1
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Leahy SN, Vita DJ, Broadie K. PTPN11/Corkscrew Activates Local Presynaptic Mapk Signaling to Regulate Synapsin, Synaptic Vesicle Pools, and Neurotransmission Strength, with a Dual Requirement in Neurons and Glia. J Neurosci 2024; 44:e1077232024. [PMID: 38471782 PMCID: PMC11044113 DOI: 10.1523/jneurosci.1077-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.
Collapse
Affiliation(s)
- Shannon N Leahy
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Dominic J Vita
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Pharmacology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
3
|
Wu C, Wang J, Luo X, Wang B, Zhang X, Song Y, Zhang K, Zhang X, Sun M. Lead exposure induced transgenerational developmental neurotoxicity by altering genome methylation in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115991. [PMID: 38237395 DOI: 10.1016/j.ecoenv.2024.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/05/2024]
Abstract
Heavy metal toxicity is a significant global health concern, with particular attention given to lead (Pb) exposure due to its adverse effects on cognitive development, especially in children exposed to low concentrations. While Pb neurotoxicity has been extensively studied, the analysis and molecular mechanisms underlying the transgenerational effects of Pb exposure-induced neurotoxicity remain poorly understood. In this study, we utilized Drosophila, a powerful developmental animal model, to investigate this phenomenon. Our findings demonstrated that Pb exposure during the developmental stage had a profound effect on the neurodevelopment of F0 fruit flies. Specifically, we observed a loss of correlation between the terminal motor area and muscle fiber area, along with an increased frequency of the β-lobe midline crossing phenotype in mushroom bodies. Western blot analysis indicated altered expression levels of synaptic vesicle proteins, with a decrease in Synapsin (SYN) and an increase in Bruchpilot (BRP) expression, suggesting changes in synaptic vesicle release sites. These findings were corroborated by electrophysiological data, showing an increase in the amplitude of evoked excitatory junctional potential (EJP) and an increase in the frequency of spontaneous excitatory junctional potential (mEJP) following Pb exposure. Importantly, our results further confirmed that the developmental neurotoxicity resulting from grandparental Pb exposure exhibited a transgenerational effect. The F3 offspring displayed neurodevelopmental defects, synaptic function abnormalities, and repetitive behavior despite lacking direct Pb exposure. Our MeDIP-seq analysis further revealed significant alterations in DNA methylation levels in several neurodevelopmental associated genes (eagle, happyhour, neuroglian, bazooka, and spinophilin) in the F3 offspring exposed to Pb. These findings suggest that DNA methylation modifications may underlie the inheritance of acquired phenotypic traits resulting from environmental Pb exposure.
Collapse
Affiliation(s)
- Chunyan Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Luo
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Hendricks EL, Smith IR, Prates B, Barmaleki F, Liebl FLW. The CD63 homologs, Tsp42Ee and Tsp42Eg, restrict endocytosis and promote neurotransmission through differential regulation of synaptic vesicle pools. Front Cell Neurosci 2022; 16:957232. [PMID: 36072568 PMCID: PMC9441712 DOI: 10.3389/fncel.2022.957232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The Tetraspanin (Tsp), CD63, is a transmembrane component of late endosomes and facilitates vesicular trafficking through endosomal pathways. Despite being widely expressed in the human brain and localized to late endosomes, CD63's role in regulating endo- and exocytic cycling at the synapse has not been investigated. Synaptic vesicle pools are highly dynamic and disruptions in the mobilization and replenishment of these vesicle pools have adverse neuronal effects. We find that the CD63 homologs, Tsp42Ee and Tsp42Eg, are expressed at the Drosophila neuromuscular junction to regulate synaptic vesicle pools through both shared and unique mechanisms. Tsp42Ee and Tsp42Eg negatively regulate endocytosis and positively regulate neurotransmitter release. Both tsp mutants show impaired locomotion, reduced miniature endplate junctional current frequencies, and increased endocytosis. Expression of human CD63 in Drosophila neurons leads to impaired endocytosis suggesting the role of Tsps in endocytosis is conserved. We further show that Tsps influence the synaptic cytoskeleton and membrane composition by regulating Futsch loop formation and synaptic levels of SCAR and PI(4,5)P2. Finally, Tsp42Ee and Tsp42Eg influence the synaptic localization of several vesicle-associated proteins including Synapsin, Synaptotagmin, and Cysteine String Protein. Together, our results present a novel function for Tsps in the regulation of vesicle pools and provide insight into the molecular mechanisms of Tsp-related synaptic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
5
|
Qu X, Wang S, Lin G, Li M, Shen J, Wang D. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Aphis gossypii. Int J Mol Sci 2022; 23:ijms23169388. [PMID: 36012653 PMCID: PMC9408958 DOI: 10.3390/ijms23169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.
