females, anxiogenic effects were limited to social contexts. In stressed females, inhibition of V1aR in the NAc shell had no effect on social interaction behavior, but had an anxiogenic effect in an open field test. These data suggest that V1aR in BNSTmv have anxiolytic and prosocial effects in males, and that in females, prosocial and anxiolytic effects of V1aR appear to be mediated independently by receptors in the BNSTmv and NAc shell, respectively. These findings suggest that males have more overlap in neural circuits modulating anxiety in social and nonsocial contexts than females.
Collapse
Affiliation(s)
| | - Michael Q Steinman
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, USA
| | - Sarah A Laredo
- Animal Behavior Graduate Group, University of California, Davis, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, USA
| | | | - Karen L Bales
- Animal Behavior Graduate Group, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA
| | - Brian C Trainor
- Animal Behavior Graduate Group, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| |
Collapse
|
15
|
Waraczynski M. Toward a systems-oriented approach to the role of the extended amygdala in adaptive responding. Neurosci Biobehav Rev 2016; 68:177-194. [PMID: 27216212 DOI: 10.1016/j.neubiorev.2016.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/02/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
Abstract
Research into the structure and function of the basal forebrain macrostructure called the extended amygdala (EA) has recently seen considerable growth. This paper reviews that work, with the objectives of identifying underlying themes and developing a common goal towards which investigators of EA function might work. The paper begins with a brief review of the structure and the ontological and phylogenetic origins of the EA. It continues with a review of research into the role of the EA in both aversive and appetitive states, noting that these two seemingly disparate avenues of research converge on the concept of reinforcement - either negative or positive - of adaptive responding. These reviews lead to a proposal as to where the EA may fit in the organization of the basal forebrain, and an invitation to investigators to place their findings in a unifying conceptual framework of the EA as a collection of neural ensembles that mediate adaptive responding.
Collapse
Affiliation(s)
- Meg Waraczynski
- Department of Psychology, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA.
| |
Collapse
|
16
|
Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016; 10:36. [PMID: 27092060 PMCID: PMC4823275 DOI: 10.3389/fnana.2016.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Collapse
Affiliation(s)
- Fabio N Santos
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | - Celia W Pereira
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | | | - Marcos Otero-García
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat Valencia Valencia, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Unitat Predepartamental de Medicina, Universitat Jaume ICastellón, Spain
| |
Collapse
|
17
|
Wang R, Xu X, Zhu Q. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice. CHEMOSPHERE 2016; 144:1771-9. [PMID: 26524146 DOI: 10.1016/j.chemosphere.2015.10.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 05/27/2023]
Abstract
DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| | - Xiaohong Xu
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China.
| | - Qingjie Zhu
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| |
Collapse
|
18
|
Cardoso SD, Teles MC, Oliveira RF. Neurogenomic mechanisms of social plasticity. ACTA ACUST UNITED AC 2015; 218:140-9. [PMID: 25568461 DOI: 10.1242/jeb.106997] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level.
Collapse
Affiliation(s)
- Sara D Cardoso
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Magda C Teles
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Rui F Oliveira
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| |
Collapse
|
19
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
20
|
Perea-Rodriguez JP, Takahashi EY, Amador TM, Hao RC, Saltzman W, Trainor BC. Effects of reproductive experience on central expression of progesterone, oestrogen α, oxytocin and vasopressin receptor mRNA in male California mice (Peromyscus californicus). J Neuroendocrinol 2015; 27:245-52. [PMID: 25659593 PMCID: PMC5013726 DOI: 10.1111/jne.12264] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/28/2022]
Abstract
Fatherhood in biparental mammals is accompanied by distinct neuroendocrine changes in males, involving some of the same hormones involved in maternal care. In the monogamous, biparental California mouse (Peromyscus californicus), paternal care has been linked to changes in the central and/or peripheral availability of oestrogen, progesterone, vasopressin and oxytocin, although it is not known whether these endocrine fluctuations are associated with changes in receptor availability in the brain. Thus, we compared mRNA expression of oestrogen receptor (ER)α, progesterone receptor (PR), vasopressin receptor (V1a) and oxytocin receptor (OTR) in brain regions implicated in paternal care [i.e. medial preoptic area (MPOA)], fear [i.e. medial amygdala (MeA)] and anxiety [i.e. bed nucleus of the stria terminalis (BNST)] between first-time fathers (n = 8) and age-matched virgin males (n = 7). Males from both reproductive conditions behaved paternally towards unrelated pups, whereas fathers showed significantly shorter latencies to behave paternally and less time investigating pups. Furthermore, fathers showed significantly lower PR, OTR and V1a receptor mRNA expression in the BNST compared to virgins. Fathers also showed a marginally significant (P = 0.07) reduction in progesterone receptor mRNA expression in the MPOA, although fatherhood was not associated with any other changes in receptor mRNA in the MPOA or MeA. The results of the present study indicate that behavioural and endocrine changes associated with the onset of fatherhood, and/or with cohabitation with a (breeding) female, are accompanied by changes in mRNA expression of hormone and neuropeptide receptors in the brain.
