1
|
Yang Q, Zhang H, Jin Z, Zhang B, Wang Y. Effects of Valproic Acid Therapy on Rats with Spinal Cord Injury: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:12-28. [PMID: 37923014 DOI: 10.1016/j.wneu.2023.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically evaluate the efficacy of valproic acid (VPA) in rats with spinal cord injury (SCI) to reduce the risk of clinical conversion and provide a valuable reference for future animal and clinical studies. METHODS We searched scientific databases, including PubMed, Ovid-Embase, Web of Science, and Scopus databases. The relevant literature was searched from the establishment date of the database to June 28, 2023. The search results were screened, data were extracted, and the quality of the literature was evaluated independently by 2 reviewers. RESULTS Among 656 nonduplicated references, 14 articles were included for meta-analysis. The summary results showed that the overall Basso, Beattie and Bresnahan scores of the VPA intervention group were significantly higher than those in the control group at 1-6 weeks after VPA intervention. Subgroup analysis showed that the injury model, administration dose, rat strain, country of study, or follow-up duration had no significant effect on the efficacy of VPA on rats with SCI. In addition, mesh analysis showed that high doses of the VPA group had a better effect on SCI rats, compared with the low dose group and the medium dose group. CONCLUSIONS To date, this is the first systematic evaluation of the potential effects of VPA on motor recovery in rats with SCI. We concluded that VPA can promote motor recovery in rats with SCI, and higher doses of VPA seem to be more effective in rats with SCI. However, the limited quality and sample of included studies reduced the application of this meta-analysis. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Qinglin Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhuanmei Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongping Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Fang F, Liu P, Huang H, Feng X, Li L, Sun Y, Kaufman RJ, Hu Y. RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:286-295. [PMID: 37547290 PMCID: PMC10400881 DOI: 10.1016/j.omtn.2023.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been linked with various acute and chronic neurodegenerative diseases. We previously found that optic nerve (ON) injury and diseases induce neuronal ER stress in retinal ganglion cells (RGCs). We further demonstrated that germline deletion of CHOP preserves the structure and function of both RGC somata and axons in mouse glaucoma models. Here we report that RGC-specific deletion of CHOP and/or its upstream regulator ATF4 synergistically promotes RGC and ON survival and preserves visual function in mouse ON crush and silicone oil-induced ocular hypertension (SOHU) glaucoma models. Consistently, topical application of the ATF4/CHOP chemical inhibitor ISRIB or RGC-specific CRISPR-mediated knockdown of the ATF4 downstream effector Gadd45a also delivers significant neuroprotection in the SOHU glaucoma model. These studies suggest that blocking the neuronal intrinsic ATF4/CHOP axis of ER stress is a promising neuroprotection strategy for neurodegeneration.
Collapse
Affiliation(s)
- Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Pan F, Hu D, Sun LJ, Bai Q, Wang YS, Hou X. Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush. Neural Regen Res 2023; 18:1607-1612. [PMID: 36571369 PMCID: PMC10075129 DOI: 10.4103/1673-5374.357913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury. Valproate is a histone deacetylase inhibitor and multitarget drug, which has been demonstrated to protect retinal neurons. In this study, we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling. We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope. Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein, phosphorylated eukaryotic translation initiation factor 2α, and caspase-12 in the endoplasmic reticulum of retinal ganglion cells. These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress. These findings represent a newly discovered mechanism that regulates how valproate protects neurons.
Collapse
Affiliation(s)
- Feng Pan
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dan Hu
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Li-Juan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qian Bai
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu-Sheng Wang
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xu Hou
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
5
|
Kang Y, Li Q, Zhu R, Li S, Xu X, Shi X, Yin Z. Identification of Ferroptotic Genes in Spinal Cord Injury at Different Time Points: Bioinformatics and Experimental Validation. Mol Neurobiol 2022; 59:5766-5784. [PMID: 35796899 DOI: 10.1007/s12035-022-02935-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/20/2022] [Indexed: 12/21/2022]
Abstract
Programmed cell death (PCD) is an important pathologic process after spinal cord injury (SCI). As a new type of PCD, ferroptosis is involved in the secondary SCI. However, the underlying molecular mechanism remains unclear. In this study, we validated ferroptotic phenotype in an animal model of SCI. Then, the bioinformatic analyses performed on a microarray data of SCI (GSE45006). KEGG analysis suggested that the pathways of mTOR, HIF-1, VEGF, and protein process in endoplasmic reticulum were involved in SCI-induced ferroptosis. GO analysis revealed that oxidative stress, amide metabolic process, cation transport, and cytokine production were essential biological processes in ferroptosis after SCI. We highlighted five genes including ATF-3, XBP-1, HMOX-1, DDIT-3, and CHAC-1 as ferroptotic key gene in SCI. These results contribute to exploring the ferroptotic mechanism underlying the secondary SCI and providing potential targets for clinical treatment.
Collapse
Affiliation(s)
- Yu Kang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Qiangwei Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Rui Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- Department of Orthopedics, The Affiliated Chaohu Hospital of Anhui Medical University, Anhui Medical University, 64 Chaohu Northern Road, Hefei, 238001, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Xuanming Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
- Department of Orthopedics, The Affiliated Chaohu Hospital of Anhui Medical University, Anhui Medical University, 64 Chaohu Northern Road, Hefei, 238001, China.
| |
Collapse
|
6
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells After Spinal Cord Injury. Neurotox Res 2021; 39:456-466. [PMID: 33247828 DOI: 10.1007/s12640-020-00304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles and valproic acid are demonstrated as the protective agents in the treatment of spinal cord injury (SCI). However, the effects of valproic acid-labeled chitosan nanoparticles (VA-CN) on endogenous spinal cord neural stem cells (NSCs) following SCI and the underlying mechanisms involved remain to be elucidated. In this study, the VA-CN was constructed and the effects of VA-CN on NSCs were assessed in a rat model of SCI. We found VA-CN treatment promoted recovery of the tissue and locomotive function following SCI. Moreover, administration of VA-CN significantly enhanced neural stem cell proliferation and the expression levels of neurotrophic factors following SCI. Furthermore, administration of VA-CN led to a decrease in the number of microglia following SCI. In addition, VA-CN treatment significantly increased the Tuj 1- positive cells in the spinal cord of the SCI rats, suggesting that VA-CN could enhance the differentiation of NSCs following SCI. In conclusion, these results demonstrated that VA-CN could improve the functional and histological recovery through promoting the proliferation and differentiation of NSCs following SCI, which would provide a newly potential therapeutic manner for the treatment of SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Activating Transcription Factor 6 Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish. J Mol Neurosci 2020; 71:734-745. [PMID: 32895880 DOI: 10.1007/s12031-020-01691-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is one of the most common devastating injuries, with little possibility of recovery in humans. However, zebrafish efficiently regenerate functional nervous system tissue after SCI. Therefore, the spinal cord transection model of adult zebrafish was applied to explore the role of ATF6 in neuro-recovery. Activating transcription factor 6 (ATF6) is a type-II transmembrane protein in the endoplasmic reticulum (ER). ATF6 target genes could improve ER homeostasis, which contributes to cytoprotection. Herein, we found that the ATF6 level increased at 12 h and 3 days post SCI, and returned to sham levels at 7 days post SCI. ATF6-expressing motor neurons were present in the central canal of the spinal cord and increased at 12 h post SCI. ATF6 morpholino treatment showed that inhibition of ATF6 delayed locomotor recovery and hindered neuron axon regrowth in SCI zebrafish. Furthermore, we investigated the role of both binding immunoglobulin protein (Bip) and C/EBP homologous transcription factor protein (CHOP), the two target genes of ATF6. We found that Bip expression significantly increased in the spinal cord at 7 days after SCI, which served as a pro-survival chaperone. Our results also showed that CHOP expression significantly decreased in the spinal cord at 7 days after SCI, which was identified as a protein involved in apoptosis. Taken together, our data demonstrate that ATF6 may contribute to the functional recovery after SCI in adult zebrafish, via up-regulation of Bip and down-regulation of CHOP to restore the homeostasis of ER.
