1
|
Spencer NJ, Kyloh MA, Travis L, Hibberd TJ. Mechanisms underlying the gut-brain communication: How enterochromaffin (EC) cells activate vagal afferent nerve endings in the small intestine. J Comp Neurol 2024; 532:e25613. [PMID: 38625817 DOI: 10.1002/cne.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/18/2024]
Abstract
How the gastrointestinal tract communicates with the brain, via sensory nerves, is of significant interest for our understanding of human health and disease. Enterochromaffin (EC) cells in the gut mucosa release a variety of neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT) in the body. How 5-HT and other substances released from EC cells activate sensory nerve endings in the gut wall remains a major unresolved mystery. We used in vivo anterograde tracing from nodose ganglia to determine the spatial relationship between 5-HT synthesizing and peptide-YY (PYY)-synthesizing EC cells and their proximity to vagal afferent nerve endings that project to the mucosa of mouse small intestine. The shortest mean distances between single 5-HT- and PYY-synthesizing EC cells and the nearest vagal afferent nerve endings in the mucosa were 33.1 ± 14.4 µm (n = 56; N = 6) and 70.3 ± 32.3 µm (n = 16; N = 6). No morphological evidence was found to suggest that 5-HT- or PYY-containing EC cells form close morphological associations with vagal afferents endings, or varicose axons of passage. The large distances between EC cells and vagal afferent endings are many hundreds of times greater than those known to underlie synaptic transmission in the nervous system (typically 10-15 nm). Taken together, the findings lead to the inescapable conclusion that communication between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa of the mouse small intestinal occurs in a paracrine fashion, via diffusion. New and Noteworthy None of the findings here are consistent with a view that close physical contacts occur between 5-HT-containing EC cells and vagal afferent nerve endings in mouse small intestine. Rather, the findings suggest that gut-brain communication between EC cells and vagal afferent endings occurs via passive diffusion. The morphological data presented do not support the view that EC cells are physically close enough to vagal afferent endings to communicate via fast synaptic transmission.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Melinda A Kyloh
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
3
|
Ma J, Nguyen D, Madas J, Kwiat AM, Toledo Z, Bizanti A, Kogut N, Mistareehi A, Bendowski K, Zhang Y, Chen J, Li DP, Powley TL, Furness JB, Cheng Z. Spinal afferent innervation in flat-mounts of the rat stomach: anterograde tracing. Sci Rep 2023; 13:17675. [PMID: 37853008 PMCID: PMC10584867 DOI: 10.1038/s41598-023-43120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall. We found that spinal afferent axons innervated all regions with a variety of distinct terminal structures innervating different gastric targets: (1) The ganglionic type: some axons formed varicose contacts with individual neurons within myenteric ganglia. (2) The muscle type: most axons ran in parallel with the longitudinal and circular muscles and expressed spherical varicosities. Complex terminal structures were observed within the circular muscle layer. (3) The ganglia-muscle mixed type: some individual varicose axons innervated both myenteric neurons and the circular muscle, exhibiting polymorphic terminal structures. (4) The vascular type: individual varicose axons ran along the blood vessels and occasionally traversed the vessel wall. This work provides a foundation for future topographical anatomical and functional mapping of spinal afferent axon innervation of the stomach under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Nicole Kogut
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - De-Pei Li
- Department of Medicine, Center for Precision Medicine, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 479062, USA
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, and Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Zixi Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
4
|
Cao J, Wang X, Chen J, Zhang N, Liu Z. The vagus nerve mediates the stomach-brain coherence in rats. Neuroimage 2022; 263:119628. [PMID: 36113737 PMCID: PMC10008817 DOI: 10.1016/j.neuroimage.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models. The neural pathways underlying this apparent stomach-brain synchrony is also unclear. Here, we performed functional magnetic resonance imaging while simultaneously recording body-surface gastric slow waves from anesthetized rats in the fasted vs. postprandial conditions and performed a bilateral cervical vagotomy to assess the role of the vagus nerve. The coherence between brain fMRI signals and gastric slow waves was found in a distributed "gastric network", including subcortical and cortical regions in the sensory, motor, and limbic systems. The stomach-brain coherence was largely reduced by the bilateral vagotomy and was different between the fasted and fed states. These findings suggest that the vagus nerve mediates the spontaneous coherence between brain activity and gastric slow waves, which is likely a signature of real-time stomach-brain interactions. However, its functional significance remains to be established.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jiande Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the life sciences, Pennsylvania State University, USA
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
5
|