Collapse
Affiliation(s)
- J. P. Perea-Rodriguez
- Department of Biology, University of California, Riverside, CA, USA
- Evolution, Ecology, and Organismal Biology Graduate Program, University of California, Riverside, CA, USA
| | - E. Y. Takahashi
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| | - T. M. Amador
- Department of Biology, University of California, Riverside, CA, USA
| | - R. C. Hao
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| | - W. Saltzman
- Department of Biology, University of California, Riverside, CA, USA
- Evolution, Ecology, and Organismal Biology Graduate Program, University of California, Riverside, CA, USA
| | - B. C. Trainor
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Laredo SA, Villalon Landeros R, Trainor BC. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms. Front Neuroendocrinol 2014; 35:447-58. [PMID: 24685383 PMCID: PMC4175137 DOI: 10.1016/j.yfrne.2014.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
Abstract
Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions.
Collapse
Affiliation(s)
- Sarah A Laredo
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States
| | - Rosalina Villalon Landeros
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Brian C Trainor
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
22
|
de Jong TR, Beiderbeck DI, Neumann ID. Measuring virgin female aggression in the female intruder test (FIT): effects of oxytocin, estrous cycle, and anxiety. PLoS One 2014; 9:e91701. [PMID: 24614336 PMCID: PMC3948875 DOI: 10.1371/journal.pone.0091701] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The costs of violence and aggression in our society have stimulated the scientific search for the predictors and causes of aggression. The majority of studies have focused on males, which are considered to be more aggressive than females in most species. However, rates of offensive behavior in girls and young women are considerable and are currently rising in Western society. The extrapolation of scientific results from males to young, non-maternal females is a priori limited, based on the profound sex differences in brain areas and functioning of neurotransmitters involved in aggression. Therefore, we established a paradigm to assess aggressive behavior in young virgin female rats, i.e. the female intruder test (FIT). We found that approximately 40% of un-manipulated adult (10-11 weeks old) female Wistar rats attack an intruder female during the FIT, independent of their estrous phase or that of their intruder. In addition, adolescent (7-8 weeks old) female rats selected for high anxiety behavior (HABs) displayed significantly more aggression than non-selected (NAB) or low-anxiety (LAB) rats. Intracerebroventricular infusion of oxytocin (OXT, 0.1 µg/5 µl) inhibited aggressive behavior in adult NAB and LAB, but not HAB females. Adolescent NAB rats that had been aggressive towards their intruder showed increased pERK immunoreactivity (IR) in the hypothalamic attack area and reduced pERK-IR in OXT neurons in the paraventricular hypothalamic nucleus compared to non-aggressive NAB rats. Taken together, aggressive behavior in young virgin female rats is partly dependent on trait anxiety, and appears to be under considerable OXT control.