Collapse
|
8
|
Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2020; 41:1441-1452. [DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
9
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Aging (Albany NY) 2020; 12:8953-8967. [PMID: 32463791 PMCID: PMC7288920 DOI: 10.18632/aging.103125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Chitosan nanoparticles have been recognized as a new type of biomaterials for treatment of spinal cord injury (SCI). To develop a novel treatment method targeted delivery injured spinal cord, valproic acid labeled chitosan nanoparticles (VA-CN) were constructed and evaluated in the treatment of SCI. Our results demonstrated that administration of VA-CN significantly promoted the recovery of the function and tissue repair after SCI. Moreover, we found treatment of VA-CN inhibited the reactive astrocytes after SCI. Furthermore, administration of VA-CN enhanced immunoreactions of neuronal related marker NF160, which suggested that VA-CN could promote the neuroprotective function in rats of SCI. The production of IL-1β, IL-6 and TNF-α were significantly decreased following treatment of VA-CN. Meanwhile, administration of VA-CN effectively improved the blood spinal cord barrier (BSCB) disruption after SCI. Administration of VA-CN could enhance the recovery of neuronal injury, suppress the reactive astrocytes and inflammation, and improve the blood spinal cord barrier disruption after SCI in rats. These results provided a novel and promising therapeutic manner for SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China.,College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Reis KP, Sperling LE, Teixeira C, Sommer L, Colombo M, Koester LS, Pranke P. VPA/PLGA microfibers produced by coaxial electrospinning for the treatment of central nervous system injury. ACTA ACUST UNITED AC 2020; 53:e8993. [PMID: 32294700 PMCID: PMC7162582 DOI: 10.1590/1414-431x20208993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
The central nervous system shows limited regenerative capacity after injury. Spinal cord injury (SCI) is a devastating traumatic injury resulting in loss of sensory, motor, and autonomic function distal from the level of injury. An appropriate combination of biomaterials and bioactive substances is currently thought to be a promising approach to treat this condition. Systemic administration of valproic acid (VPA) has been previously shown to promote functional recovery in animal models of SCI. In this study, VPA was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microfibers by the coaxial electrospinning technique. Fibers showed continuous and cylindrical morphology, randomly oriented fibers, and compatible morphological and mechanical characteristics for application in SCI. Drug-release analysis indicated a rapid release of VPA during the first day of the in vitro test. The coaxial fibers containing VPA supported adhesion, viability, and proliferation of PC12 cells. In addition, the VPA/PLGA microfibers induced the reduction of PC12 cell viability, as has already been described in the literature. The biomaterials were implanted in rats after SCI. The groups that received the implants did not show increased functional recovery or tissue regeneration compared to the control. These results indicated the cytocompatibility of the VPA/PLGA core-shell microfibers and that it may be a promising approach to treat SCI when combined with other strategies.
Collapse
Affiliation(s)
- K P Reis
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Células-tronco, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L E Sperling
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Células-tronco, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Curso de Medicina, Escola da Saúde, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brasil
| | - C Teixeira
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Células-tronco, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Sommer
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Células-tronco, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M Colombo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L S Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Células-tronco, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células-tronco, Porto Alegre, RS, Brasil
| |
Collapse
|
11
|
Abstract
Activation of the unfolded protein response in response to endoplasmic reticulum stress preserves cell viability and function under stressful conditions. Nevertheless, persistent, unresolvable activation of the unfolded protein response can trigger apoptosis to eliminate stressed cells. Recent studies show that the unfolded protein response plays an important role in the pathogenesis of various disorders of myelin, including multiples sclerosis, Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease, vanishing white matter disease, spinal cord injury, tuberous sclerosis complex, and hypoxia-induced perinatal white matter injury. In this review we summarize the current literature on the unfolded protein response and the evidence for its role in the pathogenesis of myelin disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
He H, Li W, Shen B, Zhao H, Liu J, Qin J, Shi J, Yi X, Peng M, Huo R, Jin G. Gene expression changes induced by valproate in the process of rat hippocampal neural stem cells differentiation. Cell Biol Int 2019; 44:536-548. [PMID: 31642547 DOI: 10.1002/cbin.11254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Abstract
Valproate (VPA), an effective clinical approved anti-epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high-throughput microarray. We obtained 874 significantly upregulated genes and 258 obviously downregulated genes (fold change > 2 and P < 0.05). Then, we performed gene ontology and pathway analyses of these differentially expressed genes and chose several genes associated with nervous system according to gene ontology analysis to conduct expression analysis to validate the reliability of the array results as well as reveal possible mechanisms of VPA. To get a better comprehension of the differentially regulated genes by VPA, we conducted protein-protein association analysis of these genes, which offered a source for further studies. In addition, we made the overlap between the VPA-downregulated genes and the predicted target genes of VPA-upregulated microRNAs (miRNAs), which were previously demonstrated. These overlapped genes may provide a source to find functional VPA/miRNA/mRNA axes during neuronal differentiation. This study first constructed a comprehensive potential downstream gene map of VPA in the process of neuronal differentiation.