Sclocco R, Fisher H, Staley R, Han K, Mendez A, Bolender A, Coll-Font J, Kettner NW, Nguyen C, Kuo B, Napadow V. Cine gastric MRI reveals altered Gut-Brain Axis in Functional Dyspepsia: gastric motility is linked with brainstem-cortical fMRI connectivity. Neurogastroenterol Motil 2022; 34:e14396. [PMID: 35560690 PMCID: PMC9529794 DOI: 10.1111/nmo.14396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a disorder of gut-brain interaction, and its putative pathophysiology involves dysregulation of gastric motility and central processing of gastric afference. The vagus nerve modulates gastric peristalsis and carries afferent sensory information to brainstem nuclei, specifically the nucleus tractus solitarii (NTS). Here, we combine MRI assessment of gastric kinematics with measures of NTS functional connectivity to the brain in patients with FD and healthy controls (HC), in order to elucidate how gut-brain axis communication is associated with FD pathophysiology. METHODS Functional dyspepsia and HC subjects experienced serial gastric MRI and brain fMRI following ingestion of a food-based contrast meal. Gastric function indices estimated from 4D cine MRI data were compared between FD and HC groups using repeated measure ANOVA models, controlling for ingested volume. Brain connectivity of the NTS was contrasted between groups and associated with gastric function indices. KEY RESULTS Propagation velocity of antral peristalsis was significantly lower in FD compared to HC. The brain network defined by NTS connectivity loaded most strongly onto the Default Mode Network, and more strongly onto the Frontoparietal Network in FD. FD also demonstrated higher NTS connectivity to insula, anterior cingulate and prefrontal cortices, and pre-supplementary motor area. NTS connectivity was linked to propagation velocity in HC, but not FD, whereas peristalsis frequency was linked with NTS connectivity in patients with FD. CONCLUSIONS & INFERENCES Our multi-modal MRI approach revealed lower peristaltic propagation velocity linked to altered brainstem-cortical functional connectivity in patients suffering from FD suggesting specific plasticity in gut-brain communication.
Collapse
Affiliation(s)
- Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Harrison Fisher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Rowan Staley
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyungsun Han
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
- Korean Institute of Oriental Medicine, Daejeon, Korea
| | - April Mendez
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Bolender
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Braden Kuo
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, Logan University, Chesterfield, MO, USA
| |
Collapse
|
6
|
Savulescu-Fiedler I, Gurghean AL, Siliste RN. The complex involvement of the digestive tract in human defense behavior - structural and functional arguments. J Med Life 2022; 15:1081-1089. [PMID: 36415517 PMCID: PMC9635236 DOI: 10.25122/jml-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The digestive system has an innate monitoring and defense capacity, which allows the recognition and elimination of different dangerous substances. The complex analysis of the intestinal content comprises the cross-interactions between the epithelial cells, the enteroendocrine cells, the neural tissue and the cellular defense mechanisms. The enteric nervous system, also called "the enteric brain" or "the second brain" is the only neuronal network outside the central nervous system capable of autonomous reflex activity. The enteric nervous system activity is mostly independent of the central nervous system, but not in all aspects. In fact, even the enteral reflexes are a consequence of the bidirectional intestine-brain relation. The central nervous and enteric nervous systems are coupled through the sympathetic and parasympathetic branches of the autonomic nervous system. The gastrointestinal functions are regulated due to the interaction between the intrinsic neurons within the gastrointestinal wall and the extrinsic neurons outside the gastrointestinal tract. Here we provide an overview of the important role of the enteric brain in defensive behavior, as well as its structural and functional particularities that make it a special organ.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Adriana Luminita Gurghean
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Roxana-Nicoleta Siliste
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| |
Collapse
|
7
|
Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron 2022; 110:579-599. [PMID: 35051375 PMCID: PMC8857038 DOI: 10.1016/j.neuron.2021.12.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
The vagus nerve is an indispensable body-brain connection that controls vital aspects of autonomic physiology like breathing, heart rate, blood pressure, and gut motility, reflexes like coughing and swallowing, and survival behaviors like feeding, drinking, and sickness responses. Classical physiological studies and recent molecular/genetic approaches have revealed a tremendous diversity of vagal sensory neuron types that innervate different internal organs, with many cell types remaining poorly understood. Here, we review the state of knowledge related to vagal sensory neurons that innervate the respiratory, cardiovascular, and digestive systems. We focus on cell types and their response properties, physiological/behavioral roles, engaged neural circuits and, when possible, sensory receptors. We are only beginning to understand the signal transduction mechanisms used by vagal sensory neurons and upstream sentinel cells, and future studies are needed to advance the field of interoception to the level of mechanistic understanding previously achieved for our external senses.