Collapse
Affiliation(s)
- Trynke R. de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Daniela I. Beiderbeck
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Laredo SA, Orr VN, McMackin MZ, Trainor BC. The effects of exogenous melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene expression in male California mice (Peromyscus californicus). Physiol Behav 2014; 128:86-91. [PMID: 24518867 DOI: 10.1016/j.physbeh.2014.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022]
Abstract
Photoperiodic regulation of aggression has been well established in several vertebrate species, with rodents demonstrating increased aggression in short day photoperiods as compared to long day photoperiods. Previous work suggests that estrogens regulate aggression via rapid nongenomic pathways in short days and act more slowly in long days, most likely via genomic pathways. The current study therefore examines the role of melatonin in mediating aggression and estrogen-dependent gene transcription. In Experiment 1, male California mice were housed under long day photoperiods and were treated with either 0.3 μg/g of melatonin, 40 mg/kg of the melatonin receptor antagonist luzindole, or vehicle for 10 days. We found that melatonin administration significantly increased aggression as compared to mice receiving vehicle, but this phenotype was not completely ameliorated by luzindole. In Experiment 2, male California mice were injected with either 1mg/kg of the aromatase inhibitor letrozole or vehicle, and oxytocin receptor (OTR), estrogen receptor alpha (ERα), and c-fos gene expression was examined in the bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). In the BNST, but not MPOA, OTR mRNA was significantly downregulated following letrozole administration, indicating that OTR is an estrogen-dependent gene in the BNST. In contrast, ERα was not estrogen dependent in either brain region. In the MPOA, OTR mRNA was inhibited by melatonin, and luzindole suppressed this effect. C-fos and ERα did not differ between treatments in any brain region examined. These results suggest that it is unlikely that melatonin facilitates aggression via broad spectrum regulation of estrogen-dependent gene expression. Instead, melatonin may act via regulation of other transcription factors such as extracellular signal regulated kinase.
Collapse
Affiliation(s)
- Sarah A Laredo
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Veronica N Orr
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Marissa Z McMackin
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
24
|
Robles CF, McMackin MZ, Campi KL, Doig IE, Takahashi EY, Pride MC, Trainor BC. Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females. Behav Brain Res 2014; 262:84-93. [PMID: 24445073 DOI: 10.1016/j.bbr.2014.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
The effects of kappa opioid receptors (KOR) on motivated behavior are well established based on studies in male rodents, but relatively little is known about the effects of KOR in females. We examined the effects of KOR activation on conditioned place aversion and social interaction in the California mouse (Peromyscus californicus). Important differences were observed in long-term (place aversion) and short-term (social interaction) effects. Females but not males treated with a 2.5 mg/kg dose of U50,488 formed a place aversion, whereas males but not females formed a place aversion at the 10 mg/kg dose. In contrast the short term effects of different doses of U50,488 on social interaction behavior were similar in males and females. Acute injection with 10 mg/kg of U50,488 (but not lower doses) reduced social interaction behavior in both males and females. The effects of U50,488 on phosphorylated extracellular signal regulated kinase (pERK) and p38 MAP kinase were cell type and region specific. Higher doses of U50,488 increased the number of pERK neurons in the ventrolateral bed nucleus of the stria terminals in males but not females, a nucleus implicated in male aggressive behavior. In contrast, both males and females treated with U50,488 had more activated p38 cells in the nucleus accumbens shell. Unexpectedly, cells expressing activated p38 co-expressed Iba-1, a widely used microglia marker. In summary we found strong sex differences in the effects of U50,488 on place aversion whereas the acute effects on U50,488 induced similar behavioral effects in males and females.
