1
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
2
|
Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021; 12:2617. [PMID: 33976169 PMCID: PMC8113549 DOI: 10.1038/s41467-021-22918-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Disruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devin P Merullo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marissa Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Yang K, Zhao X, Wang C, Zeng C, Luo Y, Sun T. Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Front Neurosci 2021; 15:614412. [PMID: 33776634 PMCID: PMC7988225 DOI: 10.3389/fnins.2021.614412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Cheng Zeng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yan Luo
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
4
|
Wang Y, Yao L, Gao S, Zhang G, Zhang Q, Liu W, Zhou Y, Sun Y, Feng J, Liu J. Inhibition of striatal dopamine D 5 receptor attenuates levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain Res 2021; 1754:147266. [PMID: 33422541 DOI: 10.1016/j.brainres.2020.147266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/29/2022]
Abstract
Levodopa-induced dyskinesia (LID) is experienced by most patients of Parkinson's disease (PD) upon the long-term use of the dopamine precursor levodopa. Striatal dopaminergic signaling plays a critical role in the pathogenesis of LID through its interactions with dopamine receptors. The specific roles of striatal dopaminergic D5 receptors in the pathophysiological process of LID are still poorly established. In the study, we investigated the role of striatal dopamine D5 receptor in LID by using PD rats with or without dyskinetic symptoms after chronic levodopa administration. The experimental results showed that the expression level of D5 receptors in the sensorimotor striatum of dyskinetic rats is significantly higher than that of the non-dyskinetic controls. The administration of levodopa increased c-Fos expression in a subpopulation of sensorimotor striatum neurons of dyskinetic rats, but not in non-dyskinetic rats. The majority of the c-Fos+ neurons activated by levodopa in the striatum are positive for D5 receptor staining. Intrastriatal injection of D1-like (D1 and D5) dopamine receptor antagonist, SCH-23390, significantly inhibited dyskinetic behavior in dyskinetic rats after the injection of levodopa, meanwhile, intrastriatal administration of SKF-83959, a partial D5 receptor agonist, yielded significant dyskinetic movements in dyskinetic rats without levodopa. In contrast, intrastriatal perfusion of small interfering RNA directed against DRD5 downregulated D5 receptors expression and moderately inhibited dyskinetic behavior of dyskinetic animals. Our data suggested that the striatal dopamine D5 receptor might play a novel role in the pathophysiology of LID.
Collapse
Affiliation(s)
- Yong Wang
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| | - Lu Yao
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Shasha Gao
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Gejuan Zhang
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710018, PR China
| | - Qiongchi Zhang
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wanyuan Liu
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yingqiong Zhou
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yina Sun
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Jie Feng
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jian Liu
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
5
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Girasole AE, Lum MY, Nathaniel D, Bair-Marshall CJ, Guenthner CJ, Luo L, Kreitzer AC, Nelson AB. A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. Neuron 2018; 97:787-795.e6. [PMID: 29398356 DOI: 10.1016/j.neuron.2018.01.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Parkinson's disease is characterized by the progressive loss of midbrain dopamine neurons. Dopamine replacement therapy with levodopa alleviates parkinsonian motor symptoms but is complicated by the development of involuntary movements, termed levodopa-induced dyskinesia (LID). Aberrant activity in the striatum has been hypothesized to cause LID. Here, to establish a direct link between striatal activity and dyskinesia, we combine optogenetics and a method to manipulate dyskinesia-associated neurons, targeted recombination in active populations (TRAP). We find that TRAPed cells are a stable subset of sensorimotor striatal neurons, predominantly from the direct pathway, and that reactivation of TRAPed striatal neurons causes dyskinesia in the absence of levodopa. Inhibition of TRAPed cells, but not a nonspecific subset of direct pathway neurons, ameliorates LID. These results establish that a distinct subset of striatal neurons is causally involved in LID and indicate that successful therapeutic strategies for treating LID may require targeting functionally selective neuronal subtypes.