Collapse
Affiliation(s)
- Hui He
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Wen Li
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Beilei Shen
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Xin Yi
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Min Peng
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangning District, 211166, PR China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, 19 Qixiu Road, Nantong, Chongchuan District, 226001, PR China
| |
Collapse
|
13
|
Wilding AS, Patte-Mensah C, Taleb O, Brun S, Kemmel V, Mensah-Nyagan AG. Protective effect of 4-Phenylbutyrate against proteolipid protein mutation-induced endoplasmic reticulum stress and oligodendroglial cell death. Neurochem Int 2018; 118:185-194. [PMID: 29936187 DOI: 10.1016/j.neuint.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
Abstract
Proteolipid protein (PLP) mutation causes oligodendrocyte degeneration and myelin disorders including Pelizaeus-Merzbacher Disease (PMD). As the pathophysiological mechanisms involved in PMD are poorly known, the development of therapies remains difficult. To elucidate the pathogenic pathways, an immortalized oligodendroglial cell line (158JP) expressing PLP mutation has been generated. Previous investigations revealed that 158JP oligodendrocytes exhibit several abnormalities including aberrant PLP insertion into the plasma membrane, cAMP, plasmalogen and cell cycle deficits. However, further clarifications of abnormal PLP-induced oligodendrocyte degeneration are required in order to identify relevant mechanisms to target for efficient protection against oligodendrocyte death. Because PLP overexpression may lead to its accumulation inside the endoplasmic reticulum (ER) and cause ER-stress, we explored whether ER-stress may pivotally determine 158JP cell survival/death. Viability assays, RT-qPCR, western blot and flow cytometry were combined to compare cell survival, ER-stress and apoptotic markers in 158JP and control (158N) oligodendrocytes. We observed a significant decreased viability/survival of 158JP compared to 158N cells. Consistently, ER-stress markers (BiP, caspase-12) increased in 158JP (+30%) compared to the controls. mRNA and protein ratios of apoptotic modulators (Bax/Bcl2) are higher in 158JP oligodendrocytes which are also more vulnerable than 158N cells to tunicamycin-induced ER-stress. Interestingly, 4-Phenylbutyrate (ER-stress inhibitor), which decreased ER-stress and apoptotic markers in 158JP cells, significantly increased their survival. Our results, which show a direct link between the viability and endogenous levels of ER-stress and apoptotic markers in 158JP cells, also suggest that 4-Phenylbutyrate-based strategy may contribute to develop effective strategies against oligodendrocyte dysfunctions/death and myelin disorders.
Collapse
Affiliation(s)
- Anne-Sophie Wilding
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Susana Brun
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Véronique Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France.
| |
Collapse
|
14
|
Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, Lin W, Li Y, Fu H, Li S. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflammation 2018; 15:150. [PMID: 29776446 PMCID: PMC5960086 DOI: 10.1186/s12974-018-1193-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microglial polarization with M1/M2 phenotype shifts and the subsequent neuroinflammatory responses are vital contributing factors for spinal cord injury (SCI)-induced secondary injury. Nuclear factor-κB (NF-κB) is considered the central transcription factor of inflammatory mediators, which plays a crucial role in microglial activation. Lysine acetylation of STAT1 seems necessary for NF-kB pathway activity, as it is regulated by histone deacetylases (HDACs). There have been no studies that have explained if HDAC inhibition by valproic acid (VPA) affects the NF-κB pathway via acetylation of STAT1 dependent of HDAC activity in the microglia-mediated central inflammation following SCI. We investigated the potential molecular mechanisms that focus on the phenotypic transition of microglia and the STAT1-mediated NF-κB acetylation after a VPA treatment. METHODS The Basso-Beattie-Bresnahan locomotion scale, the inclined plane test, the blood-spinal cord barrier, and Nissl staining were employed to determine the neuroprotective effects of VPA treatment after SCI. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and interferon (INF)-γ was used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of VPA treatment. Immunofluorescent staining and Western blot analysis were used to detect HDAC3 nuclear translocation, activity, and NF-κB signaling pathway activation to evaluate the effects of VPA treatment. The impact of STAT1 acetylation on NF-kB pathway and the interaction between STAT1 and NF-kB were assessed to evaluate anti-inflammation effects of VPA treatment and also whether these effects were dependent on a STAT1/NF-κB pathway to gain further insight into the mechanisms underlying the development of the neuroinflammatory response after SCI. RESULTS The results showed that the VPA treatment promoted the phenotypic shift of microglia from M1 to M2 phenotype and inhibited microglial activation, thus reducing the SCI-induced inflammatory factors. The VPA treatment upregulation of the acetylation of STAT1/NF-κB pathway was likely caused by the HDAC3 translocation to the nucleus and activity. These results indicated that the treatment with the VPA suppressed the expression and the activity of HDAC3 and enhanced STAT1, as well as NF-κB p65 acetylation following a SCI. The acetylation status of NF-kB p65 and the complex with NF-κB p65 and STAT1 inhibited the NF-kB p65 transcriptional activity and attenuated the microglia-mediated central inflammatory response following SCI. CONCLUSIONS These results suggested that the VPA treatment attenuated the inflammatory response by modulating microglia polarization through STAT1-mediated acetylation of the NF-κB pathway, dependent of HDAC3 activity. These effects led to neuroprotective effects following SCI.
Collapse
Affiliation(s)
- Shoubo Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Fujian Medical Universityz, Quanzhou, 362000, Fujian Province, China
| | - Jingfang Ye
- Department of nursing faculty, Quanzhou Medical College, Quanzhou, 362000, Fujian Province, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Jinnan Shi
- Department of Orthopaedics, The Second Affiliated Hospital, Fujian Medical Universityz, Quanzhou, 362000, Fujian Province, China
| | - Wenhua Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Fujian Medical Universityz, Quanzhou, 362000, Fujian Province, China
| | - Wenping Lin
- Department of Orthopaedics, The Second Affiliated Hospital, Fujian Medical Universityz, Quanzhou, 362000, Fujian Province, China
| | - Weibin Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Yasong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China.
| |
Collapse
|
15
|
Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018; 9:460. [PMID: 29700327 PMCID: PMC5919919 DOI: 10.1038/s41419-018-0543-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) induces severe and long-lasting neurological disability. Accumulating evidence has suggested that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults and deficits in the central nervous system. In the present study, we assessed the effect of the class I HDAC inhibitor CI-994 in a mouse model of SCI. Following SCI, mice were treated with either dimethyl sulfoxide (control vehicle) or 1, 10, or 30 mg/kg CI-994. Level of acetylated histone H3 expression was increased in the motor cortex and spinal cord of 10 mg/kg CCI-994-treated mice after SCI. CI-994 increased histone H3 acetylation in the myeloperoxidase-positive neutrophils and CD68-positive microglia/macrophages in the spinal cord. Although it did not appear to contribute to corticospinal tract axonal reorganization, intraperitoneal injection of CI-994 promoted behavioral recovery following SCI. Furthermore, administration of CI-994 suppressed neutrophil accumulation, inflammatory cytokine expressions, and neuronal loss as early as 3 days following injury. Thus, our findings indicate that HDAC inhibitors may improve functional recovery following SCI, especially during the early stages of the disease.
