1
|
Gamble MC, Miracle S, Williams BR, Logan RW. Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice. Pharmacol Biochem Behav 2024; 240:173791. [PMID: 38761993 PMCID: PMC11166043 DOI: 10.1016/j.pbb.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Gamble MC, Miracle S, Williams BR, Logan RW. Sex-specific Effects of the Endocannabinoid Agonist 2-Arachidonoylglycerol on Sleep and Circadian Disruptions during Fentanyl Withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572466. [PMID: 38187736 PMCID: PMC10769247 DOI: 10.1101/2023.12.19.572466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigate the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. Female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24 hrs of withdrawal. On withdrawal day 2, only female showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
|
3
|
Go SI, Won YW, Kang JH. Safe use of opioids. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2022. [DOI: 10.5124/jkma.2022.65.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Opioids are effective analgesics for cancer pain and refractory non-cancer pain. Although they are essential medication, problematic issues on aberrant behavior and adverse events have rapidly emerged as social problems in Korea. This study aimed to describe the mechanisms, efficacy, and adverse events, especially how to deal with opioid dependency.Current Concepts: Opioid-induced aberrant behavior includes physical and psychological dependences (addiction), abuse, and diversion (giving prescribed opioids to another person). Most physicians are unfamiliar with how to handle patients presenting these problematic issues. Physical and psychological dependences develop through different pathophysiologic mechanisms, i.e., noradrenergic and dopaminergic pathways, respectively. Motivational enhancement therapy, psychosocial support, substitution therapy with buprenorphine, and adjunctive medications, including alpha-2 adrenergic agonist, antidepressants, and non-steroidal antiinflammatory drugs, are the mainstay of treatment for opioid dependency. Constipation, nausea/vomiting, drowsiness/sedation, delirium, itching sensation, voiding difficulty, dry mouth, opioid-induced hyperalgesia, and respiratory depression are well-known physical side effects of opioid consumption.Discussion and Conclusion: Research on the development history, epidemiology of opioid dependency, and its treatment are warranted to avoid an opioid crisis in Korea. Above all, thorough knowledge for physicians and patients is urgently needed.
Collapse
|
4
|
Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021; 14:1091. [PMID: 34832873 PMCID: PMC8620360 DOI: 10.3390/ph14111091] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Craig M. Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus;
| |
Collapse
|
5
|
Tupal S, Faingold CL. Serotonin 5-HT 4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res 2021; 177:106777. [PMID: 34601387 DOI: 10.1016/j.eplepsyres.2021.106777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Our previous study showed that the recently approved anticonvulsant drug, fenfluramine, which enhances the release of serotonin (5-hydroxytryptamine, 5-HT) in the brain, prevents seizure-induced respiratory arrest (S-IRA) in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). The present study examined the role of 5-HT receptor subtypes in mediating the effect of this agent by combined administration of fenfluramine with selective 5-HT receptor antagonists prior to seizure in DBA/1 mice. METHODS Fenfluramine (15 mg/kg, i.p.) was administered to primed DBA/1 mice, and audiogenic seizure (Sz) was induced 16 h later. Thirty min prior to Sz induction a selective antagonist acting on 5-HT1A, 5-HT2, 5-HT3 5-HT4, 5-HT5A, 5-HT6 or 5-HT7 receptors at a sub-toxic dose was administered, and changes in seizure-induced behaviors were evaluated. Follow-up studies examined the effect of administration of a 5-HT4 receptor agonist, BIMU 8, as well as the effect of co-administration of ineffective doses of fenfluramine and BIMU-8 on Sz behaviors. RESULTS The 5-HT4 antagonist (GR125487) was the only 5-HT receptor antagonist that was able to reverse the action of fenfluramine to block Sz and S-IRA. Treatment with the 5-HT4 receptor agonist (BIMU-8), or co-administration of ineffective doses of BIMU-8 and fenfluramine significantly reduced the incidence of S-IRA and tonic Sz in DBA/1 mice. The antagonists for 5-HT3, 5-HT5A 5-HT6, and 5-HT7 receptors did not significantly affect the action of fenfluramine. However, the 5-HT1A and the 5-HT2 antagonists enhanced the anticonvulsant effects of fenfluramine. CONCLUSIONS These findings suggest that the action of fenfluramine to prevent seizure-induced sudden death in DBA/1 mice is mediated primarily by activation of 5-HT4 receptors. These studies are the first to indicate the therapeutic potential of 5-HT4 receptor agonists either alone or in combination with fenfluramine for preventing SUDEP. Enhancement of the anticonvulsant effect of fenfluramine by 5-HT1A and 5-HT2 antagonists may involve presynaptic actions of these antagonists. Thus, the Sz and S-IRA blocking actions of fenfluramine involve complex interactions with several 5-HT receptor subtypes. These data also provide further support for the serotonin hypothesis of SUDEP.
Collapse
Affiliation(s)
- Srinivasan Tupal
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
6
|
Bertoni S, Arcaro V, Vivo V, Rapalli A, Tognolini M, Cantoni AM, Saccani F, Flammini L, Domenichini G, Ballabeni V, Barocelli E. Suppression of inflammatory events associated to intestinal ischemia–reperfusion by 5-HT1A blockade in mice. Pharmacol Res 2014; 81:17-25. [DOI: 10.1016/j.phrs.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/19/2022]
|
7
|
Comparison of tolerance to morphine-induced respiratory and analgesic effects in mice. Toxicol Lett 2013; 217:251-9. [DOI: 10.1016/j.toxlet.2012.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022]
|
8
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
10
|
Li YH, Jin H, Xu JS, Guo GQ, Chen DAL, Bo Y. Complement factor C5a and C5a receptor contribute to morphine tolerance and withdrawal-induced hyperalgesia in rats. Exp Ther Med 2012; 4:723-727. [PMID: 23170133 PMCID: PMC3501444 DOI: 10.3892/etm.2012.636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/13/2012] [Indexed: 01/03/2023] Open
Abstract
Morphine is a potent opioid analgesic. However, the repeated use of morphine causes tolerance and hyperalgesia. Neuroinflammation has been reported to be involved in morphine tolerance and withdrawal-induced hyperalgesia. The complement system is a crucial effector mechanism of immune responses. The present study investigated the roles of complement factor C5a and C5a receptor (C5aR) in the development of morphine tolerance and withdrawal-induced hyperalgesia. In the present study, the levels of C5a and C5aR were increased in the L5 lumbar spinal cords of morphine-tolerant rats. The administration of C5a promoted the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. However, these phenomena caused by morphine were significantly attenuated by the C5aR antagonist PMX53. These results suggest that complement activation within the spinal cord is involved in morphine tolerance and withdrawal-induced hyperalgesia. C5a and C5aR may serve as novel targets for the control of morphine tolerance and withdrawal-induced hyperalgesia.
Collapse
|
11
|
Jin H, Li YH, Xu JS, Guo GQ, Chen DL, Bo Y. Lipoxin A4 analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat. Neuroscience 2012; 208:1-10. [DOI: 10.1016/j.neuroscience.2012.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 01/03/2023]
|