1
|
Dursun I, Korkmaz ND, Firtina S, Erkoyuncu MS, Akbas F, Elibol B. Exploring epigenetic modification of the stress-related FKBP5 gene in mice exposed to alcohol during early postnatal development. Alcohol 2024:S0741-8329(24)00125-3. [PMID: 39245355 DOI: 10.1016/j.alcohol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Early developmental exposure to alcohol has been implicated in adverse effects on the brain, often associated with the onset of neurodevelopmental disorders. Moreover, maternal alcohol consumption during pregnancy has been linked to the manifestation of mental health disorders, such as depression and anxiety, in subsequent generations. These mood disturbances may be attributed to alterations in protein expressions related to depression and anxiety within the hippocampus. While the precise mechanisms remain elusive, it is likely that pre- and postnatal exposure to alcohol induces changes in hippocampus, potentially through epigenetic modifications. The FKBP5 gene, known to modulate the stress response, is particularly relevant in this context. We postulate that alcohol-induced methylation of the FKBP5 gene disrupts HPA axis function, thereby prompting individuals to anxiety-like and depressive-like behaviors. To investigate this hypothesis, female C57BL/6 pups were subjected to early alcohol exposure via intubation with ethanol mixed in artificial milk from Postnatal Day 3 to Day 20. The intubation control pups were subjected to the same procedures without ethanol or milk, and a non-intubated control group included. Anxiety-like and depressive-like behaviors were assessed using the open field test, plus maze test, forced swim test, and tail suspension test when the pups reached 3 months of age. For epigenetic analysis of the FKBP5 gene, genomic DNA was isolated from hippocampal tissues and subjected to bisulfite conversion to distinguish methylated and unmethylated cytosines. Then, methylation-specific PCR was performed to assess methylation levels. Pups exposed to early postnatal alcohol exhibited increased levels of depression-like behavior and susceptibility to anxiety-like behavior during adolescence, as verified by behavioral assessments. Methylation profiling revealed higher rates of methylation within the stress-associated gene FKBP5 in both the early postnatal alcohol-exposed cohort (13.82%) and the intubation control group (3.93%), in contrast to the control cohort devoid of stress or alcohol exposure. These findings suggest a potential epigenetic mechanism underlying the observed behavioral alterations, implicating FKBP5 methylation as a candidate mediator of the increased vulnerability to mood disorders following early postnatal alcohol exposure.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Nur Damla Korkmaz
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Firtina
- Department of Medical Genetics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muhammed Salih Erkoyuncu
- Department of Neuroscience, Graduate School of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
2
|
Reid HMO, Trepanier O, Gross A, Poberezhnyk P, Snowden T, Conway K, Breit KR, Rodriguez C, Thomas JD, Christie BR. Prenatal ethanol and cannabis exposure have sex- and region-specific effects on somatostatin and neuropeptide Y interneurons in the rat hippocampus. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1289-1301. [PMID: 38789401 PMCID: PMC11236510 DOI: 10.1111/acer.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cannabis is increasingly being legalized and socially accepted around the world and is often used with alcohol in social settings. We recently showed that in utero exposure to both substances can alter the density of parvalbumin-expressing interneurons in the hippocampus. Here we investigate the effects of in utero alcohol and cannabis exposure, alone or in combination, on somatostatin- and neuropeptide Y-positive (NPY) interneurons. These are separate classes of interneurons important for network synchrony and inhibition in the hippocampus. METHODS A 2 (Ethanol, Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either ethanol or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry for somatostatin- and NPY-positive interneurons was performed in 50 μm tissue sections obtained at postnatal day 70. RESULTS Exposure to THC in utero had region-specific and sex-specific effects on the density of somatostatin-positive interneurons in the adult rat hippocampus. A female-specific decrease in NPY interneuron cell density was observed in the CA1 region following THC exposure. Combined exposure to alcohol and THC reduced NPY neurons selectively in the ventral dentate gyrus hippocampal subfield. However, overall, co-exposure to alcohol and cannabis had neither additive nor synergistic effects on interneuron populations in other areas of the hippocampus. CONCLUSIONS These results illustrate how alcohol and cannabis exposure in utero may affect hippocampal function by altering inhibitory processes in a sex-specific manner.
Collapse
Affiliation(s)
- Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Owen Trepanier
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Allyson Gross
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Polina Poberezhnyk
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Taylor Snowden
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Kate Conway
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Kristen R Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
- Department of Psychology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| | - Cristina Rodriguez
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| | - Jennifer D Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
DiLeo A, Antonodiou P, Blandino K, Conlin E, Melón L, Maguire JL. Network States in the Basolateral Amygdala Predicts Voluntary Alcohol Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.545962. [PMID: 38464012 PMCID: PMC10925084 DOI: 10.1101/2023.06.21.545962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although most adults in the United States will drink alcohol in their life, only about 6% will go on to develop an alcohol use disorder (AUD). While a great deal of work has furthered our understanding of the cycle of addiction, it remains unclear why certain people transition to disordered drinking. Altered activity in regions implicated in AUDs, like the basolateral amygdala (BLA), has been suggested to play a role in the pathophysiology of AUDs, but how these networks contribute to alcohol misuse remains unclear. Our recent work demonstrated that alcohol can modulate BLA network states and that GABAergic parvalbumin (PV) interneurons are crucial modulators of network activity in the BLA. Further, our lab has demonstrated that δ subunit-containing GABA A receptors, which are modulated by alcohol, are highly expressed on PV interneurons in the BLA. These receptors on PV interneurons have also been shown to influence alcohol intake in a voluntary binge drinking paradigm and anxiety-like behavior in withdrawal. Therefore, we hypothesized that alcohol may impact BLA network states via δ subunit-containing GABA A receptors on PV interneurons to impact the extent of alcohol use. To test this hypothesis, we measured the impact of acute alcohol exposure on oscillatory states in the basolateral amygdala and then assessed the relationship to the extent of voluntary ethanol consumption in the Intermittent Access, Drinking-in-the-Dark-Multiple Scheduled Access, and Chronic Intermittent Ethanol exposure paradigms. Remarkably, we demonstrate that the average alcohol intake negatively correlates with δ subunit-containing GABA A receptor expression on PV interneurons and gamma power in the BLA after the first exposure to alcohol. These data implicate δ subunit-containing GABA A receptor expression on PV interneurons in the BLA in voluntary alcohol intake and suggest that BLA network states may serve as a useful biomarker for those at risk for alcohol misuse. Significance Statement Oscillatory states in the BLA have been demonstrated to drive behavioral states involved in emotional processing, including negative valence processing. Given that negative emotional states/hyperkatifeia contribute to the cycle of AUDs, our previous work demonstrating the ability of alcohol to modulate BLA network states and thereby behavioral states suggests that this mechanism may influence alcohol intake. Here we demonstrate a relationship between the ability of alcohol to modulate oscillations in the BLA and future alcohol intake such that the extent to which alcohol influences BLA network states predict the extent of future voluntary alcohol intake. These findings suggest that individual variability in the sensitivity of the BLA network to alcohol influences voluntary alcohol consumption.
Collapse
|
5
|
De Araujo Furtado M, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Apland JP, Rossetti K, Braga MFM. Preventing Long-Term Brain Damage by Nerve Agent-Induced Status Epilepticus in Rat Models Applicable to Infants: Significant Neuroprotection by Tezampanel Combined with Caramiphen but Not by Midazolam Treatment. J Pharmacol Exp Ther 2024; 388:432-450. [PMID: 37739807 PMCID: PMC10801760 DOI: 10.1124/jpet.123.001710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023] Open
Abstract
Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.
Collapse
Affiliation(s)
- Marcio De Araujo Furtado
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Vassiliki Aroniadou-Anderjaska
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Taiza H Figueiredo
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Volodymyr I Pidoplichko
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - James P Apland
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Katia Rossetti
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Maria F M Braga
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| |
Collapse
|
6
|
Vasanthi SS, Rao NS, Samidurai M, Massey N, Meyer C, Gage M, Kharate M, Almanza A, Wachter L, Mafuta C, Trevino L, Carlo AM, Bryant E, Corson BE, Wohlgemuth M, Ostrander M, Showman L, Wang C, Thippeswamy T. Disease-modifying effects of a glial-targeted inducible nitric oxide synthase inhibitor (1400W) in mixed-sex cohorts of a rat soman (GD) model of epilepsy. J Neuroinflammation 2023; 20:163. [PMID: 37438764 PMCID: PMC10337207 DOI: 10.1186/s12974-023-02847-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for 3 days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. METHODS Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132 μg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m) and HI-6 (125 mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3 mg/kg, i.m.). An hour post-midazolam, 1400W (20 mg/kg, i.m.) or vehicle was administered daily for 2 weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. RESULTS We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20 min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68-positive glia) as a measure of neuroinflammation, and neurodegeneration (especially parvalbumin-positive neurons) in some brain regions. CONCLUSION These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration (parvalbumin-positive neurons), and neuronal hyperexcitability.