Collapse
|
16
|
Novel Role of ER Stress and Mitochondria Stress in Serum-deprivation Induced Apoptosis of Rat Mesenchymal Stem Cells. Curr Med Sci 2018; 38:229-235. [PMID: 30074180 DOI: 10.1007/s11596-018-1870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/26/2017] [Indexed: 02/01/2023]
Abstract
The poor survival of mesenchymal stem cells (MSCs) compromises the efficacy of stem cell therapy. Growth factor deprivation is one of the important factors that have challenged the survival of donor MSCs in cell therapy. In this study, the aim was to evaluate the effect of serum deprivation on the cell death of MSCs and to investigate the underlying mechanisms. Apoptosis of MSCs was evaluated with Hoechst 33342/PI staining. Signaling pathways involved in serum-deprivation induced apoptosis were analyzed using Western blotting. The results revealed that serum deprivation induced apoptosis in MSCs within 72 h of treatment. Serum deprivation was shown to lead to protein expression alterations in Bax, Bcl-2, casepase-3, casepase-8, GRP78, and CHOP during experiments. The data suggested that the mitochondria death pathway, the extrinsic apoptotic pathway and the endoplastic reticulum(ER) stress pathway were all involved in MSCs apoptosis. The increase in expression of CHOP and the simultaneous decrease in Bcl-2 expression suggest a synergistic effect in apoptosis induction in both the mitochondrion and the ER.
Collapse
|
17
|
Chen X, Wang H, Zhou M, Li X, Fang Z, Gao H, Li Y, Hu W. Valproic Acid Attenuates Traumatic Brain Injury-Induced Inflammation in Vivo: Involvement of Autophagy and the Nrf2/ARE Signaling Pathway. Front Mol Neurosci 2018; 11:117. [PMID: 29719500 PMCID: PMC5913341 DOI: 10.3389/fnmol.2018.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 01/11/2023] Open
Abstract
Microglial activation and the inflammatory response in the central nervous system (CNS) play important roles in secondary damage after traumatic brain injury (TBI). Transcriptional activation of genes that limit secondary damage to the CNS are mediated by a cis-acting element called the antioxidant responsive element (ARE). ARE is known to associate with the transcription factor NF-E2-related factor 2 (Nrf2), a transcription factor that is associated with histone deacetylases (HDACs). This pathway, known as the Nrf2/ARE pathway, is a critical antioxidative factor pathway that regulates the balance of oxygen free radicals and the inflammatory response, and is also related to autophagic activities. Although valproic acid (VPA) is known to inhibit HDACs, it is unclear whether VPA plays a role in the microglia-mediated neuroinflammatory response after TBI via regulating oxidative stress and autophagy induced by the Nrf2/ARE signaling pathway. In this study, we demonstrate that microglial activation, oxidative stress, autophagy, and the Nrf2/ARE signaling pathway play essential roles in secondary injury following TBI. Treatment with VPA alleviated TBI-induced secondary brain injury, including neurological deficits, cerebral edema, and neuronal apoptosis. Moreover, VPA treatment upregulated the occurrence of autophagy and Nrf2/ARE pathway activity after TBI, and there was an increase in H3, H4 histone acetylation levels, accompanied by decreased transcriptional activity of the HDAC3 promoter in cortical lesions. These results suggest that VPA-mediated up-regulation of autophagy and antioxidative responses are likely due to increased activation of Nrf2/ARE pathway, through direct inhibition of HDAC3. This inhibition further reduces TBI-induced microglial activation and the subsequent inflammatory response, ultimately leading to neuroprotection.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Li
- Department of Neurosurgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongning Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yasong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
Pandamooz S, Salehi MS, Zibaii MI, Ahmadiani A, Nabiuni M, Dargahi L. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury. J Cell Biochem 2018; 119:3486-3496. [PMID: 29143997 DOI: 10.1002/jcb.26520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
Growing evidence that cell-based therapies can improve recovery outcome in spinal cord injury (SCI) models substantiates their application for treatment of human with SCI. To address the effectiveness of these stem cells, potential candidates should be evaluated in proper SCI platform that allows direct real-time monitoring. In this study, the role of epidermal neural crest stem cells (EPI-NCSCs) was elucidated in an ex vivo model of SCI, and valproic acid (VPA) was administered to ameliorate the inhospitable context of injury for grafted EPI-NCSCs. Here the contusion was induced in organotypic spinal cord slice culture at day seven in vitro using a weight drop device and one hour post injury the GFP- expressing EPI-NCSCs were grafted followed by VPA administration. The evaluation of treated slices seven days after injury revealed that grafted stem cells survived on the injured slices and expressed GFAP, whereas they did not express any detectable levels of the neural progenitor marker doublecortin (DCX), which was expressed prior to transplantation. Immunoblotting data demonstrated that the expression of GFAP, BDNF, neurotrophin-3 (NT3), and Bcl2 increased significantly in stem cell treated slices. This study illustrated that the fate of transplanted stem cells has been directed to the glial lineage in the ex vivo context of injury and EPI-NCSCs may ameliorate the SCI condition through releasing neurotrophic factors directly and/or via inducing resident spinal cord cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad I Zibaii
- Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Yang J, Xiong LL, Wang YC, He X, Jiang L, Fu SJ, Han XF, Liu J, Wang TH. Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associated with altered microRNA expression. Mol Med Rep 2017; 17:771-782. [PMID: 29115639 PMCID: PMC5780154 DOI: 10.3892/mmr.2017.7957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
Abstract
It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR‑375‑3p and miR‑1‑3p) and downregulated (miR‑363‑3p, miR‑449a‑5p and miR‑3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR‑375 and miR‑1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR‑363, miR‑449a and miR‑3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various miRNAs in the spinal cord, including miR‑375‑3p, miR‑1‑3p, miR‑363‑3p, miR‑449a‑5p and miR‑3074.
Collapse
Affiliation(s)
- Jin Yang
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - You-Cui Wang
- Institute of Neurobiological Disease, State Key Laboratory of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang He
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Jiang
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Song-Jun Fu
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xue-Fei Han
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jia Liu
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
20
|
Segar KP, Chandrawanshi V, Mehra S. Activation of unfolded protein response pathway is important for valproic acid mediated increase in immunoglobulin G productivity in recombinant Chinese hamster ovary cells. J Biosci Bioeng 2017; 124:459-468. [DOI: 10.1016/j.jbiosc.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
|
21
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Rescue of Glaucomatous Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticulum Stress Molecules. J Neurosci 2017; 36:5891-903. [PMID: 27225776 DOI: 10.1523/jneurosci.3709-15.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Axon injury is an early event in neurodegenerative diseases that often leads to retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. The connection of these two obviously sequential degenerative events, however, is elusive. Deciphering the upstream signals that trigger the neurodegeneration cascades in both neuronal soma and axon would be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic. We showed previously that optic nerve injury-induced neuronal endoplasmic reticulum (ER) stress plays an important role in retinal ganglion cell (RGC) death. Using two in vivo mouse models of optic neuropathies (traumatic optic nerve injury and glaucoma) and adeno-associated virus-mediated RGC-specific gene targeting, we now show that differential manipulation of unfolded protein response pathways in opposite directions-inhibition of eukaryotic translation initiation factor 2α-C/EBP homologous protein and activation of X-box binding protein 1-promotes both RGC axons and somata survival and preserves visual function. Our results indicate that axon injury-induced neuronal ER stress plays an important role in both axon degeneration and neuron soma death. Neuronal ER stress is therefore a promising therapeutic target for glaucoma and potentially other types of neurodegeneration. SIGNIFICANCE STATEMENT Neuron soma and axon degeneration have distinct molecular mechanisms although they are clearly connected after axon injury. We previously demonstrated that axon injury induces neuronal endoplasmic reticulum (ER) stress and that manipulation of ER stress molecules synergistically promotes neuron cell body survival. Here we investigated the possibility that ER stress also plays a role in axon degeneration and whether ER stress modulation preserves neuronal function in neurodegenerative diseases. Our results suggest that neuronal ER stress is a general mechanism of degeneration for both neuronal cell body and axon, and that therapeutic targeting of ER stress produces significant functional recovery.