Collapse
|
8
|
Powley TL. Brain-gut communication: vagovagal reflexes interconnect the two "brains". Am J Physiol Gastrointest Liver Physiol 2021; 321:G576-G587. [PMID: 34643086 PMCID: PMC8616589 DOI: 10.1152/ajpgi.00214.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract has its own "brain," the enteric nervous system or ENS, that executes routine housekeeping functions of digestion. The dorsal vagal complex in the central nervous system (CNS) brainstem, however, organizes vagovagal reflexes and establishes interconnections between the entire neuroaxis of the CNS and the gut. Thus, the dorsal vagal complex links the "CNS brain" to the "ENS brain." This brain-gut connectome provides reflex adjustments that optimize digestion and assimilation of nutrients and fluid. Vagovagal circuitry also generates the plasticity and adaptability needed to maintain homeostasis to coordinate among organs and to react to environmental situations. Arguably, this dynamic flexibility provided by the vagal circuitry may, in some circumstances, lead to or complicate maladaptive disorders.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
9
|
Hirakawa M, Yokoyama T, Yamamoto Y, Saino T. Distribution and morphology of P2X3-immunoreactive subserosal afferent nerve endings in the rat gastric antrum. J Comp Neurol 2020; 529:2014-2028. [PMID: 33190284 DOI: 10.1002/cne.25069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
The present study investigated the morphological characteristics of subserosal afferent nerve endings with immunoreactivity for the P2X3 purinoceptor (P2X3) in the rat stomach by immunohistochemistry of whole-mount preparations using confocal scanning laser microscopy. P2X3 immunoreactivity was observed in subserosal nerve endings proximal and lateral to the gastric sling muscles in the distal antrum of the lesser curvature. Parent axons ramified into several lamellar processes to form net-like complex structures that extended two-dimensionally in every direction on the surface of the longitudinal smooth muscle layer. The axon terminals in the periphery of P2X3-immunoreactive net-like structures were flat and looped or leaf-like in shape. Some net-like lamellar structures and their axon terminals with P2X3 immunoreactivity were also immunoreactive for P2X2. P2X3-immunoreactive nerve fibers forming net-like terminal structures were closely surrounded by S100B-immunoreactive terminal Schwann cells, whereas axon terminals twined around these cells and extended club-, knob-, or thread-like protrusions in the surrounding tissues. Furthermore, a retrograde tracing method using fast blue dye indicated that most of these nerve endings originated from the nodose ganglia of the vagus nerve. These results suggest that P2X3-immunoreactive subserosal nerve endings have morphological characteristics of mechanoreceptors and contribute to sensation of a mechanical deformation of the distal antral wall associated with antral peristalsis.
Collapse
Affiliation(s)
- Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba-cho, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba-cho, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
10
|
Wolpert N, Rebollo I, Tallon‐Baudry C. Electrogastrography for psychophysiological research: Practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology 2020; 57:e13599. [PMID: 32449806 PMCID: PMC7507207 DOI: 10.1111/psyp.13599] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Electrogastrography (EGG) is the noninvasive electrophysiological technique used to record gastric electrical activity by means of cutaneous electrodes placed on the abdomen. EGG has been so far mostly used in clinical studies in gastroenterology, but it represents an attractive method to study brain-viscera interactions in psychophysiology. Compared to the literature on electrocardiography for instance, where practical recommendations and normative data are abundant, the literature on EGG in humans remains scarce. The aim of this article is threefold. First, we review the existing literature on the physiological basis of the EGG, pathways of brain-stomach interactions, and experimental findings in the cognitive neuroscience and psychophysiology literature. We then describe practical issues faced when recording the EGG in young healthy participants, from data acquisition to data analysis, and propose a semi-automated analysis pipeline together with associated MATLAB code. The analysis pipeline aims at identifying a regular rhythm that can be safely attributed to the stomach, through multiple steps. Finally, we apply these recording and analysis procedures in a large sample (N = 117) of healthy young adult male and female participants in a moderate (<5 hr) to prolonged (>10 hr) fasting state to establish the normative distribution of several EGG parameters. Our results are overall congruent with the clinical gastroenterology literature, but suggest using an electrode coverage extending to lower abdominal locations than current clinical guidelines. Our results indicate a marginal difference in EGG peak frequency between male and female participants, and that the gastric rhythm becomes more irregular after prolonged fasting.