Collapse
Affiliation(s)
- Suraj S. Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Nikhil S. Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Manikandan Samidurai
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Nyzil Massey
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Mihir Kharate
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Aida Almanza
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Candide Mafuta
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Lily Trevino
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Adriana M. Carlo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Elijah Bryant
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Brooke E. Corson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Morgan Wohlgemuth
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Morgan Ostrander
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine and Statistics, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| |
Collapse
|
7
|
Vasanthi SS, Rao NS, Samidurai M, Massey N, Meyer C, Gage M, Kharate M, Almanza A, Wachter L, Mafuta C, Trevino L, Carlo AM, Bryant E, Corson BE, Wohlgemuth M, Ostrander M, Wang C, Thippeswamy T. Disease-Modifying Effects of a Glial-targeted Inducible Nitric Oxide Synthase Inhibitor (1400W) in Mixed-sex Cohorts of a Rat Soman (GD) Model of Epilepsy. RESEARCH SQUARE 2023:rs.3.rs-2883247. [PMID: 37214912 PMCID: PMC10197763 DOI: 10.21203/rs.3.rs-2883247/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs- atropine, oximes, benzodiazepines), if administered in < 20 minutes of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for three days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. Methods Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132µg/kg, s.c.) and immediately treated with atropine (2mg/kg, i.m) and HI-6 (125mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3mg/kg, i.m.). An hour post-midazolam, 1400W (20mg/kg, i.m.) or vehicle was administered daily for two weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. Results We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68 positive glia) as a measure of neuroinflammation, and neurodegeneration (including parvalbumin positive neurons) in some brain regions. Conclusion These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration, and neuronal hyperexcitability.
Collapse
|
8
|
Wang D, Jiang J, Shang W, Zhang J, Jiang X, Shen F, Liang J, Li Y, Li M, Wang M, Sui N. Effect of early embryonic exposure to morphine on defects in the GABAergic system of day-old chicks. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110657. [PMID: 36244467 DOI: 10.1016/j.pnpbp.2022.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Embryonic morphine exposure (EME) leads to abnormal brain development and behavior in the offspring, and the functional alteration of γ-aminobutyric acid (GABA) system is considered to be one of the important mechanisms. To mimic the problem of susceptibility of human gestational drug abuse on addictive drugs in offspring, we administered morphine exposure on days 5-8 and 13-16 of chicken embryo development and examined the functions of GABA neurons and their receptors in postnatal chicks by neuroelectrophysiology, immunohistochemistry and behavioral methods. We found that morphine exposure during embryonic stages 5-8 (MorphineE5-8) significantly reduced the incidence of spontaneous inhibitory postsynaptic potentiation (IPSP) and the induction of evoked IPSP and the mean amplitude of GABAA agonist muscimol-induced response in the intermediate medial interstitial (IMM) region, compared to naïve controls or saline-exposed chicks. The results of immunocytochemistry further suggest that MorphineE5-8 decreased the synaptic density of GAD-expressing sites in the IMM, while increased the expression of the GABAA receptor subtype γ2 isoform. Behavioral results found that Morphine5-8 treatment de-inhibited morphine-induced psychomotor responses in postnatal chicks. Morphine exposure at embryonic stages 13-16 (MorphineE13-16) showed no significant changes in the above indicators compared to the saline group. Evidence suggests that early embryonic morphine exposure leads to defects in GABAergic function in the IMM, which in turn alters the responsiveness of postnatal chicks to addictive drugs. These results will help to understand the GABA mechanisms by which embryonic addictive drug exposure contributes to offspring susceptibility to addiction.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Shang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| | - Mengya Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China.
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Quintrell E, Wyrwoll C, Rosenow T, Larcombe A, Kelty E. The effects of acamprosate on maternal and neonatal outcomes in a mouse model of alcohol use disorders. Physiol Behav 2023; 259:114037. [PMID: 36427542 DOI: 10.1016/j.physbeh.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite the teratogenic effects of alcohol, little is known about the safety of pharmacotherapies such as acamprosate for the treatment of alcohol use disorders in pregnancy. The aims of this study were to investigate, in a mouse model, the effects of maternally administered acamprosate on maternal and neonatal health, offspring neurodevelopment and behaviour, as well as examine whether acamprosate reduces the neurological harm associated with alcohol consumption in pregnancy. METHODS Dams were randomly allocated to one of four treatment groups: (i) control (water), (ii) acamprosate (1.6 g/L), (iii) alcohol (5% v/v) or (iv) acamprosate and alcohol (1.6 g/L; 5% v/v ethanol) and exposed from 2-weeks pre-pregnancy until postpartum day 7. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of neurodevelopment. At 8 weeks of age, motor coordination, anxiety, locomotion, and memory of the adult offspring were also examined. RESULTS Exposure to acamprosate did not affect maternal and birth outcomes (mating success, gestational weight gain, litter size, sex ratio), neonatal outcomes (head and body length, postnatal weight) or neurodevelopmental markers (righting reflex and negative geotaxis). Acamprosate exposure did not affect offspring motor control, locomotion or anxiety, however the effects on short-term memory remain uncertain. Prenatal alcohol exposed offspring exhibited various alterations, such as lower postnatal weight, smaller head (p = 0.04) and body lengths (p = 0.046) at postnatal day 70 (males only), increased negative geotaxis speed (p = 0.03), an increased time spent in the inner zone of the open field (p = 0.02). Acamprosate mitigated the effects of alcohol for negative geotaxis at postnatal day 7 (p = 0.01) and female offspring weight at postnatal day 70 (p = 0.03). CONCLUSIONS Overall, we show that prenatal acamprosate exposure was not associated with poor maternal or neonatal health outcomes or impaired neurodevelopment and behaviour. However, acamprosate's effects on short-term memory remain uncertain. We present preliminary evidence to suggest acamprosate displayed some neuroprotective effects against damage caused by in utero alcohol exposure.
Collapse
Affiliation(s)
- Ebony Quintrell
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin Wyrwoll
- Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia.
| |
Collapse
|
10
|
Przybysz KR, Spodnick MB, Johnson JM, Varlinskaya EI, Diaz MR. Moderate prenatal alcohol exposure produces sex-specific social impairments and attenuates prelimbic excitability and amygdala-cortex modulation of adult social behaviour. Addict Biol 2023; 28:e13252. [PMID: 36577734 PMCID: PMC10509785 DOI: 10.1111/adb.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Lifelong social impairments are common in individuals with prenatal alcohol exposure (PAE), and preclinical studies have identified gestational day (G)12 as a vulnerable timepoint for producing social deficits following binge-level PAE. While moderate (m)PAE also produces social impairments, the long-term neuroadaptations underlying them are poorly understood. Activity of the projection from the basolateral amygdala to the prelimbic cortex (BLA → PL) leads to social avoidance, and the PL is implicated in negative social behaviours, making each of these potential candidates for the neuroadaptations underlying mPAE-induced social impairments. To examine this, we first established that G12 mPAE produced sex-specific social impairments lasting into adulthood in Sprague-Dawley rats. We then chemogenetically inhibited the BLA → PL using clozapine N-oxide (CNO) during adult social testing. This revealed that CNO reduced social investigation in control males but had no effect on mPAE males or females of either exposure, indicating that mPAE attenuated the role of this projection in regulating male social behaviour and highlighting one potential mechanism by which mPAE affects male social behaviour more severely. Using whole-cell electrophysiology, we also examined mPAE-induced changes to PL pyramidal cell physiology and determined that mPAE reduced cell excitability, likely due to increased suppression by inhibitory interneurons. Overall, this work identified two mPAE-induced neuroadaptations that last into adulthood and that may underlie the sex-specific vulnerability to mPAE-induced social impairments. Future research is necessary to expand upon how these circuits modulate both normal and pathological social behaviours and to identify sex-specific mechanisms, leading to differential vulnerability in males and females.
