1
|
Trubetckaia O, Lane AE, Qian L, Zhou P, Lane DA. Alpha-synuclein is strategically positioned for afferent modulation of midbrain dopamine neurons and is essential for cocaine preference. Commun Biol 2019; 2:418. [PMID: 31754648 PMCID: PMC6858354 DOI: 10.1038/s42003-019-0651-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-synuclein (α-syn) is an abundant neuroprotein elevated in cocaine addicts, linked to drug craving, and recruited to axon terminals undergoing glutamatergic plasticity - a proposed mechanism for substance abuse. However, little is known about normal α-syn function or how it contributes to substance abuse. We show that α-syn is critical for preference of hedonic stimuli and the cognitive flexibility needed to change behavioral strategies, functions that are altered with substance abuse. Electron microscopic analysis reveals changes in α-syn targeting of ventral tegmental area axon terminals that is dependent upon the duration of cocaine exposure. The dynamic changes in presynaptic α-syn position it to control neurotransmission and fine-tune the complex afferent inputs to dopamine neurons, potentially altering functional dopamine output. Cocaine also increases postsynaptic α-syn where it is needed for normal ALIX function, multivesicular body formation, and cocaine-induced exosome release indicating potentially similar α-syn actions for vesicle release pre- and post-synaptically.
Collapse
Affiliation(s)
- Olga Trubetckaia
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 USA
| | - Ariana E. Lane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 USA
| | - Liping Qian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 USA
| | - Diane A. Lane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
2
|
Incubation of cocaine seeking following brief cocaine experience in mice is enhanced by mGluR1 blockade. J Neurosci 2014; 34:1781-90. [PMID: 24478360 DOI: 10.1523/jneurosci.1076-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incubation of cocaine craving describes the time-dependent augmentation of cue-induced cocaine seeking during withdrawal from prolonged cocaine self-administration and requires time-dependent changes in neuroplasticity at the level of glutamatergic synapses in the nucleus accumbens (NAc). In contrast to most studies that use multiple cocaine-cue conditioning sessions, the present study tested mice with limited cocaine experience (i.e., a single conditioning session) in the incubation of cue-mediated cocaine seeking and its associated changes in the glutamate system. Mice that self-administered cocaine during a single session exhibited a time-dependent increase in their response for the drug-associated cue as compared to mice that self-administered saline. This behavior was associated with changes in AMPA and NMDA receptor binding characteristics. Furthermore, Group I metabotropic glutamate receptor (mGluR1) mRNA levels were altered in several brain regions, including the NAc. Because of the pivotal role of mGluR1 in the control of cocaine-induced plasticity, we investigated the role of mGluR1 in the formation of drug cue-mediated cocaine seeking. After prolonged withdrawal, mice in which an mGluR1 antagonist was administered following cocaine self-administration displayed increased cocaine seeking compared to vehicle-treated mice. These results suggest that limited cocaine experience is sufficient to induce neurobiological changes that enable an initially neutral cue to acquire motivational value that increases over time, an effect that likely involves glutamate signaling through mGluR1.
Collapse
|
3
|
Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. eLife 2013; 2:e01462. [PMID: 24381247 PMCID: PMC3875383 DOI: 10.7554/elife.01462] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5(-/-) mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001.
Collapse
Affiliation(s)
- Ana I Domingos
- Laboratory of Molecular Genetics, The Rockefeller University, New York, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Daubaras M, Dal Bo G, Flores C. Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 2013; 260:36-46. [PMID: 24333968 DOI: 10.1016/j.neuroscience.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/22/2022]
Abstract
We have shown previously that the netrin-1 receptor, unc-5 homologue C (UNC5C), is expressed by ventral tegmental area (VTA) dopamine (DA) neurons of rodents, but only from adolescence onwards (Manitt et al., 2010; Auger et al., 2013). The goal of this study was to characterize the expression of UNC5C by these neurons. Specifically, we assessed whether UNC5C expression is selective to DA neurons that project to the medial prefrontal cortex (mPFC), which undergo significant maturation during the adolescent period. To this end, we injected fluorescent retrograde tracer beads into the mPFC, nucleus accumbens (NAcc) core, or NAcc lateral shell of adult male wild-type C57Bl/6J mice and processed their brains for tyrosine hydroxylase (TH) and UNC5C immunofluorescence 2-3weeks later. VTA neurons with any combination of these immunolabels were visualized and counted using optical fractionator stereology. Our analysis revealed two main findings: (1) there are no differences in the proportions of UNC5C-positive DA neurons projecting to the mPFC, NAcc core, or NAcc lateral shell, and (2) the proportion of non-DA UNC5C-positive neurons targeting the mPFC is greater than the proportions of non-DA UNC5C-positive neurons targeting the NAcc core or lateral shell. These findings show that, contrary to our hypothesis, DA neurons projecting to the mPFC do not express UNC5C selectively. However, UNC5C expression by non-DA VTA neurons is predominantly found in those projecting to the mPFC and, as such, may play a role in their function.