Collapse
Affiliation(s)
- Nicolai Wolpert
- Laboratoire de Neurosciences Cognitives et ComputationnellesEcole Normale SupérieurePSL UniversityParisFrance
| | - Ignacio Rebollo
- Laboratoire de Neurosciences Cognitives et ComputationnellesEcole Normale SupérieurePSL UniversityParisFrance
| | - Catherine Tallon‐Baudry
- Laboratoire de Neurosciences Cognitives et ComputationnellesEcole Normale SupérieurePSL UniversityParisFrance
| |
Collapse
|
11
|
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Rep 2020; 27:2508-2523.e4. [PMID: 31116992 PMCID: PMC6533201 DOI: 10.1016/j.celrep.2019.04.096] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems. A comprehensive molecular identification of neuronal types in vagal ganglion complex Prdm12+ jugular ganglion neurons share features with spinal somatosensory neurons Phox2b+ viscerosensory nodose neurons are molecularly versatile and highly specialized Nodose neuron types are consistent with chemo-, baro-, stretch-, tension-, and volume-sensors
Collapse
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
12
|
Vannucchi MG. The Telocytes: Ten Years after Their Introduction in the Scientific Literature. An Update on Their Morphology, Distribution, and Potential Roles in the Gut. Int J Mol Sci 2020; 21:E4478. [PMID: 32599706 PMCID: PMC7352570 DOI: 10.3390/ijms21124478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Ten years ago, the term 'telocyte' was introduced in the scientific literature to describe a 'new' cell type described in the connective tissue of several organs by Popescu and Faussone-Pellegrini (2010). Since then, 368 papers containing the term 'telocyte' have been published, 261 of them in the last five years. These numbers underscore the growing interest in this cell type in the scientific community and the general acceptance of the name telocyte to indicate this interstitial cell. Most of these studies, while confirming the importance of transmission electron microscopy to identify the telocytes with certainty, highlight the variability of their immune phenotypes. This variability was interpreted as due to (i) the ability of the telocytes to adapt to the different sites in which they reside; (ii) the distinct functions they are likely to perform; and (iii) the existence of telocyte subtypes. In the present paper, an overview of the last 10 years of literature on telocytes located in the gut will be attempted, confining the revision to the morphological findings. A distinct chapter will be dedicated to the recently hypothesized role of the telocytes the intestinal mucosa. Through this review, it will be shown that telocytes, despite their variability, are a unique interstitial cell.
Collapse
|
13
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
14
|
Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol 2020; 62:133-140. [PMID: 32380360 PMCID: PMC7560965 DOI: 10.1016/j.conb.2020.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the gut system has been revolutionized over the past decade, in particular regarding its role in immune control and psychological regulation. The vagus nerve is a crucial link between gut and brain, transmitting diverse gut-derived signals, and has been implicated in many gastrointestinal, neurological, and immunological disorders. Using state-of-the-art technologies including single-cell genomic analysis, real-time neural activity recording, trans-synaptic tracing, and electron microscopy, novel physiological functions of vagal gut afferents have been uncovered, and new gut-to-brain pathways have been revealed. Here, we review the most recent findings on vagal sensory neurons and the gut-brain signaling, focusing on the anatomical basis and the underlying molecular and cellular mechanisms. Such new discoveries explain some of the old puzzling problems and also raise new questions in this exciting and rapidly growing field.