Collapse
Affiliation(s)
- Cindee F Robles
- Department of Psychology, University of California, Davis, CA 95616, USA; Department of Psychology, Michigan State University, East Lansing, MI, ZIP, USA
| | - Marissa Z McMackin
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, CA 95616, USA
| | - Katharine L Campi
- Department of Psychology, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Ian E Doig
- Department of Psychology, University of California, Davis, CA 95616, USA
| | | | - Michael C Pride
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA; Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Laredo SA, Villalon Landeros R, Dooley JC, Steinman MQ, Orr V, Silva AL, Crean KK, Robles CF, Trainor BC. Nongenomic effects of estradiol on aggression under short day photoperiods. Horm Behav 2013; 64:557-65. [PMID: 23763907 PMCID: PMC3851015 DOI: 10.1016/j.yhbeh.2013.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 06/01/2013] [Indexed: 01/01/2023]
Abstract
In several vertebrate species, the effects of estrogens on male aggressive behavior can be modulated by environmental cues. In song sparrows and rodents, estrogens modulate aggression in the nonbreeding season or winter-like short days, respectively. The behavioral effects of estrogens are rapid, which generally is considered indicative of nongenomic processes. The current study further examined the hypothesis that estradiol acts nongenomically under short days by utilizing a protein synthesis inhibitor, cycloheximide (CX). Mice were housed in either short or long day photoperiods, and treated with an aromatase inhibitor. One hour before resident-intruder testing mice were injected with either CX or saline vehicle, and 30 min later were treated orally with either cyclodextrin conjugated estradiol or vehicle. Under short days, mice treated with estradiol showed a rapid decrease in aggressive behavior, independent of CX administration. CX alone had no effect on aggression. These results show that protein synthesis is not required for the rapid effects of estradiol on aggression, strongly suggesting that these effects are mediated by nongenomic processes. We also showed that estradiol suppressed c-fos immunoreactivity in the caudal bed nucleus of the stria terminalis under short days. No effects of estradiol on behavior or c-fos expression were observed in mice housed under long days. Previously we had also demonstrated that cage bedding influenced the directional effects of estrogens on aggression. Here, we show that the phenomenon of rapid action of estradiol on aggression under short days is a robust result that generalizes to different bedding conditions.
Collapse
Affiliation(s)
- Sarah A Laredo
- Department of Psychology, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Campi KL, Jameson CE, Trainor BC. Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus). BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:236-49. [PMID: 23881046 PMCID: PMC3915401 DOI: 10.1159/000353260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022]
Abstract
Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% or less of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic- and limbic-associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase (TH) immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis (BNST), and the posterodorsal medial amygdala (MEA) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in MEA and the BNST were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains.
Collapse
Affiliation(s)
- Katharine L Campi
- Department of Psychology and Center for Neuroscience, University of California Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
27
|
Warren BL, Vialou VF, Iñiguez SD, Alcantara LF, Wright KN, Feng J, Kennedy PJ, LaPlant Q, Shen L, Nestler EJ, Bolaños-Guzmán CA. Neurobiological sequelae of witnessing stressful events in adult mice. Biol Psychiatry 2013; 73:7-14. [PMID: 22795644 PMCID: PMC3498570 DOI: 10.1016/j.biopsych.2012.06.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND It is well known that exposure to severe stress increases the risk for developing mood disorders. However, most chronic stress models in rodents involve at least some form of physically experiencing traumatic events. METHODS This study assessed the effects of a novel social stress paradigm that is insulated from the effects of physical stress. Specifically, adult male C57BL/6J mice were exposed to either emotional (ES) or physical stress (PS) for 10 minutes per day for 10 days. The ES mice were exposed to the social defeat of a PS mouse by a larger, more aggressive CD-1 mouse from the safety of an adjacent compartment. RESULTS Like PS mice, ES mice exhibited a range of depression- and anxiety-like behaviors both 24 hours and 1 month after the stress. Increased levels of serum corticosterone, part of the stress response, accompanied these behavioral deficits. Based on previous work that implicated gene expression changes in the ventral tegmental area (a key brain reward region) in the PS phenotype, we compared genome-wide mRNA expression patterns in this brain region of ES and PS mice using RNA-seq. We found significant overlap between these conditions, which suggests several potential gene targets for mediating the behavioral abnormalities observed. CONCLUSIONS These findings demonstrate that witnessing traumatic events is a potent stress in adult male mice capable of inducing long-lasting neurobiological perturbations.