Collapse
|
6
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
7
|
Blanco-Redondo B, Nuwal N, Kneitz S, Nuwal T, Halder P, Liu Y, Ehmann N, Scholz N, Mayer A, Kleber J, Kähne T, Schmitt D, Sadanandappa MK, Funk N, Albertova V, Helfrich-Förster C, Ramaswami M, Hasan G, Kittel RJ, Langenhan T, Gerber B, Buchner E. Implications of the Sap47 null mutation for synapsin phosphorylation, longevity, climbing proficiency and behavioural plasticity in adult Drosophila. ACTA ACUST UNITED AC 2019; 222:jeb.203505. [PMID: 31488622 DOI: 10.1242/jeb.203505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.
Collapse
Affiliation(s)
- Beatriz Blanco-Redondo
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nidhi Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tulip Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Partho Halder
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Yiting Liu
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Annika Mayer
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Jörg Kleber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Madhumala K Sadanandappa
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Natalja Funk
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Viera Albertova
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Mani Ramaswami
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Bertram Gerber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany.,Institute of Biology, University of Magdeburg, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
8
|
A Poly-Glutamine Region in the Drosophila VAChT Dictates Fill-Level of Cholinergic Synaptic Vesicles. eNeuro 2019; 6:eN-NWR-0477-18. [PMID: 30847389 PMCID: PMC6402538 DOI: 10.1523/eneuro.0477-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
While the primary role of vesicular transporters is to load neurotransmitters into synaptic vesicles (SVs), accumulating evidence suggests that these proteins also contribute to additional aspects of synaptic function, including vesicle release. In this study, we extend the role of the VAChT to include regulating the transmitter content of SVs. We report that manipulation of a C-terminal poly-glutamine (polyQ) region in the Drosophila VAChT is sufficient to influence transmitter content, and release frequency, of cholinergic vesicles from the terminals of premotor interneurons. Specifically, we find that reduction of the polyQ region, by one glutamine residue (13Q to 12Q), results in a significant increase in both amplitude and frequency of spontaneous cholinergic miniature EPSCs (mEPSCs) recorded in the aCC and RP2 motoneurons. Moreover, this truncation also results in evoked synaptic currents that show increased duration: consistent with increased ACh release. By contrast, extension of the polyQ region by one glutamine (13Q to 14Q) is sufficient to reduce mEPSC amplitude and frequency and, moreover, prevents evoked SV release. Finally, a complete deletion of the polyQ region (13Q to 0Q) has no obvious effects to mEPSCs, but again evoked synaptic currents show increased duration. The mechanisms that ensure SVs are filled to physiologically-appropriate levels remain unknown. Our study identifies the polyQ region of the insect VAChT to be required for correct vesicle transmitter loading and, thus, provides opportunity to increase understanding of this critical aspect of neurotransmission.
Collapse
|
9
|
Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. Odor-taste learning in Drosophila larvae. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:47-54. [PMID: 28823531 DOI: 10.1016/j.jinsphys.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The Drosophila larva is an attractive model system to study fundamental questions in the field of neuroscience. Like the adult fly, the larva offers a seemingly unlimited genetic toolbox, which allows one to visualize, silence or activate neurons down to the single cell level. This, combined with its simplicity in terms of cell numbers, offers a useful system to study the neuronal correlates of complex processes including associative odor-taste learning and memory formation. Here, we summarize the current knowledge about odor-taste learning and memory at the behavioral level and integrate the recent progress on the larval connectome to shed light on the sub-circuits that allow Drosophila larvae to integrate present sensory input in the context of past experience and to elicit an appropriate behavioral response.