Collapse
Affiliation(s)
- Chuyue D Yu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
15
|
Sensory nerve endings arising from single spinal afferent neurons that innervate both circular muscle and myenteric ganglia in mouse colon: colon-brain axis. Cell Tissue Res 2020; 381:25-34. [DOI: 10.1007/s00441-020-03192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
|
16
|
Powley TL, Jaffey DM, McAdams J, Baronowsky EA, Black D, Chesney L, Evans C, Phillips RJ. Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals. Ann N Y Acad Sci 2019; 1454:14-30. [PMID: 31268562 DOI: 10.1111/nyas.14138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
Abstract
Brain-gut neural communications have long been considered limited because of conspicuous numerical mismatches. The vagus, the parasympathetic nerve connecting brain and gut, contains thousands of axons, whereas the gastrointestinal (GI) tract contains millions of intrinsic neurons in local plexuses. The numerical paradox was initially recognized in terms of efferent projections, but the number of afferents, which comprise the majority (≈ 80%) of neurites in the vagus, is also relatively small. The present survey of recent morphological observations suggests that vagal terminals, and more generally autonomic and visceral afferent arbors in the stomach as well as throughout the gut, elaborate arbors that are extensive, regionally specialized, polymorphic, polytopic, and polymodal, commonly with multiplicities of receptors and binding sites-smart terminals. The morphological specializations and dynamic tuning of one-to-many efferent projections and many-to-one convergences of contacts onto afferents create a complex architecture capable of extensive peripheral integration in the brain-gut connectome and offset many of the disparities between axon and target numbers. Appreciating this complex architecture can help in the design of therapies for GI disorders.
Collapse
Affiliation(s)
- Terry L Powley
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Deborah M Jaffey
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Jennifer McAdams
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Elizabeth A Baronowsky
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Diana Black
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Logan Chesney
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Charlene Evans
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Robert J Phillips
- Behavioral Neuroscience Area, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
17
|
Visceral Signals Shape Brain Dynamics and Cognition. Trends Cogn Sci 2019; 23:488-509. [DOI: 10.1016/j.tics.2019.03.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
|
18
|
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol Motil 2019; 31:e13546. [PMID: 30740834 PMCID: PMC6850045 DOI: 10.1111/nmo.13546] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
There have been many recent advances in the understanding of various aspects of the physiology of gastric motility and gastric emptying. Earlier studies had discovered the remarkable ability of the stomach to regulate the timing and rate of emptying of ingested food constituents and the underlying motor activity. Recent studies have shown that two parallel neural circuits, the gastric inhibitory vagal motor circuit (GIVMC) and the gastric excitatory vagal motor circuit (GEVMC), mediate gastric inhibition and excitation and therefore the rate of gastric emptying. The GIVMC includes preganglionic cholinergic neurons in the DMV and the postganglionic inhibitory neurons in the myenteric plexus that act by releasing nitric oxide, ATP, and peptide VIP. The GEVMC includes distinct gastric excitatory preganglionic cholinergic neurons in the DMV and postganglionic excitatory cholinergic neurons in the myenteric plexus. Smooth muscle is the final target of these circuits. The role of the intramuscular interstitial cells of Cajal in neuromuscular transmission remains debatable. The two motor circuits are differentially regulated by different sets of neurons in the NTS and vagal afferents. In the digestive period, many hormones including cholecystokinin and GLP-1 inhibit gastric emptying via the GIVMC, and in the inter-digestive period, hormones ghrelin and motilin hasten gastric emptying by stimulating the GEVMC. The GIVMC and GEVMC are also connected to anorexigenic and orexigenic neural pathways, respectively. Identification of the control circuits of gastric emptying may provide better delineation of the pathophysiology of abnormal gastric emptying and its relationship to satiety signals and food intake.
Collapse
Affiliation(s)
- Raj K. Goyal
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Yanmei Guo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Hiroshi Mashimo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
19
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
20
|
Umans BD, Liberles SD. Neural Sensing of Organ Volume. Trends Neurosci 2018; 41:911-924. [PMID: 30143276 PMCID: PMC6252275 DOI: 10.1016/j.tins.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Many internal organs change volume periodically. For example, the stomach accommodates ingested food and drink, the bladder stores urine, the heart fills with blood, and the lungs expand with every breath. Specialized peripheral sensory neurons function as mechanoreceptors that detect tissue stretch to infer changes in organ volume and then relay this information to the brain. Central neural circuits process this information and evoke perceptions (satiety, nausea), control physiology (breathing, heart rate), and impact behavior (feeding, micturition). Yet, basic questions remain about how neurons sense organ distension and whether common sensory motifs are involved across organs. Here, we review candidate mechanosensory receptors, cell types, and neural circuits, focusing on the stomach, bladder, and airways. Understanding mechanisms of organ stretch sensation may provide new ways to treat autonomic dysfunction.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Abstract
The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.