Collapse
|
23
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
24
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
25
|
Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, Xu K, Yin J, Li R, Shi H, Wang Z, Li X, Xiao J, Zhang H. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway. Int J Mol Sci 2017; 18:ijms18020315. [PMID: 28208696 PMCID: PMC5343851 DOI: 10.3390/ijms18020315] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose‑regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3β, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of β-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3β, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.
Collapse
Affiliation(s)
- Zhengmao Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fenzan Wu
- Science and Education division, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, China.
| | - Xie Zhang
- Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, China.
| | - Yi Chai
- Department of neurosurgery, The second Affiliated Hospital, Nanchang University, Nanchang 330006, China.
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuetao Yang
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kebin Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiayu Yin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Rui Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongxue Shi
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhouguang Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
26
|
Pandamooz S, Salehi MS, Nabiuni M, Dargahi L. Valproic acid preserves motoneurons following contusion in organotypic spinal cord slice culture. J Spinal Cord Med 2017; 40:100-106. [PMID: 27576744 PMCID: PMC5376140 DOI: 10.1080/10790268.2016.1213518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Spinal cord injury (SCI) is a devastating condition causing neuronal loss. A key challenge in treatment of SCI is how to retain neurons after injury. Valproic acid (VPA) is a drug recently has been appreciated for its neuroprotective and neurotrophic properties in various SCI models. In this study the role of VPA was assessed in organotypic spinal cord slice culture following the contusion. DESIGN The lumbar enlargement of adult rat was cut transversely and slices were cultured. Seven days after culturing, injury was induced by dropping a 0.5 gram weight from 3 cm height on the slice surface. One hour after injury, the VPA was administered at 1, 5 and 10 µM concentrations. Afterward, at day 1 and 3 post injury (DPI: 1 and 3) propidium iodide (PI) and immunohistochemistry staining were performed to evaluate the cell death, NeuN and β-Tubulin expression, respectively. RESULTS The PI staining of slices at DPI: 1 and 3 following treatment with VPA revealed significant decreases in the cell death in all three concentrations comparing to the non-treated group. Also immunostaining showed VPA only at 5 µM concentration considerably rescued ventral horn' MNs from death and protected the neuronal integrity. CONCLUSION The results of this study indicate applying VPA one hour after injury can prevent the death of a majority of cells, importantly MNs and preserve the neuronal integrity. Since the first 24 hours after SCI is a critical period for employing any treatment, VPA can be considered as an option for further evaluation.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Sareh Pandamooz Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Saied Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
28
|
Zhu X, Zhou Y, Tao R, Zhao J, Chen J, Liu C, Xu Z, Bao G, Zhang J, Chen M, Shen J, Cheng C, Zhang D. Upregulation of PTP1B After Rat Spinal Cord Injury. Inflammation 2016; 38:1891-902. [PMID: 25894283 DOI: 10.1007/s10753-015-0169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a member of the protein tyrosine phosphatase family, attaches to the endoplasmic reticulum (ER) via its C-terminal tail. Previous studies have reported that PTP1B participates in various signal transduction pathways in many human diseases, including diabetes, cancers, osteoporosis, and obesity. It also plays an important role in the ER stress. ER stress induced by spinal cord injury (SCI) was reported to result in cell apoptosis. Till now, the role of PTP1B in the injury of the central nervous system remains unknown. In the present study, we built an adult rat SCI model to investigate the potential role of PTP1B in SCI. Western blot analysis detected a notable alteration of PTP1B expression after SCI. Immunohistochemistry indicated that PTP1B expressed at a low level in the normal spinal cord and greatly increased after SCI. Double immunofluorescence staining revealed that PTP1B immunoreactivity was predominantly increased in neurons following SCI. In addition, SCI resulted in a significant alteration in the level of active caspase-3, caspase-12, and 153/C/EBP homologous transcription factor protein, which were correlated with the upregulation of PTP1B. Co-localization of PTP1B/active caspase-3 was also detected in neurons. Taken together, our findings elucidated the PTP1B expression in the SCI for the first time. These results suggested that PTP1B might be deeply involved in the injury response and probably played an important role in the neuro-pathological process of SCI.
Collapse
Affiliation(s)
- Xinhui Zhu
- Department of Osteology, The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu J, Zhao Z, Kumar A, Lipinski MM, Loane DJ, Stoica BA, Faden AI. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J Neurotrauma 2016; 33:1919-1935. [PMID: 27050417 DOI: 10.1089/neu.2015.4348] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive and depressive-like changes correlate with injury severity, we exposed mice to sham, mild, moderate, or severe SCI using the Infinite Horizon Spinal Cord Impactor and evaluated performance on a variety of neurobehavioral tests that are less dependent on locomotion. Cognitive impairment in Y-maze, novel objective recognition, and step-down fear conditioning tasks were increased in moderate- and severe-injury mice that also displayed depressive-like behavior as quantified in the sucrose preference, tail suspension, and forced swim tests. Bromo-deoxyuridine incorporation with immunohistochemistry revealed that SCI led to a long-term reduction in the number of newly-generated immature neurons in the hippocampal dentate gyrus, accompanied by evidence of greater neuronal endoplasmic reticulum (ER) stress. Stereological analysis demonstrated that moderate/severe SCI reduced neuronal survival and increased the number of activated microglia chronically in the cerebral cortex and hippocampus. The potent microglial activator cysteine-cysteine chemokine ligand 21 (CCL21) was elevated in the brain sites after SCI in association with increased microglial activation. These findings indicate that SCI causes chronic neuroinflammation that contributes to neuronal loss, impaired hippocampal neurogenesis and increased neuronal ER stress in important brain regions associated with cognitive decline and physiological depression. Accumulation of CCL21 in brain may subserve a pathophysiological role in cognitive changes and depression after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Marta M Lipinski
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
30
|
Injury to the nervous system: A look into the ER. Brain Res 2016; 1648:617-625. [PMID: 27117870 DOI: 10.1016/j.brainres.2016.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities that still lack an effective treatment. Although injury to the nervous system involves multiple and complex molecular factors, alteration to protein homeostasis is emerging as a relevant pathological mechanism. In particular, chronic endoplasmic reticulum (ER) stress is proposed as a possible driver of neuronal dysfunction in conditions such as spinal cord injury, stroke and damage to peripheral nerves. Importantly, manipulation of the unfolded protein response (UPR), a homeostatic pathway engaged by ER stress, has proved effective in improving cognitive and motor recovery after nervous system injury. Here we provide an overview on recent findings depicting a functional role of the UPR to the functional recovery after injury in the peripheral and central nervous systems. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
31
|
Kaur T, Manchanda S, Saini V, Lakhman SS, Kaur G. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective. Ann Neurosci 2016; 23:33-43. [PMID: 27536020 PMCID: PMC4934412 DOI: 10.1159/000443554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells.