Collapse
Affiliation(s)
- Kathryn R. Przybysz
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Mary B. Spodnick
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Julia M. Johnson
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Elena I. Varlinskaya
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Marvin R. Diaz
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
11
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
12
|
Jacotte-Simancas A, Middleton JW, Stielper ZF, Edwards S, Molina PE, Gilpin NW. Brain Injury Effects on Neuronal Activation and Synaptic Transmission in the Basolateral Amygdala of Adult Male and Female Wistar Rats. J Neurotrauma 2022; 39:544-559. [PMID: 35081744 PMCID: PMC8978566 DOI: 10.1089/neu.2021.0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) is defined as brain damage produced by an external mechanical force that leads to behavioral, cognitive, and psychiatric sequelae. The basolateral amygdala (BLA) is involved in emotional regulation, and its function and morphology are altered following TBI. Little is known about potential sex-specific effects of TBI on BLA neuronal function, but it is critical for the field to identify potential sex differences in TBI effects on brain and behavior. Here, we hypothesized that TBI would produce sex-specific acute (1 h) effects on BLA neuronal activation, excitability, and synaptic transmission in adult male and female rats. Forty-nine Wistar rats (n = 23 males and 26 females) were randomized to TBI (using lateral fluid percussion) or Sham groups in two separate studies. Study 1 used in situ hybridization (i.e., RNAscope) to measure BLA expression of c-fos (a marker of cell activation), vGlut, and vGat (markers of glutamatergic and GABAergic neurons, respectively) messenger RNA (mRNA). Study 2 used slice electrophysiology to measure intrinsic excitability and excitatory/inhibitory synaptic transmission in putative pyramidal neurons in the BLA. Physiological measures of injury severity were collected from all animals. Our results show that females exhibit increased apnea duration and reduced respiratory rate post-TBI relative to males. In male and female rats, TBI increased c-fos expression in BLA glutamatergic cells but not in BLA GABAergic cells, and TBI increased firing rate in BLA pyramidal neurons. Further, TBI increased spontaneous excitatory and inhibitory postsynaptic current (sEPSC and sIPSC) amplitude in BLA neurons of females relative to all other groups. TBI increased sEPSC frequency in BLA neurons of females relative to males but did not alter sIPSC frequency. In summary, lateral fluid percussion produced different physiological responses in male and female rats, as well as sex-specific alterations in BLA neuronal activation, excitability, and synaptic transmission 1 h after injury.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jason W. Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zachary F. Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
14
|
Pidoplichko VI, Aroniadou-Anderjaska V, Figueiredo TH, Wilbraham C, Braga MFM. Increased inhibitory activity in the basolateral amygdala and decreased anxiety during estrus: A potential role for ASIC1a channels. Brain Res 2021; 1770:147628. [PMID: 34454948 DOI: 10.1016/j.brainres.2021.147628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
The amygdala is central to emotional behavior, and the excitability level of the basolateral nucleus of the amygdala (BLA) is associated with the level of anxiety. The excitability of neuronal networks is significantly controlled by GABAergic inhibition. Here, we investigated whether GABAergic inhibition in the BLA is altered during the rat estrous cycle. In rat amygdala slices, most principal BLA neurons display spontaneous IPSCs (sIPSCs) in the form of "bursts" of inhibitory currents, occurring rhythmically at a frequency of about 0.5 Hz. The percentage of BLA neurons displaying sIPSC bursts, along with the inhibitory charge transferred by sIPSCs and the frequency of sIPSC bursts, were significantly increased during the estrus phase; increased inhibition was accompanied by reduced anxiety in the open field, the light-dark box, and the acoustic startle response tests. sIPSC bursts were blocked by ibuprofen, an antagonist of acid-sensing-1a channels (ASIC1a), whose activity is known to increase by decreasing temperature. A transient reduction in the temperature of the slice medium, strengthened the sIPSCs bursts; this effect was blocked in the presence of ibuprofen. Further analysis of the sIPSC bursts during estrus showed significantly stronger rhythmic inhibitory activity in early estrus, when body temperature drops, compared with late estrus. To the extent that these results may relate to humans, it is suggested that "a calmer amygdala" due to increased inhibitory activity may underlie the positive affect in women around ovulation time. ASIC1a may contribute to increased inhibition, with their activity facilitated by the body-temperature drop preceding ovulation.
Collapse
Affiliation(s)
- Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Camilla Wilbraham
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
15
|
Liu S, Yu M, Xie X, Ru Y, Ru S. Carbofuran induces increased anxiety-like behaviors in female zebrafish (Danio rerio) through disturbing dopaminergic/norepinephrinergic system. CHEMOSPHERE 2020; 253:126635. [PMID: 32278909 DOI: 10.1016/j.chemosphere.2020.126635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Carbofuran, a carbamate pesticide, is widely used in developing countries to manage insect pests. Studies have found that carbofuran posed potential risks for the neurotransmitter systems of non-target species, we speculated that these disruptive effects on the neurotransmitter systems could trigger anxiety-like behaviors. In this study, female zebrafish were exposed to environmental levels (5, 50, and 500 μg/L) of carbofuran for 48 h to evaluate the effects of carbofuran on anxiety-like behaviors. Results showed that zebrafish exhibited more anxiety-like behaviors which proved by the observed higher bottom trend and more erratic movements in the novel tank after carbofuran treatment. In order to elucidate the underlying molecular mechanisms of carbofuran-induced anxiety-promoting effects, we measured the levels of neurotransmitters, precursors, and major metabolites, along with the level of gene expression and the enzyme activities involved in neurotransmitter synthesis and metabolism. The results demonstrated that acute carbofuran exposure stimulated the mRNA expression and enzyme activity of tyrosine hydroxylase, which sequentially induced the increased levels of dopamine and norepinephrine. Tyrosine hydroxylase inhibitor relieved the anxiety-related changes induced by carbofuran, confirming the overactive tyrosine hydroxylase-mediated accumulation of dopamine and norepinephrine in the brain was one of the main reasons for carbofuran-induced anxiety-like behaviors in the female zebrafish. Overall, our study indicated the environmental health risks of carbamate pesticide in inducing neurobehavioral disorders and provided novel insights into the investigation of the relevant underlying mechanisms.
Collapse
Affiliation(s)
- Shuang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Miao Yu
- College of Life Science, Langfang Normal University, Langfang, 065000, China.
| | - Xincen Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yiran Ru
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, 92093, USA
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
16
|
Diaz MR, Johnson JM, Varlinskaya EI. Increased ethanol intake is associated with social anxiety in offspring exposed to ethanol on gestational day 12. Behav Brain Res 2020; 393:112766. [PMID: 32535179 DOI: 10.1016/j.bbr.2020.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure (PAE) can result in physical, cognitive, and neurological deficits termed Fetal Alcohol Spectrum Disorder (FASD). Deficits in social functioning associated with PAE are frequently observed and persist throughout the lifespan. Social impairments, such as social anxiety, are associated with increased alcohol abuse, which is also highly pervasive following PAE. Yet, the relationship between PAE-induced social alterations and alcohol intake later in life is not well understood. In order to test this relationship, we exposed pregnant female Sprague Dawley rats to a single instance of PAE on gestational day 12, a period of substantial neural development, and tested offspring in adulthood (postnatal day 63) in a modified social interaction test followed by alternating alone and social ethanol intake sessions. Consistent with our previous findings, we found that, in general, PAE reduced social preference (measure of social anxiety-like behavior) in female but not male adults. However, ethanol intake was significantly higher in the PAE group regardless of sex. When dividing subjects according to level of social anxiety-like behavior (low, medium, or high), PAE males (under both drinking contexts) and control females (under the social drinking context) with a high social anxiety phenotype showed the highest level of ethanol intake. Taken together, these data indicate that PAE differentially affects the interactions between social anxiety, ethanol intake, and drinking context in males and females. These findings extend our understanding of the complexity and persistence of PAE's sex-dependent effects into adulthood.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States.