Collapse
|
22
|
Page AJ, Li H. Meal-Sensing Signaling Pathways in Functional Dyspepsia. Front Syst Neurosci 2018; 12:10. [PMID: 29674959 PMCID: PMC5895752 DOI: 10.3389/fnsys.2018.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
The upper gastrointestinal tract plays an important role in sensing the arrival, amount and chemical composition of a meal. Ingestion of a meal triggers a number of sensory signals in the gastrointestinal tract. These include the response to mechanical stimulation (e.g., gastric distension), from the presence of food in the gut, and the interaction of various dietary nutrients with specific "taste" receptors on specialized enteroendocrine cells in the small intestine culminating in the release of gut hormones. These signals are then transmitted to the brain where they contribute to food intake regulation by modulating appetite as well as feedback control of gastrointestinal functions (e.g., gut motility). There is evidence that the sensitivity to these food related stimuli is abnormally enhanced in functional dyspepsia leading to symptoms such nausea and bloating. In addition, these gut-brain signals can modulate the signaling pathways involved in visceral pain. This review will discuss the role of gut-brain signals in appetite regulation and the role dysregulation of this system play in functional dyspepsia.
Collapse
Affiliation(s)
- Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
23
|
Rebollo I, Devauchelle AD, Béranger B, Tallon-Baudry C. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. eLife 2018; 7:33321. [PMID: 29561263 PMCID: PMC5935486 DOI: 10.7554/elife.33321] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/30/2022] Open
Abstract
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. The brain is always active. Even when it is not receiving sensory input, it generates its own spontaneous activity. This activity shapes how we interpret future sensory signals and creates our inner mental world. Moreover, this spontaneous activity is not random. When a healthy volunteer lies inside a brain scanner without performing any task, his or her brain shows predictable patterns of activity. Specific groups of brain regions – often with related roles – become active at the same time as one another. Each set of regions is referred to as a resting state network. Of course, the brain does not operate in isolation from the rest of the body. Our internal organs continuously send signals to the brain via the spinal cord and cranial nerves. Specialized cells in the stomach wall in particular produce a slow rhythmic pattern of electrical activity. Known as the gastric rhythm, this activity helps ensure that the stomach muscles contract at the correct speed for digestion. But the stomach also produces this rhythm even when empty, suggesting that it has other roles too. To find out what these might be, Rebollo et al. placed electrodes on the abdomen of healthy volunteers lying inside brain scanners. By examining the volunteers’ spontaneous brain activity, Rebollo et al. identified a new resting state network that is active in synchrony with the gastric rhythm. The regions within this so-called gastric network are not active at the same time as each other, but instead become active in a specific sequence that is repeated at each gastric cycle. Many of the regions within the gastric network belong to other resting state networks too. Some of the regions help regulate automatic bodily functions such as heart rate, while others process information about the body’s position in space. The existence of the gastric network suggests a link between the automatic regulation of processes such as digestion, and spontaneous brain activity. Future studies could examine whether this link impacts perception and cognition, and whether this link plays a role in disorders where the connection between the digestive system and the brain appears to be altered.
Collapse
Affiliation(s)
- Ignacio Rebollo
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
| | - Anne-Dominique Devauchelle
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France.,Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
| |
Collapse
|
24
|
Visceral pain - Novel approaches for optogenetic control of spinal afferents. Brain Res 2018; 1693:159-164. [PMID: 29425907 DOI: 10.1016/j.brainres.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022]
Abstract
Painful stimuli arising within visceral organs are detected by peripheral nerve endings of spinal afferents, whose cell bodies are located in dorsal root ganglia (DRG). Recent technical advances have made it possible to reliably expose and inject single DRG with neuronal tracers or viruses in vivo. This has facilitated, for the first time, unequivocal identification of different types of spinal afferent endings in visceral organs. These technical advances paved the way for a very exciting series of in vivo experiments where individual DRG are injected to facilitate opsin expression (e.g. Archaerhodopsin). Organ-specific expression of opsins in sensory neurons may be achieved by retrograde viral transduction. This means activity of target-specific populations of sensory neurons, within single DRG, can be modulated by optogenetic photo-stimulation. Using this approach we implanted micro light-emitting diodes (micro-LEDs) adjacent to DRG of interest, thereby allowing focal DRG-specific control of visceral and/or somatic afferents in conscious mice. This is vastly different from broad photo-illumination of peripheral nerve endings, which are dispersed over much larger surface areas across an entire visceral organ; and embedded deep within multiple anatomical layers. Focal DRG photo-stimulation also avoids the potential that wide-field illumination of the periphery could inadvertently activate other closely apposed organs, or co-activate different classes of axons in the same organ (e.g. enteric and spinal afferent endings in the gut). It is now possible to selectively control nociceptive and/or non-nociceptive pathways to specific visceral organs in vivo, using wireless optogenetics and micro-LEDs implanted adjacent to DRG, for targeted photo-stimulation.