Collapse
Affiliation(s)
- M Daubaras
- Department of Psychiatry and Integrated Program in Neuroscience, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec H4H 1R3, Canada
| | - G Dal Bo
- Department of Psychiatry and Integrated Program in Neuroscience, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec H4H 1R3, Canada
| | - C Flores
- Department of Psychiatry and Integrated Program in Neuroscience, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
5
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Fitzgerald ML, Shobin E, Pickel VM. Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:21-9. [PMID: 22265889 PMCID: PMC3389172 DOI: 10.1016/j.pnpbp.2011.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 02/07/2023]
Abstract
Cannabinoid modulation of dopaminergic transmission is suggested by the ability of delta9-tetrahydrocanabinoid to affect motor and motivated behaviors in a manner similar to that produced by pharmacological manipulation of the nigrostriatal and mesocorticolimbic dopamine systems. These behavioral effects as well as analogous effects of endocannabinoids are largely mediated through the cannabinoid type 1 receptor (CB1R). This receptor is located within the substantia nigra and ventral tegmental area, which respectively house the somata of nigrostriatal and mesocorticolimbic dopaminergic neurons. The CB1R is also abundantly expressed in brain regions targeted by the efferent terminals of these dopaminergic neurons. In this review we present the accumulating anatomical and electrophysiological evidence indicating that in each of these systems cannabinoids modulate dopamine transmission largely if not exclusively through indirect mechanisms. The summarized mechanisms include presynaptic release of amino acid transmitters onto midbrain dopamine neurons and onto both cortical and striatal neurons that express dopamine D1-like or D2-like receptors functionally affiliated with the CB1 receptor. The review concludes with a consideration of the psychiatric and neurological implications of cannabinoid modulation of dopamine transmission within these networks.
Collapse
Affiliation(s)
| | | | - Virginia M. Pickel
- Corresponding author at: Division of Neurobiology, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, United States. Tel.: +1 646 962 8275; fax: +1 646 962 0535. (V.M. Pickel)
| |
Collapse
|
7
|
Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci 2012; 5:72. [PMID: 22754497 PMCID: PMC3384237 DOI: 10.3389/fnmol.2012.00072] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs) in two brain regions that are critical for motivation and reward-the ventral tegmental area (VTA) and the nucleus accumbens (NAc). This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs). This plasticity is rapid in onset (hours), GluA2-dependent, and can be observed with a single cocaine injection. Whereas it is short-lived after experimenter-administered cocaine, it persists for months after cocaine self-administration. In addition to strengthening synapses and altering Ca(2+) signaling, CP-AMPAR insertion alters subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased DA cell activity that occurs during early withdrawal from cocaine exposure. Metabotropic glutamate receptor 1 (mGluR1) exerts a negative influence on CP-AMPAR accumulation in the VTA. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs) of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as treatments for cocaine addiction.
Collapse
Affiliation(s)
- Marina E. Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| |
Collapse
|
8
|
Scibelli AC, McKinnon CS, Reed C, Burkhart-Kasch S, Li N, Baba H, Wheeler JM, Phillips TJ. Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption. Psychopharmacology (Berl) 2011; 214:791-804. [PMID: 21088960 PMCID: PMC3320759 DOI: 10.1007/s00213-010-2086-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/30/2010] [Indexed: 02/06/2023]
Abstract
RATIONALE Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. OBJECTIVES Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. METHODS Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. RESULTS Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. CONCLUSIONS Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption.