Collapse
Affiliation(s)
- Taranjeet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shaffi Manchanda
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sukhwinder S Lakhman
- Department of Pharmaceutical, Social and Administrative Sciences, D'Youville College School of Pharmacy, Buffalo, N.Y., USA
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
32
|
Hyperbaric Oxygen Treatment Protects Against Spinal Cord Injury by Inhibiting Endoplasmic Reticulum Stress in Rats. Spine (Phila Pa 1976) 2015; 40:E1276-83. [PMID: 26192724 DOI: 10.1097/brs.0000000000001056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental animal study of treatment of SCI. OBJECTIVE To explore whether HBO treatment protects against secondary SCI by inhibiting the ER stress response. SUMMARY OF BACKGROUND DATA SCI is a neurological disorder that can severely limit the execution of the simplest day-to-day functions. ER stress plays an important role in the induction of neuronal apoptosis after SCI. HBO treatment can alleviate secondary injury and benefit neurological recovery after SCI, but the effect of HBO on ER stress response after SCI is yet to be characterized. METHODS The spinal cord of rats was injured via T10 laminectomy. Experimental animals were randomly assigned to 1 of 3 groups: sham-operated, SCI, and SCI+HBO. Each group was analyzed 1, 2, 3, 7, and 14 days after injury. Neurological recovery was evaluated using the Basso-Beattie-Bresnahan (BBB) scoring system and the TdT-mediated dUTP nick-end labeling reaction was carried out to visualize apoptotic cells. The expression of ER stress-related factors was evaluated by immunohistochemical, western blot, and real-time reverse transcription-polymerase chain reaction analyses. RESULTS SCI-induced apoptosis and an increase in the levels of CCAAT-enhancer-binding protein homologous protein (CHOP), and caspase-12 and caspase-3 compared with the sham-operated group. HBO treatment decreased CHOP and caspase-12 and caspase-3 expression as well as apoptosis compared with the SCI group. In addition, BBB scores were improved in the SCI+HBO relative to the SCI group at 7 and 14 days. CONCLUSION These results suggest that HBO treatment alleviates secondary injury to the spinal cord by inhibiting ER stress induced apoptosis, thereby promoting the recovery of neurological function. LEVEL OF EVIDENCE N/A.
Collapse
|
33
|
Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS One 2015; 10:e0136620. [PMID: 26361352 PMCID: PMC4567344 DOI: 10.1371/journal.pone.0136620] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
ERp57 (also known as grp58 and PDIA3) is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER) stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson’s disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.
Collapse
|
34
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Wang X, Ma M, Teng J, Che X, Zhang W, Feng S, Zhou S, Zhang Y, Wu E, Ding X. Valproate Attenuates 25-kDa C-Terminal Fragment of TDP-43-Induced Neuronal Toxicity via Suppressing Endoplasmic Reticulum Stress and Activating Autophagy. Int J Biol Sci 2015; 11:752-61. [PMID: 26078717 PMCID: PMC4466456 DOI: 10.7150/ijbs.11880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Xuejing Wang
- 1. Department of neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingming Ma
- 2. Department of neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Junfang Teng
- 1. Department of neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiangqian Che
- 4. Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai 200025, China
| | - Wenwen Zhang
- 1. Department of neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuman Feng
- 2. Department of neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Shuang Zhou
- 3. Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Ying Zhang
- 3. Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Erxi Wu
- 3. Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Xuebing Ding
- 1. Department of neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
36
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
37
|
Zhao Y, Yan Y, Zhao Z, Li S, Yin J. The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res Bull 2014; 111:27-35. [PMID: 25529350 DOI: 10.1016/j.brainresbull.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/30/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Diabetic encephalopathy has recently been recognized late complication of diabetes resulting in progressive cognitive deficits. Emerging evidence has indicated that endoplasmic reticulum (ER) stress-mediated apoptosis is involved in the pathogenesis of diabetic eye and kidney as well as non-diabetic neurodegeneration. However, there was little direct evidence for the involvement of ER stress in diabetic encephalopathy up to now. In the present work, we investigated the role of ER stress in the pathogenesis of diabetic encephalopathy. Our results have demonstrated the existence of ER stress in the hippocampus of streptozotocin (STZ)-induced diabetic mice. STZ injection i.p. rapidly induced up-regulation of the ER stress marker, the prosurvival chaperone glucose-regulated protein 78 (GRP78), as early as 6-24h and persisted at least for up to 72h in the hippocampus of mice, indicating the UPR activation soon after STZ administration. The increased expression of GRP78 in hippocampal cells is to relieve the ER stress. With the development of diabetes, the expression of GRP78 decreases while the expression of UPR-associated proapoptotic transcriptional regulator C/EBP homologous protein (CHOP) increases significantly in the hippocampal neurons of diabetic mice from 1 week after STZ administration to 12 weeks/the end of the study. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the hippocampus of diabetic mice were largely colocalized with NeuN- and CHOP-positive cells, indicating that the up-regulation of CHOP in hippocampal neurons of diabetic mice may promote neuronal apoptosis and account for the damaged learning and memory ability of diabetic mice. Therefore, our study provides evidence that ER stress may play an important role in the pathogenesis of neuronal degeneration and may contribute to cognitive dysfunction of diabetic encephalopathy.