Collapse
Affiliation(s)
| | - Katharina Eichler
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; Department of Genetics, University of Leipzig, D-04103 Leipzig, Germany.
| | - Dennis Pauls
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
10
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
11
|
Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission. J Neurosci 2017; 37:383-396. [PMID: 28077717 DOI: 10.1523/jneurosci.1854-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1-43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1-43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1-43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation.
Collapse
|
12
|
Widmann A, Artinger M, Biesinger L, Boepple K, Peters C, Schlechter J, Selcho M, Thum AS. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae. PLoS Genet 2016; 12:e1006378. [PMID: 27768692 PMCID: PMC5074598 DOI: 10.1371/journal.pgen.1006378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. Learning and memory helps organisms to predict and adapt to events in their environment. Gained experience leaves traces of memory in the nervous system. Yet, memory formation in vertebrates and invertebrates is a highly complex and dynamic process that consists of different phases, which depend on various neuronal and molecular mechanisms. To understand which changes occur in a brain when it learns, we applied a reductionist approach. Instead of studying complex cases, we analyzed learning and memory in Drosophila larvae that have a simple brain that is genetically and behaviorally accessible and consists of only about 10,000 neurons. Drosophila larvae are able to learn to associate an odor with punishing high salt concentrations. It is therefore possible to correlate changes in larval behavior with molecular events in identifiable neurons after classical olfactory conditioning. We show that under these circumstances larvae form two parallel memory phases; a short lasting component (lSTM) that is molecularly conserved throughout the animal kingdom as it depends on the classical cAMP pathway. In parallel they establish a larval anesthesia resistant memory (lARM) that relies on a different molecular signal. lARM has not been described in larvae before.
Collapse
Affiliation(s)
| | - Marc Artinger
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Germany
- * E-mail:
| |
Collapse
|
13
|
Winther ÅME, Vorontsova O, Rees KA, Näreoja T, Sopova E, Jiao W, Shupliakov O. An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction. J Neurosci 2015; 35:14756-70. [PMID: 26538647 PMCID: PMC6605226 DOI: 10.1523/jneurosci.1675-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/21/2022] Open
Abstract
Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV cycle and forms a functional complex with the SV-associated phosphoprotein synapsin, previously implicated in SV clustering. This direct interaction is strongly enhanced under phosphorylation-promoting conditions and is essential for proper localization of synapsin at NMJs. In a dap160 rescue mutant lacking the interaction between Dap160 and synapsin, perturbed reclustering of SVs during synaptic activity is observed. Our data indicate that in addition to the function in endocytosis, Dap160 is a component of a network of protein-protein interactions that serves for clustering of SVs in conjunction with synapsin. During the SV cycle, Dap160 interacts with synapsin dispersed from SVs and helps direct synapsin back to vesicles. The proteins function in synergy to achieve efficient clustering of SVs in the reserve pool. SIGNIFICANCE STATEMENT We provide the first evidence for the function of the SH3 domain interaction in synaptic vesicle (SV) organization at the synaptic active zone. Using Drosophila neuromuscular junction as a model synapse, we describe the molecular mechanism that enables the protein implicated in SV clustering, synapsin, to return to the pool of vesicles during neurotransmitter release. We also identify the endocytic scaffolding complex that includes Dap160 as a regulator of the events linking exocytosis and endocytosis in synapses.