| | - Julia M Johnson
- Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| |
Collapse
|
17
|
Shahrier MA, Wada H. Effects of prenatal ethanol exposure on acoustic characteristics of play fighting-induced ultrasonic vocalizations in juvenile rats. Neurotoxicology 2020; 79:25-39. [PMID: 32294486 DOI: 10.1016/j.neuro.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Juvenile rats display rough-and-tumble playing with conspecifics (play fighting behavior) and produce 22 and 50 kHz ultrasonic vocalizations (USVs). The 22 kHz USV is considered to reflect negative emotionality such as anxiety, fear, and distress, whereas the 50 kHz USV is considered to reflect positive emotionality such as joy, happiness, and satisfaction. USV is a sensitive tool for measuring emotionality in socially interactive situations. However, effects of prenatal ethanol-exposure on the acoustic characteristics of play fighting-induced USVs have remained unclear. In Experiment I, we recorded USVs produced by prenatally ethanol-exposed rats during play fighting on postnatal days (PNDs) 40-42 and examined the acoustic characteristics of negative and positive emotion-induced USVs. In Experiment II, we examined the anxiety levels through elevated plus maze testing on PNDs 37-39 and frequencies of playful attacks on PNDs 43-45 in ethanol-exposed rats. Ethanol was administered to pregnant rats in three gradually increased concentrations between gestational days (GDs) 8 and 20. From GDs 14 to 20, ethanol-containing tap water at concentrations of 30% and 15% (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without added ethanol was given to the control group. On PNDs 40-42, three rats from the same sex and same ethanol concentration group but from different litters were placed together into a playing cage for play fighting. The high-ethanol male triads displayed elevations of 20-35 kHz USVs reflecting negative emotionality and reductions of 45-70 kHz USVs reflecting positive emotionality compared with both the low-ethanol and control male triads. The high-ethanol male triads had prominent elevations of 20-35 kHz USVs with durations longer than 200 ms, whereas the control male triads did not produce such 20-35 kHz USVs at all. There was no difference in USV acoustic characteristics among the female triads. In addition, the high-ethanol male rats exhibited greater anxiety levels and less frequencies of play fighting than the control male rats. Altogether, we conclude that prenatal exposure to ethanol enhances negative emotionality such as anxiety and, accordingly, 20-35 kHz USVs reflecting negative emotionality are produced with a marked decrease in play fighting, suggesting difficulties in social interactions with conspecifics.
Collapse
Affiliation(s)
- Mohd Ashik Shahrier
- Department of Psychology, Graduate School of Letters, Hokkaido University, Japan.
| | - Hiromi Wada
- Department of Psychology, Faculty of Humanities and Human Sciences, Hokkaido University, Kita 10 Nishi 7 Kita-Ku, Sapporo 060-0810, Japan
| |
Collapse
|
18
|
Olguin SL, Zimmerman A, Zhang H, Allan A, Caldwell KC, Brigman JL. Increased Maternal Care Rescues Altered Reinstatement Responding Following Moderate Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1949-1956. [PMID: 31318985 DOI: 10.1111/acer.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) commonly include deficits in learning, memory, and executive control that can have a severe negative impact on quality of life across the life span. It is still unclear how prenatal alcohol exposure (PAE) affects executive control processes, such as control over reward seeking, that lead to inappropriate behavior later in life. Learning and reinstatement of a previously learned response after extinction is a simple, well-validated measure of both acquisition of a rewarded instrumental response and sensitivity to reward and reward-associated cues. We investigated the effects of PAE on learning, extinction, and reinstatement of a simple instrumental response for food reward. Next, we assessed the effectiveness of an early intervention, communal nest (CN) housing, on increased reinstatement of an extinguished response seen after PAE. METHODS To assess the effects of PAE on control over reward seeking, we tested male and female PAE and saccharine (SAC) controls raised in a standard nest (SN) on the acquisition, extinction, and food reward-induced reinstatement of an instrumental response utilizing a touch screen-based paradigm. Next, in order to examine the effects of an early-life intervention on these behaviors, we tested PAE and SAC mice raised in a CN early-life environment on these behaviors. RESULTS PAE mice readily acquired and extinguished a simple touch response to a white square stimulus. However, PAE mice showed significantly increased and persistent reinstatement compared to controls. Increased maternal care via rearing in CN slowed acquisition and sped extinction learning and rescued the significantly increased reinstatement responding in PAE mice. CONCLUSIONS Together these results demonstrate that even moderate PAE is sufficient to alter control over reward seeking as measured by reinstatement. Importantly, an early-life intervention previously shown to improve cognitive outcomes in PAE mice was sufficient to ameliorate this effect.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Amber Zimmerman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Haikun Zhang
- Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Andrea Allan
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Kevin C Caldwell
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Jonathan L Brigman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico.,Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
19
|
Patkar OL, Belmer A, Holgate JY, Klenowski PM, Bartlett SE. Modulation of serotonin and noradrenaline in the BLA by pindolol reduces long-term ethanol intake. Addict Biol 2019; 24:652-663. [PMID: 30022582 DOI: 10.1111/adb.12630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
Repeated cycles of binge-like alcohol consumption and abstinence change the activity of several neurotransmitter systems. Some of these changes are consolidated following prolonged alcohol use and are thought to play an important role in the development of dependence. We have previously shown that systemic administration of the dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist pindolol selectively reduces long-term but not short-term binge-like consumption of ethanol and alters excitatory postsynaptic currents in basolateral amygdala (BLA) principal neurons. The aim of this study was to investigate the effects of pindolol microinfusions in the BLA on long-term ethanol intake using the drinking-in-the-dark paradigm in mice. We also microinfused RU24969 (5-HT1A/1B receptor partial agonist) and CGP12177 (β1/2 adrenergic antagonist) following long-term ethanol intake and determined the densities of 5-HT1A/1B receptors and β1/2 adrenergic in the BLA following short-term (4 weeks) and long-term ethanol (12 weeks) consumption. We show that intra-BLA infusion of pindolol (1000 pmol/0.5 μl), RU24969 (0.3 and 3 pmol/0.5 μl) and CGP12177 (500 pmol/0.5 μl) produce robust decreases in long-term ethanol consumption. Additionally, we identified reduced β1/2 adrenergic receptor expression and no change in 5-HT1A/1B receptor density in the BLA of long-term ethanol-consuming mice. Collectively, our data highlight the effects of pindolol on voluntary, binge-like ethanol consumption behavior following long-term intake.
Collapse
Affiliation(s)
- Omkar L. Patkar
- Translational Research InstituteQueensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology Brisbane Australia
| | - Arnauld Belmer
- Translational Research InstituteQueensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology Brisbane Australia
| | - Joan Y. Holgate
- Translational Research InstituteQueensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology Brisbane Australia
| | - Paul M. Klenowski
- Department of NeurobiologyUniversity of Massachusetts Medical School Worcester MA 01605 USA
| | - Selena E. Bartlett
- Translational Research InstituteQueensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology Brisbane Australia
| |
Collapse
|
20
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF. Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019; 133:104406. [PMID: 30798006 DOI: 10.1016/j.nbd.2019.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
One of the devastating effects of acute exposure to organophosphates, like nerve agents, is the induction of severe and prolonged status epilepticus (SE), which can cause death, or brain damage if death is prevented. Seizures after exposure are initiated by muscarinic receptor hyperstimulation-after inhibition of acetylcholinesterase by the organophosphorus agent and subsequent elevation of acetylcholine-but they are reinforced and sustained by glutamatergic hyperexcitation, which is the primary cause of brain damage. Diazepam is the FDA-approved anticonvulsant for the treatment of nerve agent-induced SE, and its replacement by midazolam is currently under consideration. However, clinical data derived from the treatment of SE of any etiology, as well as studies on the control of nerve agent-induced SE in animal models, have indicated that diazepam and midazolam control seizures only temporarily, their antiseizure efficacy is reduced as the latency of treatment from the onset of SE increases, and their neuroprotective efficacy is limited or absent. Here, we review data on the discovery of a novel anticonvulsant and neuroprotectant, LY293558, an AMPA/GluK1 receptor antagonist. Treatment of soman-exposed immature, young-adult, and aged rats with LY293558, terminates SE with limited recurrence of seizures, significantly protects from brain damage, and prevents long-term behavioral deficits, even when LY293558 is administered 1 h post-exposure. More beneficial effects and complete neuroprotection is obtained when LY293558 administration is combined with caramiphen, which antagonizes NMDA receptors. Further efficacy studies may bring the LY293558 + caramiphen combination therapy on the pathway to approval for human use.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States of America.