Collapse
Affiliation(s)
- Yongmei Zhao
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China; Beijing Geriatric Medical Research Center, Beijing 100053, PR China; Key Laboratory of Neurodegenerative Diseases of Ministry of Education, Beijing 100053, PR China.
| | - Ying Yan
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China; Beijing Geriatric Medical Research Center, Beijing 100053, PR China
| | - Zhiwei Zhao
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China; Beijing Geriatric Medical Research Center, Beijing 100053, PR China; Key Laboratory of Neurodegenerative Diseases of Ministry of Education, Beijing 100053, PR China
| | - Sen Li
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China; Beijing Geriatric Medical Research Center, Beijing 100053, PR China
| | - Jie Yin
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China; Key Laboratory of Neurodegenerative Diseases of Ministry of Education, Beijing 100053, PR China
| |
Collapse
|
38
|
Chu T, Zhou H, Lu L, Kong X, Wang T, Pan B, Feng S. Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: from mechanism to clinical potential. Regen Med 2014; 10:193-209. [PMID: 25485637 DOI: 10.2217/rme.14.86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is difficult to treat because of secondary injury. Valproic acid (VPA) is clinically approved for mood stabilization, but also counteracts secondary damage to functionally rescue SCI in animal models by improving neuroprotection and neurogenesis via inhibition of HDAC and GSK-3. However, a comprehensive review summarizing the therapeutic benefits and mechanisms of VPA for SCI and the issues affecting clinical trials is lacking, limiting future research on VPA and impeding its translation into clinical therapy for SCI. This article presents the current status of VPA treatment for SCI, emphasizing interactions between enhanced neuroprotection and neurogenesis. Crucial issues are discussed to optimize its clinical potential as a safe and effective treatment for SCI.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Decreased GFAP expression and improved functional recovery in contused spinal cord of rats following valproic acid therapy. Neurochem Res 2014; 39:2319-33. [PMID: 25205382 DOI: 10.1007/s11064-014-1429-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Many studies have illustrated that much of the post-traumatic degeneration of the spinal cord cells is caused by the secondary mechanism. The aim of this study is to evaluate the effect of the anti-inflammatory property of valproic acid (VPA) on injured spinal cords (SC). The rats with the contused SC received intraperitoneal single injection of VPA (150, 200, 300, 400 or 500 mg/kg) at 2, 6, 12 and 24 h post-injury. Basso-Beattie-Bresnahan (BBB) test and H-reflex evaluated the functional outcome for 12 weeks. The SC were investigated 3 months post-injury using morphometry and glial fibrillary acid protein (GFAP) expression. Reduction in cavitation, H/M ratio, BBB scores and GFAP expression in the treatment groups were significantly more than that of the untreated one (P < 0.05). The optimal improvement in the condition of the contused rats was in the ones treated at the acute phase of injury with 300 mg/kg of VPA at 12 h post-injury, they had the highest increase in BBB score and decrease in astrogliosis and axonal loss. We conclude that treating the contused rats with 300 mg/kg of VPA at 12 h post-injury improves the functional outcome and reduces the traumatized SC gliosis.
Collapse
|
40
|
Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB, Xiao J. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 2014; 51:1343-52. [PMID: 25048984 DOI: 10.1007/s12035-014-8813-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an important role in a range of neurological disorders, such as neurodegenation diseases, cerebral ischemia, spinal cord injury, sclerosis, and diabetic neuropathy. Protein misfolding and accumulation in the ER lumen initiate unfolded protein response in energy-starved neurons which are relevant to toxic effects. In neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, ER dysfunction is well recognized, but the mechanisms remain unclear. In stroke and ischemia, spinal cord injury, and amyotrophic lateral sclerosis, chronic activation of ER stress is considered as main pathogeny which causes neuronal disorders. By targeting components of these ER signaling responses, to explore clinical treatment strategies or new drugs in CNS neurological diseases might become possible and valuable in the future.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang S, Zhu M, Wu W, Rashid A, Liang Y, Hou L, Ning Q, Luo X. Valproate pretreatment protects pancreatic β-cells from palmitate-induced ER stress and apoptosis by inhibiting glycogen synthase kinase-3β. J Biomed Sci 2014; 21:38. [PMID: 24884462 PMCID: PMC4084580 DOI: 10.1186/1423-0127-21-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Background Reduction of pancreatic β-cells mass, major secondary to increased β-cells apoptosis, is increasingly recognized as one of the main contributing factors to the pathogenesis of type 2 diabetes (T2D), and saturated free fatty acid palmitate has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting β-cells apoptosis. Recent literature suggests that valproate, a diffusely prescribed drug in the treatment of epilepsy and bipolar disorder, can inhibit glycogen synthase kinase-3β (GSK-3β) activity and has cytoprotective effects in neuronal cells and HepG2 cells. Thus, we hypothesized that valproate may protect INS-1 β-cells from palmitate-induced apoptosis via inhibiting GSK-3β. Results Valproate pretreatment remarkable prevented palmitate-mediated cytotoxicity and apoptosis (lipotoxicity) as well as ER distension. Furthermore, palmitate triggered ER stress as evidenced by increased mRNA levels of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) in a time-dependent fashion. However, valproate not only reduced the mRNA and protein expression of CHOP but also inhibited GSK-3β and caspase-3 activity induced by palmitate, whereas, the mRNA expression of ATF4 was not affected. Interestingly, TDZD-8, a specific GSK-3β inhibitor, also showed the similar effect on lipotoxicity and ER stress as valproate in INS-1 cells. Finally, compared with CHOP knockdown, valproate displayed better cytoprotection against palmitate. Conclusions Valproate may protect β-cells from palmitate-induced apoptosis and ER stress via GSK-3β inhibition, independent of ATF4/CHOP pathway. Besides, GSK-3β, rather than CHOP, may be a more promising therapeutic target for T2D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No,1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P,R, China.
| |
Collapse
|
42
|
Lee JY, Maeng S, Kang SR, Choi HY, Oh TH, Ju BG, Yune TY. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J Neurotrauma 2014; 31:582-94. [PMID: 24294888 DOI: 10.1089/neu.2013.3146] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Both oxidative stress and endoplasmic reticulum (ER) stress are known to contribute to secondary injury, ultimately leading to cell death after spinal cord injury (SCI). Here, we showed that valproic acid (VPA) reduced cell death of motor neurons by inhibiting cytochrome c release mediated by oxidative stress and ER stress after SCI. After SCI, rats were immediately injected with VPA (300 mg/kg) subcutaneously and further injected every 12 h for an indicated time period. Motor neuron cell death at an early time after SCI was significantly attenuated by VPA treatment. Superoxide anion (O2-) production and inducible NO synthase (iNOS) expression linked to oxidative stress was increased after injury, which was inhibited by VPA. In addition, VPA inhibited c-Jun N-terminal kinase (JNK) activation, which was activated and peaked at an early time after SCI. Furthermore, JNK activation and c-Jun phosphorylation were inhibited by a broad-spectrum reactive oxygen species (ROS) scavenger, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), indicating that ROS including O2- increased after SCI probably contribute to JNK activation. VPA also inhibited cytochrome c release and caspase-9 activation, which was significantly inhibited by SP600125, a JNK inhibitor. The levels of phosphorylated Bim and Mcl-1, which are known as downstream targets of JNK, were significantly reduced by SP600125. On the other hand, VPA treatment inhibited ER stress-induced caspase-12 activation, which is activated in motor neurons after SCI. In addition, VPA increased the Bcl-2/Bax ratio and inhibited CHOP expression. Taken together, our results suggest that cell death of motor neurons after SCI is mediated through oxidative stress and ER stress-mediated cytochrome c release and VPA-inhibited cytochrome c release by attenuating ROS-induced JNK activation followed by Mcl-1 and Bim phosphorylation and ER stress-coupled CHOP expression.