Collapse
Affiliation(s)
- Åsa M E Winther
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olga Vorontsova
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kathryn A Rees
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tuomas Näreoja
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elena Sopova
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Wei Jiao
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci 2014; 34:10554-63. [PMID: 25100589 DOI: 10.1523/jneurosci.5074-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patterned depolarization of Drosophila motor neurons can rapidly induce the outgrowth of new synaptic boutons at the larval neuromuscular junction (NMJ), providing a model system to investigate mechanisms underlying acute structural plasticity. Correlative light and electron microscopy analysis revealed that new boutons typically form near the edge of postsynaptic reticulums of presynaptic boutons. Unlike mature boutons, new varicosities have synaptic vesicles which are distributed uniformly throughout the bouton and undeveloped postsynaptic specializations. To characterize the presynaptic mechanisms mediating new synaptic growth induced by patterned activity, we investigated the formation of new boutons in NMJs lacking synapsin [Syn(-)], a synaptic protein important for vesicle clustering, neurodevelopment, and plasticity. We found that budding of new boutons at Syn(-) NMJs was significantly diminished, and that new boutons in Syn(-) preparations were smaller and had reduced synaptic vesicle density. Since synapsin is a target of protein kinase A (PKA), we assayed whether activity-dependent synaptic growth is regulated via a cAMP/PKA/synapsin pathway. We pretreated preparations with forskolin to raise cAMP levels and found this manipulation significantly enhanced activity-dependent synaptic growth in control but not Syn(-) preparations. To examine the trafficking of synapsin during synaptic growth, we generated transgenic animals expressing fluorescently tagged synapsin. Fluorescence recovery after photobleaching analysis revealed that patterned depolarization promoted synapsin movement between boutons. During new synaptic bouton formation, synapsin redistributed upon stimulation toward the sites of varicosity outgrowth. These findings support a model whereby synapsin accumulates at sites of synaptic growth and facilitates budding of new boutons via a cAMP/PKA-dependent pathway.
Collapse
|
15
|
Roy B, Jackson GR. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease. Hum Mol Genet 2014; 23:3008-23. [PMID: 24430504 DOI: 10.1093/hmg/ddu011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clinical and pathological studies have suggested considerable overlap between tauopathies and synucleinopathies. Several genome-wide association studies have identified alpha-Synuclein (SNCA) and Tau (MAPT) polymorphisms as common risk factors for sporadic Parkinson's disease (PD). However, the mechanisms by which subtle variations in the expression of wild-type SNCA and MAPT influence risk for PD and the underlying cellular events that effect neurotoxicity remain unclear. To examine causes of neurotoxicity associated with the α-Syn/Tau interaction, we used the fruit fly as a model. We utilized misexpression paradigms in three different tissues to probe the α-Syn/Tau interaction: the retina, dopaminergic neurons and the larval neuromuscular junction. Misexpression of Tau and α-Syn enhanced a rough eye phenotype and loss of dopaminergic neurons in fly tauopathy and synucleinopathy models, respectively. Our findings suggest that interactions between α-Syn and Tau at the cellular level cause disruption of cytoskeletal organization, axonal transport defects and aberrant synaptic organization that contribute to neuronal dysfunction and death associated with sporadic PD. α-Syn did not alter levels of Tau phosphorylated at the AT8 epitope. However, α-Syn and Tau colocalized in ubiquitin-positive aggregates in eye imaginal discs. The presence of Tau also led to an increase in urea soluble α-Syn. Our findings have important implications in understanding the cellular and molecular mechanisms underlying α-Syn/Tau-mediated synaptic dysfunction, which likely arise in the early asymptomatic phase of sporadic PD.
Collapse
Affiliation(s)
- Bidisha Roy
- Mitchell Center for Neurodegenerative Diseases
| | | |
Collapse
|
16
|
Diegelmann S, Klagges B, Michels B, Schleyer M, Gerber B. Maggot learning and Synapsin function. ACTA ACUST UNITED AC 2013; 216:939-51. [PMID: 23447663 DOI: 10.1242/jeb.076208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila larvae are focused on feeding and have few neurons. Within these bounds, however, there still are behavioural degrees of freedom. This review is devoted to what these elements of flexibility are, and how they come about. Regarding odour-food associative learning, the emerging working hypothesis is that when a mushroom body neuron is activated as a part of an odour-specific set of mushroom body neurons, and coincidently receives a reinforcement signal carried by aminergic neurons, the AC-cAMP-PKA cascade is triggered. One substrate of this cascade is Synapsin, and therefore this review features a general and comparative discussion of Synapsin function. Phosphorylation of Synapsin ensures an alteration of synaptic strength between this mushroom body neuron and its target neuron(s). If the trained odour is encountered again, the pattern of mushroom body neurons coding this odour is activated, such that their modified output now allows conditioned behaviour. However, such an activated memory trace does not automatically cause conditioned behaviour. Rather, in a process that remains off-line from behaviour, the larvae compare the value of the testing situation (based on gustatory input) with the value of the odour-activated memory trace (based on mushroom body output). The circuit towards appetitive conditioned behaviour is closed only if the memory trace suggests that tracking down the learned odour will lead to a place better than the current one. It is this expectation of a positive outcome that is the immediate cause of appetitive conditioned behaviour. Such conditioned search for reward corresponds to a view of aversive conditioned behaviour as conditioned escape from punishment, which is enabled only if there is something to escape from - much in the same way as we only search for things that are not there, and run for the emergency exit only when there is an emergency. One may now ask whether beyond 'value' additional information about reinforcement is contained in the memory trace, such as information about the kind and intensity of the reinforcer used. The Drosophila larva may allow us to develop satisfyingly detailed accounts of such mnemonic richness - if it exists.