Collapse
Affiliation(s)
- Brandon L. Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Vincent F. Vialou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Sergio D. Iñiguez
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301,Department of Psychology, California State University, San Bernardino, San Bernardino, CA 92407
| | - Lyonna F. Alcantara
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Katherine N. Wright
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Jiang Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Pamela J. Kennedy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Quincey LaPlant
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Carlos A. Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301,Correspondence should be addressed to: Dr. CA Bolaños-Guzmán. Department of Psychology, 1107 West Call Street, Florida State University, Tallahassee, FL 32306-4301.
| |
Collapse
|
28
|
Harris BN, Saltzman W, de Jong TR, Milnes MR. Hypothalamic-pituitary-adrenal (HPA) axis function in the California mouse (Peromyscus californicus): Changes in baseline activity, reactivity, and fecal excretion of glucocorticoids across the diurnal cycle. Gen Comp Endocrinol 2012; 179:436-50. [PMID: 23026495 PMCID: PMC3513568 DOI: 10.1016/j.ygcen.2012.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/07/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamic-pituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24h, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5mg/kg, s.c.) was required to suppress plasma CORT for 8h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from (3)H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2-4h post-injection whereas mice injected during the morning did so at 14-16h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
29
|
Heimovics SA, Prior NH, Maddison CJ, Soma KK. Rapid and widespread effects of 17β-estradiol on intracellular signaling in the male songbird brain: a seasonal comparison. Endocrinology 2012; 153:1364-76. [PMID: 22294743 DOI: 10.1210/en.2011-1525] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Across vertebrate species, 17β-estradiol (E(2)) acts on the brain via both genomic and nongenomic mechanisms to influence neuronal physiology and behavior. Nongenomic E(2) signaling is typically initiated by membrane-associated estrogen receptors that modulate intracellular signaling cascades, including rapid phosphorylation of ERK. Phosphorylated ERK (pERK) can, in turn, rapidly phosphorylate tyrosine hydroxylase (TH) and cAMP response element-binding protein (CREB). Recent data suggest that the rapid effects of E(2) on mouse aggressive behavior are more prominent during short photoperiods (winter) and that acute aromatase inhibition reduces songbird aggression in winter only. To date, seasonal plasticity in the rapid effects of E(2) on intracellular signaling has not been investigated. Here, we compared the effects of acute (15 min) E(2) treatment on pERK, pTH, and pCREB immunoreactivity in male song sparrows (Melospiza melodia) pretreated with the aromatase inhibitor fadrozole during the breeding and nonbreeding seasons. We examined immunoreactivity in 14 brain regions including portions of the song control system, social behavior network, and the hippocampus (Hp). In both seasons, E(2) significantly decreased pERK in nucleus taeniae of the amygdala, pTH in ventromedial hypothalamus, and pCREB in mesencephalic central gray, robust nucleus of the arcopallium, and caudomedial nidopallium. However, several effects were critically dependent upon season. E(2) decreased pERK in caudomedial nidopallium in the breeding season only and decreased pCREB in the medial preoptic nucleus in the nonbreeding season only. Remarkably, E(2) decreased pERK in Hp in the breeding season but increased pERK in Hp in the nonbreeding season. Together, these data demonstrate that E(2) has rapid effects on intracellular signaling in multiple regions of the male brain and also demonstrate that rapid effects of E(2) can be profoundly different across the seasons.
Collapse
Affiliation(s)
- Sarah A Heimovics
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1W5, Canada.
| | | | | | | |
Collapse
|
30
|
Villalon Landeros R, Morisseau C, Yoo HJ, Fu SH, Hammock BD, Trainor BC. Corncob bedding alters the effects of estrogens on aggressive behavior and reduces estrogen receptor-α expression in the brain. Endocrinology 2012; 153:949-53. [PMID: 22186416 PMCID: PMC3275391 DOI: 10.1210/en.2011-1745] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is growing appreciation that estrogen signaling pathways can be modulated by naturally occurring environmental compounds such as phytoestrogens and the more recently discovered xenoestrogens. Many researchers studying the effects of estrogens on brain function or behavior in animal models choose to use phytoestrogen-free food for this reason. Corncob bedding is commonly used in animal facilities across the United States and has been shown to inhibit estrogen-dependent reproductive behavior in rats. The mechanism for this effect was unclear, because the components of corncob bedding mediating this effect did not bind estrogen receptors. Here, we show in the California mouse (Peromyscus californicus) that estrogens decrease aggression when cardboard-based bedding is used but that this effect is absent when corncob bedding is used. California mice housed on corncob bedding also had fewer estrogen receptor-α-positive cells in the bed nucleus of the stria terminalis and ventromedial hypothalamus compared with mice housed on cardboard-based bedding. In addition, corncob bedding suppressed the expression of phosphorylated ERK in these brain regions as well as in the medial amygdala and medial preoptic area. Previous reports of the effects of corncob bedding on reproductive behavior are not widely appreciated. Our observations on the effects of corncob bedding on behavior and brain function should draw attention to the importance that cage bedding can exert on neuroendocrine research.