Collapse
|
25
|
Spencer NJ, Greenheigh S, Kyloh M, Hibberd TJ, Sharma H, Grundy L, Brierley SM, Harrington AM, Beckett EA, Brookes SJ, Zagorodnyuk VP. Identifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. J Comp Neurol 2017; 526:707-720. [DOI: 10.1002/cne.24362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Nick J. Spencer
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Sarah Greenheigh
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Melinda Kyloh
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Tim J. Hibberd
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Harman Sharma
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Luke Grundy
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | - Stuart M. Brierley
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | - Andrea M. Harrington
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | | | - Simon J. Brookes
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Vladimir P. Zagorodnyuk
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| |
Collapse
|
26
|
Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? Biomol Concepts 2017; 7:93-102. [PMID: 26992201 DOI: 10.1515/bmc-2015-0034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/22/2016] [Indexed: 01/01/2023] Open
Abstract
In the interstitium of the connective tissue several types of cells occur. The fibroblasts, responsible for matrix formation, the mast cells, involved in local response to inflammatory stimuli, resident macrophages, plasma cells, lymphocytes, granulocytes and monocytes, all engaged in immunity responses. Recently, another type of interstitial cell, found in all organs so far examined, has been added to the previous ones, the telocytes (TC). In the gut, in addition to the cells listed above, there are also the interstitial cells of Cajal (ICC), a peculiar type of cell exclusively detected in the alimentary tract with multiple functions including pace-maker activity. The possibility that TC and ICC could correspond to a unique cell type, where the former would represent an ICC variant outside the gut, was initially considered, however, further studies have clearly shown that ICC and TC are two distinct types of cells. In the gut, while the features and the roles of the ICC are established, part of the scientific community is still disputing these 'new' interstitial cells to which several names such as fibroblast-like cells (FLCs), interstitial Cajal-like cells or, most recently, PDGFRα+ cells have been attributed. This review will detail the main features and roles of the TC and ICC with the aim to establish their relationships and hopefully define the identity of the TC in the gut.
Collapse
|
27
|
Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C. Phase-amplitude coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. Neuroimage 2017; 146:951-958. [PMID: 27557620 PMCID: PMC5312779 DOI: 10.1016/j.neuroimage.2016.08.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
A fundamental feature of the temporal organization of neural activity is phase-amplitude coupling between brain rhythms at different frequencies, where the amplitude of a higher frequency varies according to the phase of a lower frequency. Here, we show that this rule extends to brain-organ interactions. We measured both the infra-slow (~0.05Hz) rhythm intrinsically generated by the stomach - the gastric basal rhythm - using electrogastrography, and spontaneous brain dynamics with magnetoencephalography during resting-state with eyes open. We found significant phase-amplitude coupling between the infra-slow gastric phase and the amplitude of the cortical alpha rhythm (10-11Hz), with gastric phase accounting for 8% of the variance of alpha rhythm amplitude fluctuations. Gastric-alpha coupling was localized to the right anterior insula, and bilaterally to occipito-parietal regions. Transfer entropy, a measure of directionality of information transfer, indicates that gastric-alpha coupling is due to an ascending influence from the stomach to both the right anterior insula and occipito-parietal regions. Our results show that phase-amplitude coupling so far only observed within the brain extends to brain-viscera interactions. They further reveal that the temporal structure of spontaneous brain activity depends not only on neuron and network properties endogenous to the brain, but also on the slow electrical rhythm generated by the stomach.