Collapse
Affiliation(s)
- Sören Diegelmann
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
17
|
The endocytic adaptor Eps15 controls marginal zone B cell numbers. PLoS One 2012; 7:e50818. [PMID: 23226392 PMCID: PMC3511280 DOI: 10.1371/journal.pone.0050818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220⁺ bone marrow cells, CD19⁻ thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis.
Collapse
|
18
|
Maldonado C, Alicea D, Gonzalez M, Bykhovskaia M, Marie B. Adar is essential for optimal presynaptic function. Mol Cell Neurosci 2012; 52:173-80. [PMID: 23127996 DOI: 10.1016/j.mcn.2012.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 10/23/2012] [Indexed: 12/31/2022] Open
Abstract
RNA editing is a powerful way to recode genetic information. Because it potentially affects RNA targets that are predominantly present in neurons, it is widely hypothesized to affect neuronal structure and physiology. Across phyla, loss of the enzyme responsible for RNA editing, Adar, leads to behavioral changes, impaired locomotion, neurodegeneration and death. However, the consequences of a loss of Adar activity on neuronal structure and function have not been studied in detail. In particular, the role of RNA editing on synaptic development and physiology has not been investigated. Here we test the physiological and morphological consequences of the lack of Adar activity on the Drosophila neuromuscular junction (NMJ). Our detailed examination of synaptic transmission showed that loss of Adar increases quantal size, reduces the number of quanta of neurotransmitter released and perturbs the calcium dependence of synaptic release. In addition, we find that staining for several synaptic vesicle proteins is abnormally intense at Adar deficient synapses. Consistent with this finding, Adar mutants showed a major alteration in synaptic ultrastructure. Finally, we present evidence of compensatory changes in muscle membrane properties in response to the changes in presynaptic activity within the Adar mutant NMJs.
Collapse
Affiliation(s)
- Carolina Maldonado
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, PR
| | | | | | | | | |
Collapse
|
19
|
Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 2012; 32:3969-80. [PMID: 22442064 DOI: 10.1523/jneurosci.5058-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized sites for information transmission where vesicles fuse with the plasma membrane and are locally recycled. Recent work has extended this classical view, with the observation that a subset of functional vesicles is dynamically shared between adjacent terminals by lateral axonal transport. Conceptually, such transport would be expected to disrupt vesicle retention around the active zone, yet terminals are characterized by a high-density vesicle cluster, suggesting that counteracting stabilizing mechanisms must operate against this tendency. The synapsins are a family of proteins that associate with synaptic vesicles and determine vesicle numbers at the terminal, but their specific function remains controversial. Here, using multiple quantitative fluorescence-based approaches and electron microscopy, we show that synapsin is instrumental for resisting vesicle dispersion and serves as a regulatory element for controlling lateral vesicle sharing between synapses. Deleting synapsin disrupts the organization of presynaptic vesicle clusters, making their boundaries hard to define. Concurrently, the fraction of vesicles amenable to transport is increased, and more vesicles are translocated to the axon. Importantly, in neurons from synapsin knock-out mice the resting and recycling pools are equally mobile. Synapsin, when present, specifically restricts the mobility of resting pool vesicles without affecting the division of vesicles between these pools. Specific expression of synapsin IIa, the sole isoform affecting synaptic depression, rescues the knock-out phenotype. Together, our results show that synapsin is pivotal for maintaining synaptic vesicle cluster integrity and that it contributes to the regulated sharing of vesicles between terminals.