| | - Maria F Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
21
|
Holman PJ, Ellis L, Morgan E, Weinberg J. Prenatal alcohol exposure disrupts male adolescent social behavior and oxytocin receptor binding in rodents. Horm Behav 2018; 105:115-127. [PMID: 30110605 PMCID: PMC6246826 DOI: 10.1016/j.yhbeh.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Social behavior deficits resulting from prenatal alcohol exposure (PAE) emerge early in life and become more pronounced across development. Maturational changes associated with adolescence, including pubertal onset, can have significant consequences for social behavior development, making adolescence a unique period of increased vulnerability to social behavior dysfunction. Unfortunately, little is known about the underlying neurobiology supporting PAE-related social behavior impairments, particularly in the context of adolescence, when the transition to a more complex social environment may exacerbate existing deficits in social behavior function. Here we perform a comprehensive evaluation of social behavior development in PAE animals during two different periods in adolescence using three separate but related tests of social behavior in increasingly complex social contexts: the social interaction test, the social recognition memory test (i.e. habituation-dishabituation test), and the social discrimination test. Additionally, we investigated the underlying neurobiology of the oxytocin (OT) and vasopressin (AVP) systems following PAE, given their well-documented role in mediating social behavior. Our results demonstrate that compared to controls, early adolescent PAE animals showed impairments on the social recognition memory test and increased OT receptor binding in limbic networks, while late adolescent PAE animals exhibited impairments on the social discrimination test and increased OTR binding in forebrain reward systems. Taken together, these data indicate that PAE impairs adolescent social behavior - especially with increasing complexity of the social context - and that impairments are associated with altered development of the OT but not the AVP system.
Collapse
Affiliation(s)
- Parker J Holman
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Linda Ellis
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Erin Morgan
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Cantacorps L, González-Pardo H, Arias JL, Valverde O, Conejo NM. Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29526773 DOI: 10.1016/j.pnpbp.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time. However, little is known about the long-term effects of maternal alcohol binge drinking on brain function and behaviour. To address this issue, we used pregnant C57BL/6 female mice with time-limited access to a 20% v/v alcohol solution as a procedure to model alcohol binge drinking during gestation and lactational periods. Male offspring were behaviourally tested during adolescence (30 days) and adulthood (60 days), and baseline neural metabolic capacity of brain regions sensitive to alcohol effects were also evaluated in adult animals from both groups. Our results show that prenatal and postnatal alcohol exposure caused age-dependent changes in spontaneous locomotor activity, increased anxiety-like behaviour and attenuated alcohol-induced conditioned place preference in adults. Also, significant changes in neural metabolic capacity using cytochrome c oxidase (CCO) quantitative histochemistry were found in the hippocampal dentate gyrus, the mammillary bodies, the ventral tegmental area, the lateral habenula and the central lobules of the cerebellum in adult mice with prenatal and postnatal alcohol exposure. In addition, the analysis of interregional CCO activity correlations in alcohol-exposed adult mice showed disrupted functional brain connectivity involving the limbic, brainstem, and cerebellar regions. Finally, increased neurogenesis was found in the dentate gyrus of the hippocampus of alcohol-exposed offspring, suggesting neuroadaptive effects due to early alcohol exposure. Our results demonstrate that maternal binge-like alcohol drinking causes long-lasting effects on motor and emotional-related behaviours associated with impaired neuronal metabolic capacity and altered functional brain connectivity.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
23
|
Cho SJ, Lovinger DM, N'Gouemo P. Prenatal alcohol exposure enhances the susceptibility to NMDA-induced generalized tonic-clonic seizures in developing rats. CNS Neurosci Ther 2018; 23:808-817. [PMID: 28884976 DOI: 10.1111/cns.12756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 11/28/2022] Open
Abstract
AIMS Prenatal alcohol exposure (PAE) is associated with a higher likelihood of developing generalized tonic-clonic seizures (GTCS) in infants and children. However, experimental studies of PAE-related seizures have yielded conflicting results. Here, we investigated the effect of acute PAE on N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. METHODS Pregnant Sprague Dawley rats were given an oral dose of either ethanol (5 g/kg body weight) or vehicle on embryonic day 18. The offspring were tested for susceptibility to NMDA-induced seizures on postnatal day 7 (P7), 21 (P21), 35 (P35), and 42 (P42). Specifically, the prevalence and latency of NMDA-induced continuous wild running-like behaviors (CWR), flexion seizures (FS), wild running seizures (WRS), GTCS, and tonic seizures (TS) were recorded and analyzed. RESULTS N-methyl-D-aspartate-induced seizures consisted of CWR, FS, GTCS, and TS in <P21 rats, while WRS, GTCS, and TS were observed in >P21 rats. Thus, GTCS were consistently observed during development. PAE significantly increases the prevalence of GTCS in female and male P7-P21 rats and P7-P35 rats, respectively, but not in older rats. PAE also increases the prevalence of TS in male, but not female P21-P35 rats. CONCLUSIONS The PAE animal model of GTCS may provide a new opportunity to investigate the mechanisms that underlie neuronal hyperexcitability in developing animals prenatally-exposed to alcohol.
Collapse
Affiliation(s)
- Sue J Cho
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Prosper N'Gouemo
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Rossetti K, Braga MFM. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. J Pharmacol Exp Ther 2018; 365:314-326. [PMID: 29467308 PMCID: PMC5878669 DOI: 10.1124/jpet.117.245969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The currently Food and Drug Administration-approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe-depending on the region-in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Katia Rossetti
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
25
|
Rouzer SK, Cole JM, Johnson JM, Varlinskaya EI, Diaz MR. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring. Front Behav Neurosci 2017; 11:183. [PMID: 29033803 PMCID: PMC5626811 DOI: 10.3389/fnbeh.2017.00183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Among the numerous consequences of prenatal alcohol exposure (PAE) is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12) heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model moderate PAE (mPAE), we exposed pregnant Sprague-Dawley rats to either room air or vaporized ethanol for 6 h on G12. Adolescent offspring were then tested on postnatal days (P) 41-47 in one of the following four anxiety assays: novelty-induced hypophagia (NIH), elevated plus maze (EPM), light-dark box (LDB) and open-field (OF). Our findings revealed significant increases in measures of anxiety-like behavior in male PAE offspring in the NIH, LDB and OF, with no differences observed in females on any test. Additionally, male offspring who demonstrated heightened anxiety-like behavior as adolescents demonstrated decreased anxiety-like behavior in adulthood, as measured by a marble-burying test (MBT), while females continued to be unaffected in adulthood. These results suggest that mPAE leads to dynamic changes in anxiety-like behavior exclusively in male offspring.
Collapse
Affiliation(s)
- Siara K Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Jesse M Cole
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Julia M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
26
|
Rojas-Mayorquín AE, Padilla-Velarde E, Ortuño-Sahagún D. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis. Front Neurosci 2016; 10:565. [PMID: 28018163 PMCID: PMC5156702 DOI: 10.3389/fnins.2016.00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD.
Collapse
Affiliation(s)
- Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Edgar Padilla-Velarde
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|
27
|
Repeated Isoflurane Exposures Impair Long-Term Potentiation and Increase Basal GABAergic Activity in the Basolateral Amygdala. Neural Plast 2016; 2016:8524560. [PMID: 27313904 PMCID: PMC4893574 DOI: 10.1155/2016/8524560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/15/2016] [Accepted: 04/24/2016] [Indexed: 11/23/2022] Open
Abstract
After surgery requiring general anesthesia, patients often experience emotional disturbances, but it is unclear if this is due to anesthetic exposure. In the present study, we examined whether isoflurane anesthesia produces long-term pathophysiological alterations in the basolateral amygdala (BLA), a brain region that plays a central role in emotional behavior. Ten-week-old, male rats were administered either a single, 1 h long isoflurane (1.5%) anesthesia or three, 1 h long isoflurane exposures, separated by 48 h. Long-term potentiation (LTP) and spontaneous GABAergic activity in the BLA were studied 1 day, 1 week, and 1 month later. Single isoflurane anesthesia had no significant effect on the magnitude of LTP. In contrast, after repeated isoflurane exposures, LTP was dramatically impaired at both 1 day and 1 week after the last exposure but was restored by 1 month after the exposures. Spontaneous GABAA receptor-mediated IPSCs were increased at 1 day and 1 week after repeated exposures but had returned to control levels by 1 month after exposure. Thus, repeated exposures to isoflurane cause a long-lasting—but not permanent—impairment of synaptic plasticity in the BLA, which could be due to increased basal GABAergic activity. These pathophysiological alterations may produce emotional disturbances and impaired fear-related learning.