Collapse
Affiliation(s)
- Rosalina Villalon Landeros
- Department of Psychology and Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bedrosian TA, Fonken LK, Demas GE, Nelson RJ. Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Horm Behav 2012; 61:176-80. [PMID: 22197272 DOI: 10.1016/j.yhbeh.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Many nontropical species undergo physiological and behavioral adaptations in response to seasonal changes in photoperiod, or day length. In most rodent species, short winter photoperiods reduce testosterone concentrations, which provoke gonadal regression and reduce testosterone-dependent behaviors such as mating and aggression. Seasonally-breeding Siberian hamsters, however, are paradoxically more aggressive in short-days, despite much reduced reproductive activity and testosterone concentrations. Nitric oxide (NO) signaling has been proposed as part of an alternate mechanism underlying this phenomenon. A reduction in neuronal nitric oxide synthase (nNOS), the enzyme responsible for synthesizing NO in the brain, is associated with increased aggression in male short-day hamsters. In the present study, we hypothesized that pharmacological inhibition of nNOS would increase aggressive behavior in long days, but not in short days because nNOS is already reduced. Adult male Siberian hamsters were housed in either long (LD 16:8h) or short (LD 8:16h) photoperiods for 8weeks, then treated with either the selective nNOS inhibitor, 3-bromo-7-nitroindazole (3BrN) or oil vehicle, and subsequently tested for aggression in a resident-intruder test. Treatment with 3BrN increased attack frequency and duration in long days, but had no effect in short days. Short days also reduced testosterone concentrations, without any effect of treatment. These data provide further evidence linking reduced nNOS to elevated short-day aggression and support a role for NO signaling in this phenomenon.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Department of Neuroscience, The Ohio State University, Columbus, OH 43201, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Signaling through extracellular signal-regulated kinase (ERK) is important in multiple signal transduction networks in the CNS. However, the specific role of ERK2 in in vivo brain functions is not fully understood. Here we show that ERK2 play a critical role in regulating social behaviors as well as cognitive and emotional behaviors in mice. To study the brain function of ERK2, we used a conditional, region-specific, genetic approach to target Erk2 using the Cre/loxP strategy with a nestin promoter-driven cre transgenic mouse line to induce recombination in the CNS. The resulting Erk2 conditional knock-out (CKO) mice, in which Erk2 was abrogated specifically in the CNS, were viable and fertile with a normal appearance. These mice, however, exhibited marked anomalies in multiple aspects of social behaviors related to facets of autism-spectrum disorders: elevated aggressive behaviors, deficits in maternal nurturing, poor nest-building, and lower levels of social familiarity and social interaction. Erk2 CKO mice also exhibited decreased anxiety-related behaviors and impaired long-term memory. Pharmacological inhibition of ERK1 phosphorylation in Erk2 CKO mice did not affect the impairments in social behaviors and learning disabilities, indicating that ERK2, but not ERK1 plays a critical role in these behaviors. Our findings suggest that ERK2 has complex and multiple roles in the CNS, with important implications for human psychiatric disorders characterized by deficits in social behaviors.