Collapse
|
20
|
Wendt A, Speidel D, Danielsson A, Esguerra JLS, Bogen IL, Walaas SI, Salehi A, Eliasson L. Synapsins I and II are not required for insulin secretion from mouse pancreatic β-cells. Endocrinology 2012; 153:2112-9. [PMID: 22334712 DOI: 10.1210/en.2011-1702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synapsins are a family of phosphoproteins that modulate the release of neurotransmitters from synaptic vesicles. The release of insulin from pancreatic β-cells has also been suggested to be regulated by synapsins. In this study, we have utilized a knock out mouse model with general disruptions of the synapsin I and II genes [synapsin double knockout (DKO)]. Stimulation with 20 mm glucose increased insulin secretion 9-fold in both wild-type (WT) and synapsin DKO islets, whereas secretion in the presence of 70 mm K(+) and 1 mm glucose was significantly enhanced in the synapsin DKO mice compared to WT. Exocytosis in single β-cells was investigated using patch clamp. The exocytotic response, measured by capacitance measurements and elicited by a depolarization protocol designed to visualize exocytosis of vesicles from the readily releasable pool and from the reserve pool, was of the same size in synapsin DKO and WT β-cells. The increase in membrane capacitance corresponding to readily releasable pool was approximately 50fF in both genotypes. We next investigated the voltage-dependent Ca(2+) influx. In both WT and synapsin DKO β-cells the Ca(2+) current peaked at 0 mV and measured peak current (I(p)) and net charge (Q) were of similar magnitude. Finally, ultrastructural data showed no variation in total number of granules (N(v)) or number of docked granules (N(s)) between the β-cells from synapsin DKO mice and WT control. We conclude that neither synapsin I nor synapsin II are directly involved in the regulation of glucose-stimulated insulin secretion and Ca(2)-dependent exocytosis in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Anna Wendt
- Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, 20502 Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tomosyn-dependent regulation of synaptic transmission is required for a late phase of associative odor memory. Proc Natl Acad Sci U S A 2011; 108:18482-7. [PMID: 22042858 DOI: 10.1073/pnas.1110184108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle secretion requires the assembly of fusogenic SNARE complexes. Consequently proteins that regulate SNARE complex formation can significantly impact synaptic strength. The SNARE binding protein tomosyn has been shown to potently inhibit exocytosis by sequestering SNARE proteins in nonfusogenic complexes. The tomosyn-SNARE interaction is regulated by protein kinase A (PKA), an enzyme implicated in learning and memory, suggesting tomosyn could be an important effector in PKA-dependent synaptic plasticity. We tested this hypothesis in Drosophila, in which the role of the PKA pathway in associative learning has been well established. We first determined that panneuronal tomosyn knockdown by RNAi enhanced synaptic strength at the Drosophila larval neuromuscular junction, by increasing the evoked response duration. We next assayed memory performance 3 min (early memory) and 3 h (late memory) after aversive olfactory learning. Whereas early memory was unaffected by tomosyn knockdown, late memory was reduced by 50%. Late memory is a composite of stable and labile components. Further analysis determined that tomosyn was specifically required for the anesthesia-sensitive, labile component, previously shown to require cAMP signaling via PKA in mushroom bodies. Together these data indicate that tomosyn has a conserved role in the regulation of synaptic transmission and provide behavioral evidence that tomosyn is involved in a specific component of late associative memory.
Collapse
|
22
|
Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 2011; 22:387-92. [PMID: 21827866 DOI: 10.1016/j.semcdb.2011.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Universidad Central del Caribe, Neuroscience Department, 2U6 Ave Laurel, Bayamon, PR 00956, USA.