Collapse
|
28
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
29
|
Ji ML, Wu YH, Qian ZB. Neurotoxicity of prenatal alcohol exposure on medullary pre-Bötzinger complex neurons in neonatal rats. Neural Regen Res 2015; 10:1095-100. [PMID: 26330832 PMCID: PMC4541240 DOI: 10.4103/1673-5374.160101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 01/02/2023] Open
Abstract
Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytryptamine 2A receptor (5-HT2AR) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10% (v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT2AR protein and mRNA levels in the pre-Bötzinger complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduction was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10% alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These findings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT2AR protein and mRNA levels.
Collapse
Affiliation(s)
- Ming-Li Ji
- Department of Physiology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yun-Hong Wu
- Department of Functional Laboratory, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Zhi-Bin Qian
- Department of Functional Laboratory, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
30
|
Baculis BC, Diaz MR, Valenzuela CF. Third trimester-equivalent ethanol exposure increases anxiety-like behavior and glutamatergic transmission in the basolateral amygdala. Pharmacol Biochem Behav 2015; 137:78-85. [PMID: 26284742 DOI: 10.1016/j.pbb.2015.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/30/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Ethanol consumption during pregnancy produces a wide range of morphological and behavioral alterations known as fetal alcohol spectrum disorder (FASD). Among the behavioral deficits associated with FASD is an increased probability of developing anxiety disorders. Studies with animal models of FASD have demonstrated that ethanol exposure during the equivalent to the 1(st) and 2(nd) trimesters of human pregnancy increases anxiety-like behavior. Here, we examined the impact on this type of behavior of exposure to high doses of ethanol in vapor inhalation chambers during the rat equivalent to the human 3rd trimester of pregnancy (i.e., neonatal period in these animals). We evaluated anxiety-like behavior with the elevated plus maze. Using whole-cell patch-clamp electrophysiological techniques in brain slices, we also characterized glutamatergic and GABAergic synaptic transmission in the basolateral amygdala, a brain region that has been implicated to play a role in emotional behavior. We found that ethanol-exposed adolescent offspring preferred the closed arms over the open arms in the elevated plus maze and displayed lower head dipping activity than controls. Electrophysiological measurements showed an increase in the frequency of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons from the ethanol group. These findings suggest that high-dose ethanol exposure during the equivalent to the last trimester of human pregnancy can persistently increase excitatory synaptic inputs to principal neurons in the basolateral amygdala, leading to an increase in anxiety-like behaviors.
Collapse
Affiliation(s)
- Brian C Baculis
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Psychology, Behavioral Neuroscience Program, Binghamton University - State University of New York, Binghamton, NY 13902-6000, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
31
|
Bird CW, Candelaria-Cook FT, Magcalas CM, Davies S, Valenzuela CF, Savage DD, Hamilton DA. Moderate prenatal alcohol exposure enhances GluN2B containing NMDA receptor binding and ifenprodil sensitivity in rat agranular insular cortex. PLoS One 2015; 10:e0118721. [PMID: 25747876 PMCID: PMC4351952 DOI: 10.1371/journal.pone.0118721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development. Increased expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats compared to modest reductions in other regions. We subsequently performed slice electrophysiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No alterations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. Together, these data indicate that moderate prenatal alcohol exposure has a significant and lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-related alterations in learning and behaviors that depend on this region.
Collapse
Affiliation(s)
- Clark W. Bird
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | - Christy M. Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
32
|
Postnatal administration of allopregnanolone modifies glutamate release but not BDNF content in striatum samples of rats prenatally exposed to ethanol. BIOMED RESEARCH INTERNATIONAL 2015; 2015:734367. [PMID: 25793205 PMCID: PMC4352491 DOI: 10.1155/2015/734367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c.) administered to juvenile male rats (day 21 of age) on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8). Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.
Collapse
|
33
|
Prager EM, Figueiredo TH, Long RP, Aroniadou-Anderjaska V, Apland JP, Braga MFM. LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety. Neuropharmacology 2015; 89:11-8. [PMID: 25204221 PMCID: PMC4250288 DOI: 10.1016/j.neuropharm.2014.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
Abstract
Exposure to nerve agents can cause brain damage due to prolonged seizure activity, producing long-term behavioral deficits. We have previously shown that LY293558, a GluK1/AMPA receptor antagonist, is a very effective anticonvulsant and neuroprotectant against nerve agent exposure. In the present study, we examined whether the protection against nerve agent-induced seizures and neuropathology conferred by LY293558 translates into protection against pathophysiological alterations in the basolateral amygdala (BLA) and the development of anxiety, which is the most prevalent behavioral deficit resulting from exposure. LY293558 (15 mg/kg) was administered to rats, along with atropine and HI-6, at 20 min after exposure to soman (1.2 × LD50). At 24 h, 7 days, and 30 days after exposure, soman-exposed rats who did not receive LY293558 had reduced but prolonged evoked field potentials in the BLA, as well as increased paired-pulse ratio, suggesting neuronal damage and impaired synaptic inhibition; rats who received LY293558 did not differ from controls in these parameters. Long-term potentiation of synaptic transmission was impaired at 7 days after exposure in the soman-exposed rats who did not receive anticonvulsant treatment, but not in the LY293558-treated rats. Anxiety-like behavior assessed by the open field and acoustic startle response tests was increased in the soman-exposed rats at 30 and 90 days after exposure, while rats treated with LY293558 did not differ from controls. Along with our previous findings, the present data demonstrate the remarkable efficacy of LY293558 in counteracting nerve agent-induced seizures, neuropathology, pathophysiological alterations in the BLA, and anxiety-related behavioral deficits.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Robert P Long
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - James P Apland
- Neurotoxicology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
34
|
Boschen KE, Hamilton GF, Delorme JE, Klintsova AY. Activity and social behavior in a complex environment in rats neonatally exposed to alcohol. Alcohol 2014; 48:533-41. [PMID: 25150044 DOI: 10.1016/j.alcohol.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4-9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4-9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30-42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42-72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience.
Collapse
Affiliation(s)
- Karen E Boschen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Gillian F Hamilton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - James E Delorme
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
35
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Rossetti F, Miller SL, Braga MFM. The limitations of diazepam as a treatment for nerve agent-induced seizures and neuropathology in rats: comparison with UBP302. J Pharmacol Exp Ther 2014; 351:359-72. [PMID: 25157087 DOI: 10.1124/jpet.114.217299] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the current US Food and Drug Administration-approved drug for the cessation of nerve agent-induced SE. Here, we compared the efficacy of DZP with that of UBP302 [(S)-3-(2-carboxybenzyl)willardiine; an antagonist of the kainate receptors that contain the GluK1 subunit] against seizures, neuropathology, and behavioral deficits induced by soman in rats. DZP, administered 1 hour or 2 hours postexposure, terminated the SE, but seizures returned; thus, the total duration of SE within 24 hours after soman exposure was similar to (DZP at 1 hour) or longer than (DZP at 2 hours) that in the soman-exposed rats that did not receive the anticonvulsant. Compared with DZP, UBP302 stopped SE with a slower time course, but dramatically reduced the total duration of SE within 24 hours. Neuropathology and behavior were assessed in the groups that received anticonvulsant treatment 1 hour after exposure. UBP302, but not DZP, reduced neuronal degeneration in a number of brain regions, as well as neuronal loss in the basolateral amygdala and the CA1 hippocampal area, and prevented interneuronal loss in the basolateral amygdala. Anxiety-like behavior was assessed in the open field and by the acoustic startle response 30 days after soman exposure. The results showed that anxiety-like behavior was increased in the DZP-treated group and in the group that did not receive anticonvulsant treatment, but not in the UBP302-treated group. The results argue against the use of DZP for the treatment of nerve agent-induced seizures and brain damage and suggest that targeting GluK1-containing receptors is a more effective approach.