Collapse
Affiliation(s)
- Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Matthew Y Lum
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | | | | | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Anatol C Kreitzer
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Department of Physiology, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; The Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Zhang K, Chammas C, Soghomonian JJ. Loss of glutamic acid decarboxylase (Gad67) in striatal neurons expressing the Drdr1a dopamine receptor prevents l-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 2015; 303:586-94. [DOI: 10.1016/j.neuroscience.2015.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/29/2023]
|
8
|
The combination of oral L-DOPA/rimonabant for effective dyskinesia treatment and cytological preservation in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia. Behav Pharmacol 2014; 24:640-52. [PMID: 24196024 DOI: 10.1097/fbp.0000000000000004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease in the world. Its treatment is limited so far to the management of parkinsonian symptoms with L-DOPA (LD). The long-term use of LD is limited by the development of L-DOPA-induced dyskinesias and dystonia. However, recent studies have suggested that pharmacological targeting of the endocannabinoid system may potentially provide a valuable therapeutic tool to suppress these motor alterations. In the present study, we have explored the behavioral (L-DOPA-induced dyskinesias severity) and cytological (substantia nigra compacta neurons and striatum neuropil preservation) effects of the oral coadministration of LD and rimonabant, a selective antagonist of CB1 receptors, in the 6-hydroxydopamine rat model of Parkinson's disease. Oral coadministration of LD (30 mg/kg) and rimonabant (1 mg/kg) significantly decreased abnormal involuntary movements and dystonia, possibly through the conservation of some functional tyrosine hydroxylase-immunoreactive dopaminergic cells, which in turn translates into a well-preserved neuropil of a less denervated striatum. Our results provide anatomical evidence that long-term coadministration of LD with cannabinoid antagonist-based therapy may not only alleviate specific motor symptoms but also delay/arrest the degeneration of striatal and substantia nigra compacta cells.
Collapse
|
9
|
Rascol O, Fox S, Gasparini F, Kenney C, Di Paolo T, Gomez-Mancilla B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 2014; 20:947-56. [DOI: 10.1016/j.parkreldis.2014.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
|
10
|
Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Løkkegaard A, Siebner HR. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann Neurol 2014; 75:829-36. [PMID: 24889498 PMCID: PMC4112717 DOI: 10.1002/ana.24138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/15/2022]
Abstract
Objective In Parkinson disease (PD), long‐term treatment with the dopamine precursor levodopa gradually induces involuntary “dyskinesia” movements. The neural mechanisms underlying the emergence of levodopa‐induced dyskinesias in vivo are still poorly understood. Here, we applied functional magnetic resonance imaging (fMRI) to map the emergence of peak‐of‐dose dyskinesias in patients with PD. Methods Thirteen PD patients with dyskinesias and 13 PD patients without dyskinesias received 200mg fast‐acting oral levodopa following prolonged withdrawal from their normal dopaminergic medication. Immediately before and after levodopa intake, we performed fMRI, while patients produced a mouse click with the right or left hand or no action (No‐Go) contingent on 3 arbitrary cues. The scan was continued for 45 minutes after levodopa intake or until dyskinesias emerged. Results During No‐Go trials, PD patients who would later develop dyskinesias showed an abnormal gradual increase of activity in the presupplementary motor area (preSMA) and the bilateral putamen. This hyperactivity emerged during the first 20 minutes after levodopa intake. At the individual level, the excessive No‐Go activity in the predyskinesia period predicted whether an individual patient would subsequently develop dyskinesias (p < 0.001) as well as severity of their day‐to‐day symptomatic dyskinesias (p < 0.001). Interpretation PD patients with dyskinesias display an immediate hypersensitivity of preSMA and putamen to levodopa, which heralds the failure of neural networks to suppress involuntary dyskinetic movements. Ann Neurol 2014;75:829–836
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
Porras G, De Deurwaerdere P, Li Q, Marti M, Morgenstern R, Sohr R, Bezard E, Morari M, Meissner WG. L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 2014; 4:3730. [PMID: 24429495 PMCID: PMC3893648 DOI: 10.1038/srep03730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
L-dopa remains the mainstay treatment for Parkinson's disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa.