| |
Collapse
|
23
|
Kisiel M, Majumdar D, Campbell S, Stewart BA. Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction. BMC Neurosci 2011; 12:65. [PMID: 21745401 PMCID: PMC3146895 DOI: 10.1186/1471-2202-12-65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background Myosin VI, encoded by jaguar (jar) in Drosophila melanogaster, is a unique member of the myosin superfamily of actin-based motor proteins. Myosin VI is the only myosin known to move towards the minus or pointed ends of actin filaments. Although Myosin VI has been implicated in numerous cellular processes as both an anchor and a transporter, little is known about the role of Myosin VI in the nervous system. We previously recovered jar in a screen for genes that modify neuromuscular junction (NMJ) development and here we report on the genetic analysis of Myosin VI in synaptic development and function using loss of function jar alleles. Results Our experiments on Drosophila third instar larvae revealed decreased locomotor activity, a decrease in NMJ length, a reduction in synaptic bouton number, and altered synaptic vesicle localization in jar mutants. Furthermore, our studies of synaptic transmission revealed alterations in both basal synaptic transmission and short-term plasticity at the jar mutant neuromuscular synapse. Conclusions Altogether these findings indicate that Myosin VI is important for proper synaptic function and morphology. Myosin VI may be functioning as an anchor to tether vesicles to the bouton periphery and, thereby, participating in the regulation of synaptic vesicle mobilization during synaptic transmission.
Collapse
Affiliation(s)
- Marta Kisiel
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L1C6, Canada
| | | | | | | |
Collapse
|
24
|
Michels B, Chen YC, Saumweber T, Mishra D, Tanimoto H, Schmid B, Engmann O, Gerber B. Cellular site and molecular mode of synapsin action in associative learning. Learn Mem 2011; 18:332-44. [PMID: 21518740 DOI: 10.1101/lm.2101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synapsin is an evolutionarily conserved, presynaptic vesicular phosphoprotein. Here, we ask where and how synapsin functions in associative behavioral plasticity. Upon loss or reduction of synapsin in a deletion mutant or via RNAi, respectively, Drosophila larvae are impaired in odor-sugar associative learning. Acute global expression of synapsin and local expression in only the mushroom body, a third-order "cortical" brain region, fully restores associative ability in the mutant. No rescue is found by synapsin expression in mushroom body input neurons or by expression excluding the mushroom bodies. On the molecular level, we find that a transgenically expressed synapsin with dysfunctional PKA-consensus sites cannot rescue the defect of the mutant in associative function, thus assigning synapsin as a behaviorally relevant effector of the AC-cAMP-PKA cascade. We therefore suggest that synapsin acts in associative memory trace formation in the mushroom bodies, as a downstream element of AC-cAMP-PKA signaling. These analyses provide a comprehensive chain of explanation from the molecular level to an associative behavioral change.
Collapse
Affiliation(s)
- Birgit Michels
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nuwal T, Heo S, Lubec G, Buchner E. Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites. J Proteome Res 2010; 10:541-50. [PMID: 21028912 DOI: 10.1021/pr100746s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synapsins are synaptic vesicle-associated phosphoproteins that play a major role in the fine regulation of neurotransmitter release. In Drosophila, synapsins are required for complex behavior including learning and memory. Synapsin isoforms were immunoprecipitated from homogenates of wild-type Drosophila heads using monoclonal antibody 3C11. Synapsin null mutants (Syn(97)) served as negative controls. The eluted proteins were separated by SDS-PAGE and visualized by silver staining. Gel pieces picked from five bands specific for wild type were analyzed by nano-LC-ESI-MS/MS following multienzyme digestion (trypsin, chymotrypsin, AspN, subtilisin, pepsin, and proteinase K). The protein was unambiguously identified with high sequence coverage (90.83%). A number of sequence conflicts were observed and the N-terminal amino acid was identified as methionine rather than leucine expected from the cDNA sequence. Several peptides from the larger isoform demonstrated that the in-frame UAG stop codon at position 582 which separates two large open reading frames is read through by tRNAs for lysine. Seven novel phosphorylation sites in Drosophila synapsin were identified at Thr-86, Ser-87, Ser-464, Thr-466, Ser-538, Ser-961, and Tyr-982 and verified by phosphatase treatment. No phosphorylation was observed at the conserved PKA/CaM kinase-I/IV site (RRFS, edited to RGFS) in domain A or a potential PKA site near domain E.
Collapse
Affiliation(s)
- Tulip Nuwal
- Department of Neurobiology and Genetics, Biozentrum, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|