Collapse
Affiliation(s)
- James P Apland
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Franco Rossetti
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Steven L Miller
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
36
|
Aydin C, Oztan O, Isgor C. Hippocampal Y2 receptor-mediated mossy fiber plasticity is implicated in nicotine abstinence-related social anxiety-like behavior in an outbred rat model of the novelty-seeking phenotype. Pharmacol Biochem Behav 2014; 125:48-54. [PMID: 25158103 DOI: 10.1016/j.pbb.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
Abstract
Experimentally naïve outbred rats display varying rates of locomotor reactivity in response to the mild stress of a novel environment. Namely, some display high rates (HR) whereas some display low rates (LR) of locomotor reactivity. Previous reports from our laboratory show that HRs, but not LRs, develop locomotor sensitization to a low dose nicotine challenge and exhibit increased social anxiety-like behavior following chronic intermittent nicotine training. Moreover, the hippocampus, specifically hippocampal Y2 receptor (Y2R)-mediated neuropeptide Y signaling is implicated in these nicotine-induced behavioral effects observed in HRs. The present study examines the structural substrates of the expression of locomotor sensitization to a low dose nicotine challenge and associated social anxiety-like behavior following chronic intermittent nicotine exposure during adolescence in the LRHR hippocampi. Our data showed that the expression of locomotor sensitization to the low dose nicotine challenge and the increase in social anxiety-like behavior were accompanied by an increase in mossy fiber terminal field size, as well as an increase in spinophilin mRNA levels in the hippocampus in nicotine pre-trained HRs compared to saline pre-trained controls. Furthermore, a novel, selective Y2R antagonist administered systemically during 1 wk of abstinence reversed the behavioral, molecular and neuromorphological effects observed in nicotine-exposed HRs. These results suggest that nicotine-induced neuroplasticity within the hippocampus may regulate abstinence-related negative affect in HRs, and implicate hippocampal Y2R in vulnerability to the behavioral and neuroplastic effects of nicotine in the novelty-seeking phenotype.
Collapse
Affiliation(s)
- Cigdem Aydin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Ozge Oztan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Ceylan Isgor
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
37
|
Abstract
The discovery that even small changes in extracellular acidity can alter the excitability of neuronal networks via activation of acid-sensing ion channels (ASICs) could have therapeutic application in a host of neurological and psychiatric illnesses. Recent evidence suggests that activation of ASIC1a, a subtype of ASICs that is widely distributed in the brain, is necessary for the expression of fear and anxiety. Antagonists of ASIC1a, therefore, have been proposed as a potential treatment for anxiety. The basolateral amygdala (BLA) is central to fear generation, and anxiety disorders are characterized by BLA hyperexcitability. To better understand the role of ASIC1a in anxiety, we attempted to provide a direct assessment of whether ASIC1a activation increases BLA excitability. In rat BLA slices, activation of ASIC1a by low pH or ammonium elicited inward currents in both interneurons and principal neurons, and increased spontaneous IPSCs recorded from principal cells significantly more than spontaneous EPSCs. Epileptiform activity induced by high potassium and low magnesium was suppressed by ammonium. Antagonism of ASIC1a decreased spontaneous IPSCs more than EPSCs, and increased the excitability of the BLA network, as reflected by the pronounced increase of evoked field potentials, suggesting that ASIC1a channels are active in the basal state. In vivo activation or blockade of ASIC1a in the BLA suppressed or increased, respectively, anxiety-like behavior. Thus, in the rat BLA, ASIC1a has an inhibitory and anxiolytic function. The discovery of positive ASIC1a modulators may hold promise for the treatment of anxiety disorders.
Collapse
|
38
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
39
|
Diaz MR, Jotty K, Locke JL, Jones SR, Valenzuela CF. Moderate Alcohol Exposure during the Rat Equivalent to the Third Trimester of Human Pregnancy Alters Regulation of GABAA Receptor-Mediated Synaptic Transmission by Dopamine in the Basolateral Amygdala. Front Pediatr 2014; 2:46. [PMID: 24904907 PMCID: PMC4035091 DOI: 10.3389/fped.2014.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/10/2014] [Indexed: 01/22/2023] Open
Abstract
Fetal ethanol (EtOH) exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA) plays a critical role in modulating emotional processing, in part, via dopamine (DA) regulation of GABA transmission. This BLA modulatory system is acquired during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the third trimester-equivalent [postnatal days (P) 2-12] alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs) was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine) but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Marvin Rafael Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center , Albuquerque, NM , USA
| | - Karick Jotty
- Department of Neurosciences, University of New Mexico Health Sciences Center , Albuquerque, NM , USA
| | - Jason L Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | |
Collapse
|
40
|
Zhou R, Chen F, Chang F, Bai Y, Chen L. Persistent overexpression of DNA methyltransferase 1 attenuating GABAergic inhibition in basolateral amygdala accounts for anxiety in rat offspring exposed perinatally to low-dose bisphenol A. J Psychiatr Res 2013; 47:1535-44. [PMID: 23791455 DOI: 10.1016/j.jpsychires.2013.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022]
Abstract
Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. We have shown that perinatal exposure to bisphenol A (BPA) at environmental dose level causes long-term anxiety-like behaviors in rats. The aim of this study was to examine epigenetic reprogramming effect of BPA on anxiety-related neurobehavior in the rat offspring. The results of real-time RT-PCR displayed that the overexpression of DNA methyltransferase 1 (DNMT1) mRNA was accompanied by the reduction of glutamic acid decarboxylase 67 (GAD67) mRNA level in the basolateral amygdala (BLA) of postnatal day 45 BPA-exposed female rats. Chronic intro-BLA injection with 5-ada-CdR could rectify the GAD67 mRNA expression. Behavioral data showed that the anxiety-like behaviors in BPA-exposed rats were reversed by intro-BLA treatment with 5-ada-CdR which could be further blocked by PTX. Electrophysiological study revealed behavioral alterations were associated with the increase of postsynaptic neuronal excitability in the cortical-BLA pathway which appeared as multispike responses, paired-pulse facilitation instead of paired-pulse inhibition and long-term potentiation and 5-aza-CdR treatment restored the increased synaptic transmission in the BLA via improving GABAergic system. The above results suggest that the overexpression of DNMT1 in the BLA is responsible for the etiology of anxiety associated with BPA exposure via GABAergic disinhibition. In addition, we also find these long-term neurobehavioral effects of developmental BPA exposure are reversible in adolescent period.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
41
|
Cullen CL, Burne THJ, Lavidis NA, Moritz KM. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring. PLoS One 2013; 8:e54924. [PMID: 23383000 PMCID: PMC3559882 DOI: 10.1371/journal.pone.0054924] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control) or 6% (vol/vol) ethanol (EtOH) throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult) or 15 months (Aged) of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety – like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.
Collapse
Affiliation(s)
- Carlie L. Cullen
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Karen M. Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
42
|
Aydin C, Oztan O, Isgor C. Nicotine-induced anxiety-like behavior in a rat model of the novelty-seeking phenotype is associated with long-lasting neuropeptidergic and neuroplastic adaptations in the amygdala: effects of the cannabinoid receptor 1 antagonist AM251. Neuropharmacology 2012; 63:1335-45. [PMID: 22959963 DOI: 10.1016/j.neuropharm.2012.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
Abstract
A rat model of the novelty-seeking phenotype predicts vulnerability to the expression of behavioral sensitization to nicotine, where locomotor reactivity to novelty is used to screen experimentally-naïve rats for high (HR) versus low (LR) responders. The present study examines the long-term neuropeptidergic and neuroplastic adaptations associated with the expression of locomotor sensitization to a low dose nicotine challenge and social anxiety-like behavior following chronic intermittent nicotine exposure during adolescence in the LRHR phenotype. Our data show that the expression of behavioral sensitization to nicotine and abstinence-related anxiety are detected in nicotine pre-exposed HRs even across a long (3 wks) abstinence. Moreover, these behavioral effects of nicotine are accompanied by a persistent imbalance between neuropeptide Y and corticotrophin releasing factor systems, and a persistent increase in brain-derived neurotrophic factor (BDNF) and spinophilin mRNA levels in the amygdala. Furthermore, treatment with the cannabinoid receptor 1 antagonist, AM251 (5 mg/kg) during a short (1 wk) abstinence is ineffective in reversing nicotine-induced anxiety, fluctuations in BDNF and spinophilin mRNAs, and the neuropeptidergic dysregulations in the amygdala; although this treatment is effective in reversing the expression of locomotor sensitization to challenge nicotine even after a long abstinence. Interestingly, the identical AM251 treatment administered during the late phase of a long abstinence further augments anxiety and associated changes in BDNF and spinophilin mRNA in the basolateral nucleus of the amygdala in nicotine pre-exposed HRs. These findings implicate long-lasting neuropeptidergic and neuroplastic changes in the amygdala in vulnerability to the behavioral effects of nicotine in the novelty-seeking phenotype.