Collapse
Affiliation(s)
- Gregory Porras
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK
| | - Philippe De Deurwaerdere
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Qin Li
- 1] Motac neuroscience, Manchester, UK [2] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Rudolf Morgenstern
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Erwan Bezard
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK [4] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China [5] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Wassilios G Meissner
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France [4] Centre de référence AMS, CHU de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
12
|
Gago B, Marin C, Rodríguez-Oroz MC, Obeso JA. l-dopa-induced dyskinesias in unilateral 6-hydroxydopamine-lesioned rats are not modified by excitotoxic lesion of the entopeduncular nucleus and substantia nigra pars reticulata. Synapse 2013; 67:407-14. [DOI: 10.1002/syn.21652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/11/2013] [Indexed: 11/09/2022]
|
13
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
14
|
Bido S, Marti M, Morari M. Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. J Neurochem 2011; 118:1043-55. [PMID: 21740438 DOI: 10.1111/j.1471-4159.2011.07376.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amantadine is the only drug marketed for treating levodopa-induced dyskinesia. However, its impact on basal ganglia circuitry in the dyskinetic brain, particularly on the activity of striatofugal pathways, has not been evaluated. We therefore used dual probe microdialysis to investigate the effect of amantadine on behavioral and neurochemical changes in the globus pallidus and substantia nigra reticulata of 6-hydroxydopamine hemi-lesioned dyskinetic mice and rats. Levodopa evoked abnormal involuntary movements (AIMs) in dyskinetic mice, and simultaneously elevated GABA release in substantia nigra reticulata (∼3-fold) but not globus pallidus. Glutamate levels were unaffected in both areas. Amantadine (40 mg/kg, i.p.), ineffective alone, attenuated (∼50%) AIMs expression and prevented the GABA rise. Moreover, it unraveled a facilitatory effect of levodopa on pallidal glutamate levels. Levodopa also evoked AIMs expression and a GABA surge (∼2-fold) selectively in the substantia nigra of dyskinetic rats. However, different from mice, glutamate levels rose simultaneously. Amantadine, ineffective alone, attenuated (∼50%) AIMs expression preventing amino acid increase and leaving unaffected pallidal glutamate. Overall, the data provide neurochemical evidence that levodopa-induced dyskinesia is accompanied by activation of the striato-nigral pathway in both mice and rats, and that the anti-dyskinetic effect of amantadine partly relies on the modulation of this pathway.
Collapse
Affiliation(s)
- Simone Bido
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
15
|
Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, Bishop C. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 2011; 229:288-99. [PMID: 21352823 DOI: 10.1016/j.expneurol.2011.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Serotonin 1A receptor (5-HT(1A)R) agonists reduce both L-DOPA- and D1 receptor (D1R) agonist-mediated dyskinesia, but their anti-dyskinetic mechanism of action is not fully understood. Given that 5-HT(1A)R stimulation reduces glutamatergic neurotransmission in the dopamine-depleted striatum, 5-HT(1A)R agonists may diminish dyskinesia in part through modulation of pro-dyskinetic striatal glutamate levels. To test this, rats with unilateral medial forebrain bundle dopamine or sham lesions were primed with L-DOPA (12 mg/kg+benserazide, 15 mg/kg, sc) or the D1R agonist SKF81297 (0.8 mg/kg, sc) until abnormal involuntary movements (AIMs) stabilized. On subsequent test days, rats were treated with vehicle or the 5-HT(1A)R agonist ±8-OH-DPAT (1.0 mg/kg, sc), followed by L-DOPA or SKF81297, or intrastriatal ±8-OH-DPAT (7.5 or 15 mM), followed by L-DOPA. In some cases, the 5-HT(1A)R antagonist WAY100635 was employed to determine receptor-specific effects. In vivo microdialysis was used to collect striatal samples for analysis of extracellular glutamate levels during AIMs assessment. Systemic and striatal ±8-OH-DPAT attenuated L-DOPA-induced dyskinesia and striatal glutamate efflux while WAY100635 reversed ±8-OH-DPAT's effects. Interestingly, systemic ±8-OH-DPAT diminished D1R-mediated AIMs without affecting glutamate. These findings indicate a novel anti-dyskinetic mechanism of action for 5-HT(1A)R agonists with implications for the improved treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Kristin B Dupre