Collapse
Affiliation(s)
- Jee Y Lee
- 1 Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University , Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Li S, Yang L, Selzer ME, Hu Y. Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 2013; 74:768-77. [PMID: 23955583 PMCID: PMC3963272 DOI: 10.1002/ana.24005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Injuries to central nervous system axons result not only in Wallerian degeneration of the axon distal to the injury, but also in death or atrophy of the axotomized neurons, depending on injury location and neuron type. No method of permanently avoiding these changes has been found, despite extensive knowledge concerning mechanisms of secondary neuronal injury. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has recently been implicated in retrograde neuronal degeneration. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common neuronal response to disturbances in axon integrity and a general mechanism for neurodegeneration. Thus, manipulation of the ER stress pathway could have important therapeutic implications for neuroprotection.
Collapse
Affiliation(s)
- Shaohua Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liu Yang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Neurology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yang Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Hong Z, Hong H, Chen H, Wang Z, Hong D. Protective effects of erythropoietin in experimental spinal cord injury by reducing the C/EBP-homologous protein expression. Neurol Res 2013; 34:85-90. [PMID: 22196867 DOI: 10.1179/1743132811y.0000000026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Zhenghua Hong
- Department of OrthopedicsTaizhou Hospital of Zhejiang Province, China
| | - Huaxing Hong
- Department of OrthopedicsTaizhou Hospital of Zhejiang Province, China
| | - Haixiao Chen
- Department of OrthopedicsTaizhou Hospital of Zhejiang Province, China
| | - Zhangfu Wang
- Department of OrthopedicsTaizhou Hospital of Zhejiang Province, China
| | - Dun Hong
- Department of OrthopedicsTaizhou Hospital of Zhejiang Province, China
| |
Collapse
|
45
|
Gao H, Bai H, Ao X, Sa R, Wang H, Wang Z, Yue Y, Yu H. The effect of valproic acid on bovine oocyte maturation and early embryonic development in vitro. Cytotechnology 2013; 66:525-32. [PMID: 23839299 DOI: 10.1007/s10616-013-9603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/08/2013] [Indexed: 12/23/2022] Open
Abstract
Our objective is to investigate the effect of valproic acid (VPA), a histone deacetylase inhibitor, on early embryonic development. We studied the effect of VPA on the in vitro maturation of bovine oocytes, and on the development of bovine embryos derived from in vitro fertilization (IVF) or parthenogenesis. Germinal vesicle stage bovine oocytes were cultured with different concentrations of VPA for 24 h; low dose VPA treatment (0.03 and 0.3 mM) had no effect on oocyte maturation, but 3 and 6 mM VPA significantly decreased maturation rate; when used for IVF or parthenogenesis, VPA-treated oocytes generated significantly lowered blastocyst rate. Oocytes matured in vitro were fertilized or underwent parthenogenetic activation; 6 h later, they were exposed to VPA for 48 h, and then the cleavage rate, blastocyst rate and mRNA expression levels of transcription factors (Oct4, Nanog, and Cdx2) were assessed. For embryos cultured in 0.3 mM VPA, there was no remarkable change in cleavage rate or blastocyst rate, but the expression of Oct4 and Nanog in blastocysts was significantly increased. For embryos treated with 3.0 mM VPA, the cleavage rate and blastocyst rate were significantly decreased. In conclusion, low dose VPA has no effect on oocyte maturation but affects subsequent embryonic development. Low dose VPA administration to IVF embryos had no effect on embryonic development, but the expression of several important transcription factors was increased. Treatment of IVF embryos with low dose VPA may improve their development potential.
Collapse
Affiliation(s)
- Haixia Gao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu W, Ding Y, Zhang X, Wang L. Bone marrow stromal cells inhibit caspase-12 expression in rats with spinal cord injury. Exp Ther Med 2013; 6:671-674. [PMID: 24137244 PMCID: PMC3786846 DOI: 10.3892/etm.2013.1201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the potentially beneficial effect of bone marrow stem cells (BMSCs) on spinal cord injury (SCI) are unknown. Therefore, the aim of the present study was to explore the protective effect of BMSCs in rats with SCI. A total of 45 adult male Sprague-Dawley rats were randomly divided into three groups; the SCI group (n=15), the BMSC group (n=15) and the sham-operation group (n=15). In the SCI and BMSC treatment groups, a modified Allen’s weight-drop technique was used to induce SCI. The BMSC treatment group received an injection of BMSCs using a microneedle into the epicenter of the spinal cord 24 h after injury. Rats in the sham-operation group were not subjected to SCI; however, the corresponding vertebral laminae were removed. Seven days after transplantation, a rapid recovery was observed in the Basso, Beattie and Bresnahan (BBB) scores of the BMSC treatment group, whereas the BBB scores in the SCI group remained low (P<0.05). Caspase-12 expression in the SCI group was increased compared with that in the sham-operation group, whereas caspase-12 expression was attenuated 24 h after transplantation in the BMSC treatment group (P<0.05). In conclusion, the transplantation of BMSCs may improve locomotor function and attenuate caspase-12 expression following SCI. Therefore, it is likely to be an effective strategy for preventing severe injury of the spinal cord.
Collapse
Affiliation(s)
- Wei Liu
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | |
Collapse
|
47
|
Lu WH, Wang CY, Chen PS, Wang JW, Chuang DM, Yang CS, Tzeng SF. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013; 91:694-705. [PMID: 23404572 DOI: 10.1002/jnr.23200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 2013; 12:105-18. [PMID: 23237905 DOI: 10.1016/s1474-4422(12)70238-7] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum (ER) dysfunction might have an important part to play in a range of neurological disorders, including cerebral ischaemia, sleep apnoea, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, the prion diseases, and familial encephalopathy with neuroserpin inclusion bodies. Protein misfolding in the ER initiates the well studied unfolded protein response in energy-starved neurons during stroke, which is relevant to the toxic effects of reperfusion. The toxic peptide amyloid β induces ER stress in Alzheimer's disease, which leads to activation of similar pathways, whereas the accumulation of polymeric neuroserpin in the neuronal ER triggers a poorly understood ER-overload response. In other neurological disorders, such as Parkinson's and Huntington's diseases, ER dysfunction is well recognised but the mechanisms by which it contributes to pathogenesis remain unclear. By targeting components of these signalling responses, amelioration of their toxic effects and so the treatment of a range of neurodegenerative disorders might become possible.
Collapse
Affiliation(s)
- Benoit D Roussel
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
49
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
50
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|