Collapse
Affiliation(s)
- Angela C. Scibelli
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Carrie S. McKinnon
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Sue Burkhart-Kasch
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Na Li
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Jeanna M. Wheeler
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, and Veterans Affairs Medical Center, Portland, OR, USA. Portland VA Medical Center, 3710 SW US Veterans Hospital Rd., R&D-32, Portland, OR 97239, USA
| |
Collapse
|
9
|
Mameli M, Bellone C, Brown MTC, Lüscher C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat Neurosci 2011; 14:414-6. [PMID: 21336270 DOI: 10.1038/nn.2763] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/24/2011] [Indexed: 11/09/2022]
Abstract
The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2-lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.
Collapse
Affiliation(s)
- Manuel Mameli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
10
|
Lane DA, Reed B, Kreek MJ, Pickel VM. Differential glutamate AMPA-receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine: implications for the development of addiction. Neuropharmacology 2011; 61:1129-40. [PMID: 21215761 DOI: 10.1016/j.neuropharm.2010.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 01/18/2023]
Abstract
Cocaine-induced plasticity of mesocorticolimbic dopamine (DA) neurons, originating in the ventral tegmental area (VTA), persists in the absence of cocaine and may contribute to both drug-craving and relapse. Glutamate AMPA receptors (AMPARs) in these neurons are implicated in this plasticity. However, there is no ultrastructural evidence that the absence of cocaine following repeated administrations affects the critical surface/synaptic availability of AMPAR GluR1 subunits in either DA or non-DA, putative GABAergic neurons within the VTA. To assess this, we used electron microscopic immunolabeling in the VTA of adult male mice sacrificed at 30 min or 72 h after receiving the final of six (15 mg/kg) cocaine injections, a dosing paradigm that resulted in development of locomotor sensitization. At each time point, both cocaine- and saline-injected mice showed AMPAR GluR1 immunogold labeling in somatodendritic profiles, many of which contained immunoperoxidase labeling for the DA-synthesizing enzyme, tyrosine hydroxylase (TH). At 30 min after the last injection, when cocaine was systemically present, only the non-TH labeled dendrites showed a significant increase in the synaptic/plasmalemmal density of GluR1 immunogold particles. At 72 h, when systemic cocaine was depleted, synaptic GluR1 labeling was greatly enhanced in TH-containing dendrites throughout the VTA and in non-TH dendrites of the limbic-associated paranigral VTA. Our results demonstrate that systemic cocaine produces GluR1 trafficking specifically in non-DA neurons of the VTA, which may subsequently contribute to the abstinent-induced enhancement of AMPA receptor synaptic transmission in mesocorticolimbic DA neurons leading to heightened drug seeking behavior.
Collapse
Affiliation(s)
- D A Lane
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
11
|
Chen H, Manev H. Effects of minocycline on cocaine sensitization and phosphorylation of GluR1 receptors in 5-lipoxygenase deficient mice. Neuropharmacology 2010; 60:1058-63. [PMID: 20868701 DOI: 10.1016/j.neuropharm.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
In wild-type (WT) mice, the antibiotic minocycline inhibits development of cocaine-induced locomotor sensitization. Some of the actions of minocycline may involve the 5-lipoxygenase (5-LOX) pathway. We used the model of 5-LOX-deficient mice to investigate whether 5-LOX participates in minocycline's influence on the effects of cocaine. Locomotor sensitization was induced by 4 daily cocaine injections and the phosphorylation status of GluR1 glutamate receptors was assayed in brain samples. Minocycline failed to affect cocaine sensitization in 5-LOX-deficient mice. In these mice, neither cocaine nor minocycline 4-day treatment altered GluR1 phosphorylation. In WT mice in which minocycline inhibited development of cocaine sensitization, a 4-day cocaine treatment increased GluR1 phosphorylation at both Ser831 and Ser845 sites in the frontal cortex but not the striatum; further, this effect was prevented by minocycline. Under basal conditions and in response to a single cocaine injection the levels of GluR1, GluR2, and GluR3 AMPA receptor subunits did not differ between WT and 5-LOX-deficient mice, but the response of GluR1 phosphorylation to a single cocaine injection was greater under the 5-LOX deficiency. Hence, in WT mice GluR1 phosphorylation increased only in the frontal cortex and only at the Ser831 site. In 5-LOX-deficient mice, acute cocaine injection increased both Ser831 and Ser845 phosphorylation both in the frontal cortex and in the striatum. We suggest that in studying minocycline's action on cocaine's effects and/or addiction in humans, it would be important to consider the characterization of the subjects' 5-LOX system. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Hu Chen
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|