Collapse
|
33
|
Trainor BC, Pride MC, Villalon Landeros R, Knoblauch NW, Takahashi EY, Silva AL, Crean KK. Sex differences in social interaction behavior following social defeat stress in the monogamous California mouse (Peromyscus californicus). PLoS One 2011; 6:e17405. [PMID: 21364768 PMCID: PMC3045459 DOI: 10.1371/journal.pone.0017405] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/29/2011] [Indexed: 01/16/2023] Open
Abstract
Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California Davis, Davis, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
34
|
Steinman MQ, Crean KK, Trainor BC. Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice. Eur J Neurosci 2010; 33:361-70. [PMID: 21198981 DOI: 10.1111/j.1460-9568.2010.07528.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food restriction has been reported to have positive effects on cognition. This study examines how another environmental factor, daylength, can alter the impact of food restriction on the brain and behavior. Female California mice (Peromyscus californicus), housed on either long days (16 h of light and 8 h of darkness) or short days (8 h of light and 16 h of darkness), were restricted to 80% of their normal baseline food intake or provided with food ad libitum. Testing in a Barnes maze revealed that the effects of food restriction depended on photoperiod, and that these effects differed for acquisition vs. reversal learning. During acquisition testing, food restriction increased latency to finding the target hole in short-day mice but not in long-day mice. In reversal testing, food restriction decreased latency to finding the target hole in long-day mice but not in short-day mice. Latency to finding the hole was positively and independently correlated with both errors and time spent freezing, suggesting that changes in both spatial learning and anxiety-like behavior contributed to performance. Short days increased hippocampal expression of the synaptic protein, synapsin I, which was reversed by food restriction. Short days also reduced plasma corticosterone levels, but diet had no effect. There was no effect of diet or photoperiod on hippocampal expression of the glial marker, glial fibrillary acidic protein. The present findings suggest that, in female California mice, the differential effects of food restriction on acquisition and reversal learning are photoperiod-dependent. These results justify further testing of the relationship between food restriction and hippocampal synapsin I in the context of spatial learning.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
35
|
Trainor BC, Takahashi EY, Silva AL, Crean KK, Hostetler C. Sex differences in hormonal responses to social conflict in the monogamous California mouse. Horm Behav 2010; 58:506-12. [PMID: 20430027 PMCID: PMC2917544 DOI: 10.1016/j.yhbeh.2010.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Monogamous species are usually considered to be less likely to exhibit sex differences in behavior or brain structure. Most previous studies examining sex differences in stress hormone responses have used relatively sexually dimorphic species such as rats. We examined the stress hormone responses of monogamous California mice (Peromyscus californicus) to resident-intruder tests. We also tested males and females under different photoperiods, because photoperiod has been shown to affect both aggression and stress hormone responses. Females, but not males showed a significant increase in corticosterone levels immediately following a resident-intruder test. Males but not females showed elevated corticosterone levels under short days. Females tested in aggression tests also showed a significant increase in plasma oxytocin levels, but only when housed in long days. This was consistent with our observation that females but not males had more oxytocin positive cells in the paraventricular nucleus (PVN) when housed under long days. Our data show that sex differences in glucocorticoid responses identified in other rodents are present in a monogamous species.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
36
|
Silva AL, Fry WHD, Sweeney C, Trainor BC. Effects of photoperiod and experience on aggressive behavior in female California mice. Behav Brain Res 2010; 208:528-34. [PMID: 20060017 DOI: 10.1016/j.bbr.2009.12.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/21/2009] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
Abstract
Aggressive behavior among females is observed in many species, but the mechanisms of this behavior have historically been understudied. In many species of rodents, winter-like short day photoperiods induce increased aggression levels compared to summer-like long day photoperiods. Recent reports in hamsters show that short days also increase aggression in females. We examined the effects of photoperiod on aggression in female California mice, and for the first time compare brain activity of aggression-tested female rodents under different photoperiods. We observed that female California mice were more aggressive when housed in short days versus long days. Intriguingly, we also observed that under long days female attack latency decreases with repeated testing in resident-intruder tests. These data suggest that winner effects that have been described in males may also occur in females. We also used the expression of phosphorylated extracellular signal-regulated kinases (pERK) in the brain to estimate brain activity during aggression tests. pERK can alter neuronal activity in the short term and in the long term can act as a transcription factor. Using immunoblot analyses we observed that aggression-induced pERK expression in the female bed nucleus of the stria terminalis and medial amygdala occurs under both long and short days. Thus, the mechanisms controlling increased aggression under short days are still unclear and additional study is needed.
Collapse
Affiliation(s)
- Andrea L Silva
- Department of Psychology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|