Collapse
Affiliation(s)
- Cigdem Aydin
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|
43
|
Zhou R, Wang S, Zhu X. Prenatal ethanol exposure alters synaptic plasticity in the dorsolateral striatum of rat offspring via changing the reactivity of dopamine receptor. PLoS One 2012; 7:e42443. [PMID: 22916128 PMCID: PMC3420902 DOI: 10.1371/journal.pone.0042443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022] Open
Abstract
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | |
Collapse
|
44
|
Reduced sleep and impaired sleep initiation in adult male rats exposed to alcohol during early postnatal period. Behav Brain Res 2012; 234:38-42. [PMID: 22698707 DOI: 10.1016/j.bbr.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/27/2012] [Accepted: 06/04/2012] [Indexed: 11/24/2022]
Abstract
Prenatal alcohol exposure (AE) is associated with cognitive and neurobehavioral abnormalities, such as increased motor activity and elevated anxiety, that may last a lifetime. Persistent sleep disruption may underlie these problems. Using a rat model, we investigated long-term alterations of sleep-wake behavior following AE during a critical early developmental period. Male rats received 2.6 g/kg of alcohol intragastrically twice daily on postnatal days (PD) 4-9, a developmental period equivalent to the third trimester of human pregnancy (AE group), or were sham-intubated (S group). On PD52-80, they were instrumented for tethered electroencephalogram and nuchal electromyogram recording and habituated to the recording procedures. Sleep-wake behavior was then recorded during one 24 h-long session. Wake, slow-wave sleep (SWS) and rapid eye movement sleep (REMS) were scored in 10 s epochs during 6h of the lights-on (rest) and 6h of the lights-off (active) periods. During the active period, REMS percentage was significantly lower (4.7 ± 0.9 (SE) vs. 8.2 ± 0.9; p < 0.02) and the percentage of SWS tended to be lower (p = 0.07) in AE than S rats (N = 6/group). During the rest period, sleep and wake amounts did not differ between the groups, but AE rats had longer latency to both SWS and REMS onset (p = 0.02 and 0.003, respectively). Our data demonstrate that, in a rat model of prenatal AE, impaired sleep-wake behavior persists into the adulthood. Disordered sleep may exacerbate cognitive and behavioral disorders seen in human victims of prenatal AE.
Collapse
|
45
|
Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Brain Struct Funct 2012; 218:421-35. [PMID: 22527118 PMCID: PMC3580143 DOI: 10.1007/s00429-012-0406-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/13/2012] [Indexed: 01/28/2023]
Abstract
Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 %, and about 30–40 % of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.
Collapse
|
46
|
Shi J, Cai Y, Liu G, Gong N, Liu Z, Xu T, Wang Z, Fei J. Enhanced learning and memory in GAT1 heterozygous mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:359-66. [PMID: 22318715 DOI: 10.1093/abbs/gms005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of a family of membrane proteins, called GABA transporters (GAT1-4). It is well established that GABA system is involved in the modulation of memory. Our previous study showed that homozygous GAT1(-/-) mice exhibited impaired hippocampus-dependent learning and memory. To evaluate the impact of endogenous reduced GABA reuptake on mice cognitive behaviors, the ability of learning and memory of heterozygous GAT1(+/-) mice was detected by the passive avoidance paradigm and Morris water maze. The hole board paradigm was also used to measure changes in anxiety-related behavior or exploratory behavior in such mice. As one form of synaptic plasticity, long-term potentiation was recorded in the mouse hippocampal CA1 area. We found that GAT1(+/-) mice displayed increased learning and memory, decreased anxiety-like behaviors, and highest synaptic plasticity compared with wild-type and homozygous GAT1(-/-) mice. Our results suggest that a moderate reduction in GAT1 activity causes the enhancement of learning and memory in mice.
Collapse
Affiliation(s)
- Jun Shi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kully-Martens K, Denys K, Treit S, Tamana S, Rasmussen C. A Review of Social Skills Deficits in Individuals with Fetal Alcohol Spectrum Disorders and Prenatal Alcohol Exposure: Profiles, Mechanisms, and Interventions. Alcohol Clin Exp Res 2011; 36:568-76. [DOI: 10.1111/j.1530-0277.2011.01661.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Dexamethasone induces apoptosis in the developing rat amygdala in an age-, region-, and sex-specific manner. Neuroscience 2011; 199:535-47. [PMID: 22008524 DOI: 10.1016/j.neuroscience.2011.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/18/2011] [Accepted: 09/25/2011] [Indexed: 12/30/2022]
Abstract
Exposure to glucocorticoids (GCs) in early development can lead to long-term changes in brain function and behavior, although little is known about the underlying neural mechanisms. Perinatal exposure to GCs alters adult anxiety and neuroendocrine responses to stress. Therefore, we investigated the effects of either late gestational or neonatal exposure to the GC receptor agonist dexamethasone (DEX), on apoptosis within the amygdala, a region critical for emotional regulation. DEX was administered to timed-pregnant rat dams from gestational day 18 until parturition, or postnatal day 4-6. Offspring were sacrificed the day following the last DEX treatment, and tissue was processed for immunohistochemical detection of cleaved caspase-3, a marker for apoptotic cells. Prenatal DEX treatment significantly increased the number of cleaved caspase-3-positive cells in the amygdala of both sexes, largely due to increases within the medial and basomedial subregions. Postnatal DEX treatment also increased cleaved caspase-3 immunoreactivity within the amygdala, although effects reached significance only in the central nucleus of females. Overall, DEX induction of cleaved caspase-3 in the amygdala was greater following prenatal compared with postnatal treatment, yet in both instances, elevations in cleaved caspase-3 correlated with an increase in pro-apoptotic Bax mRNA expression. Dual-label immunohistochemistry of cleaved caspase-3 and the neuronal marker NeuN confirmed that virtually all cleaved caspase-3-positive cells in the amygdala were neurons, and a subset of these cells (primarily following postnatal treatment) expressed a GABAergic calcium-binding protein phenotype (calbindin or calretinin). Together these results indicate that early developmental GC exposure induces neuronal apoptosis within the amygdala in an age-, sex-, and region-dependent manner.
Collapse
|
49
|
Alterations of emotion, cognition and firing activity of the basolateral nucleus of the amygdala after partial bilateral lesions of the nigrostriatal pathway in rats. Brain Res Bull 2011; 85:329-38. [PMID: 21624440 DOI: 10.1016/j.brainresbull.2011.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 02/26/2011] [Accepted: 05/15/2011] [Indexed: 11/20/2022]
Abstract
Although increasing evidence indicates that psychiatric symptoms are crucial characteristic of the early stage of Parkinson's disease (PD) and precede motor impairments, the neuronal firing activity of the basolateral nucleus of the amygdala (BLA) in the psychiatric symptom of PD and the involved mechanism are still unclear. In the present study, we examined the changes in emotional and cognitive tests not focused on motor fluency and firing activity of projection neurons in the BLA rats with 6-hydroxydopamine (6-OHDA) injected bilaterally into dorsal striatum, and the effects of apomorphine and the medial prefrontal cortex (mPFC) on these changes. Injection of 6-OHDA (10.5 μg) into the dorsal striatum produced 18-22% and 26-30% loss of tyrosine hydroxylase immunoreactive neurons in the ventral tegmental area and substantia nigra pars compacta of rats, respectively. The striatal lesions induced anxiety-like responses in the rats but did not result in depressive-like behavior or cognitive impairments. In the lesioned rats, the firing rate of BLA projection neurons decreased significantly compared with sham-operated rats, and the firing pattern of BLA projection neurons was not changed. No significant differences were observed either in behaviors or firing activity of BLA projection neurons by further ibotenic acid lesions of the mPFC in the lesioned rats. Systemic administration of cumulative apomorphine (10-160 μg/kg) inhibited the firing rate of BLA projection neurons in sham-operated, 6-OHDA-lesioned and combined 6-OHDA- and mPFC-lesioned rats, but the latter needed more apomorphine stimulation. These data suggest that the anxiety in early stage of PD is possibly related to the decrease in firing activity of BLA projection neurons, which may be regulated by the activation of dopamine receptor in the mPFC.
Collapse
|