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University (State University of New York at Binghamton), Binghamton, NY 13902-6000, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Rylander D, Parent M, O'Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 2010; 68:619-28. [PMID: 20882603 DOI: 10.1002/ana.22097] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Striatal serotonin projections have been implicated in levodopa-induced dyskinesia by providing an unregulated source of dopamine release. We set out to determine whether these projections are affected by levodopa treatment in a way that would favor the occurrence of dyskinesia. METHODS As an index of terminal serotonin innervation density, we measured radioligand binding to the plasma membrane serotonin transporter (SERT) in levodopa-treated dyskinetic and nondyskinetic subjects, using brain tissue from both rat and monkey models of Parkinson disease as well as parkinsonian patients. In addition, striatal tissue from dyskinetic rats was used for morphological and ultrastructural analyses of serotonin axon terminals, and for studies of stimulated [³H]dopamine release. RESULTS Across all conditions examined, striatal levels of SERT radioligand binding were significantly elevated in dyskinetic subjects compared to nondyskinetic cases. In the rat striatum, dyskinesiogenic levodopa treatment had induced sprouting of serotonin axon varicosities having a relatively high synaptic incidence. This response was associated with increased depolarization-induced [³H]dopamine release and with a stronger release potentiation by brain-derived neurotrophic factor. INTERPRETATION This study provides the first evidence that L-dopa treatment induces sprouting of serotonin axon terminals, with an increased incidence of synaptic contacts, and a larger activity-dependent potentiation of dopamine release in the dopamine-denervated striatum. Treatment-induced plasticity of the serotonin innervation may therefore represent a previously unappreciated cause of altered dopamine dynamics. These results are important for understanding the mechanisms by which L-dopa pharmacotherapy predisposes to dyskinesia, and for defining biomarkers of motor complications in Parkinsons disease.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiology Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol 2010; 9:1106-17. [PMID: 20880751 DOI: 10.1016/s1474-4422(10)70218-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Levodopa is the most effective drug for the treatment of Parkinson's disease. However, the long-term use of this dopamine precursor is complicated by highly disabling fluctuations and dyskinesias. Although preclinical and clinical findings suggest pulsatile stimulation of striatal postsynaptic receptors as a key mechanism underlying levodopa-induced dyskinesias, their pathogenesis is still unclear. In recent years, evidence from animal models of Parkinson's disease has provided important information to understand the effect of specific receptor and post-receptor molecular mechanisms underlying the development of dyskinetic movements. Recent preclinical and clinical data from promising lines of research focus on the differential role of presynaptic versus postsynaptic mechanisms, dopamine receptor subtypes, ionotropic and metabotropic glutamate receptors, and non-dopaminergic neurotransmitter systems in the pathophysiology of levodopa-induced dyskinesias.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy.
| | | | | | | | | |
Collapse
|
18
|
Cenci MA, Konradi C. Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. PROGRESS IN BRAIN RESEARCH 2010; 183:209-33. [PMID: 20696322 DOI: 10.1016/s0079-6123(10)83011-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dopamine (DA) replacement therapy with l-DOPA remains the most effective treatment for Parkinson's disease, but causes dyskinesia (abnormal involuntary movements) in the vast majority of the patients. The basic mechanisms of l-DOPA-induced dyskinesia (LID) have become the object of intense research focusing on neurochemical and molecular adaptations in the striatum. Here we review this vast literature and highlight trends that converge into a unifying pathophysiological interpretation. We propose that the core molecular alteration of striatal neurons in LID consists in an inability to turn down supersensitive signaling responses downstream of DA D1 receptors (where supersensitivity is primarily caused by DA denervation). The sustained activation of intracellular signaling pathways induced by each dose of l-DOPA leads to abnormal cellular plasticity and high bioenergetic expenditure. The over-exploitation of signaling pathways and energy reserves during treatment impairs the ability of striatal neurons to dynamically gate cortically driven motor commands. LID thus exemplifies a disorder where 'too much' molecular plasticity leads to plasticity failure in the striatum.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|