Collapse
Affiliation(s)
- Craig G Richter
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
| | - Mariana Babo-Rebelo
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France
| | - Denis Schwartz
- Sorbonne Universités, Inserm U 1127, CNRS UMR 7225, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France.
| |
Collapse
|
28
|
Xiaopeng B, Tanaka Y, Ihara E, Hirano K, Nakano K, Hirano M, Oda Y, Nakamura K. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body. Eur J Pharmacol 2017; 797:65-74. [PMID: 28088386 DOI: 10.1016/j.ejphar.2017.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK1) and NK2 antagonists, but not by an NK3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK1, NK2 and NK3) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK1 and NK2 antagonists, but not by the NK3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK1/2. Gap junctions were indispensable in this tachykinin-induced response.
Collapse
Affiliation(s)
- Bai Xiaopeng
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture 761-0793, Japan
| | - Kayoko Nakano
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Abstract
The lining of the gastrointestinal tract needs to be easily accessible to nutrients and, at the same time, defend against pathogens and chemical challenges. This lining is the largest and most vulnerable surface that faces the outside world. To manage the dual problems of effective nutrient conversion and defence, the gut lining has a sophisticated system for detection of individual chemical entities, pathogenic organisms and their products, and physico-chemical properties of its contents. Detection is through specific receptors that signal to the gut endocrine system, the nervous system, the immune system and local tissue defence systems. These effectors, in turn, modify digestive functions and contribute to tissue defence. Receptors for nutrients include taste receptors for sweet, bitter and savoury, free fatty acid receptors, peptide and phytochemical receptors, that are primarily located on enteroendocrine cells. Hormones released by enteroendocrine cells act locally, through the circulation and via the nervous system, to optimise digestion and mucosal health. Pathogen detection is both through antigen presentation to T-cells and through pattern-recognition receptors (PRRs). Activation of PRRs triggers local tissue defence, for example, by causing release of antimicrobials from Paneth cells. Toxic chemicals, including plant toxins, are sensed and then avoided, expelled or metabolised. It continues to be a major challenge to develop a comprehensive understanding of the integrated responses of the gastrointestinal tract to its luminal contents.
Collapse
|
30
|
Chen H, Zhu W, Lu J, Fan J, Sun L, Feng X, Liu H, Zhang Z, Wang Y. The Effects of Auricular Electro-Acupuncture on Ameliorating the Dysfunction of Interstitial Cells of Cajal Networks and nNOSmRNA Expression in Antrum of STZ-Induced Diabetic Rats. PLoS One 2016; 11:e0166638. [PMID: 27930657 PMCID: PMC5145159 DOI: 10.1371/journal.pone.0166638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUD Interstitial cells of Cajal (ICCs) and nNOS play a crucial role in diabetic gastrointestinal dysmotility(DGD). Our previous study found that electro-acupuncture(EA) on ear point 'stomach' could repair the gastric dysrhythmias in rats induced by rectal distention(RD) after meal. However, little were known about the possible effect of auricular electro-acupuncture (AEA) on diabetic rats. Thus, we designed this study to investigate the effect of AEA on streptozotocin(STZ)-induced diabetic rats. METHOD Forty male Sprague_Dawley (SD) rats were injected with STZ, at the end of 8th week after injection, animals were randomly divided into four groups and received 2 weeks-treatment(10 times) respectively: control group(CON,n = 10, no stimulation), sham auricular electro-acupuncture group(SEA,n = 10, low frequency EA on earlobes), auricular eletro-acupuncture group(AEA,n = 10, low frequency EA on ear point 'stomach'), and ST-36 group(ST-36,n = 10, low frequency EA on ST-36). Gastrointestinal (GI) motility was measured by GI transit rate. ICCs(c-kit+ expression) in antrum were analyzed by Immunohistochemistry and western blotting. NO level in blood serum were detected by Griess Reagent, and nNOSmRNA expression in antrum were determined by Real-time PCR. RESULTS GI transit rate and ICCs(c-kit+ expression) in antrum of AEA group have the tendency to increase compared with CON group, but had no statistics difference (P>0.05). nNOSmRNA expression in antrum of AEA group was dramatically increased compared with CON group (P = 0.037). CONCLUSIONS Low frequency EA on ear 'stomach' point could significantly up-regulate nNOS mRNA expression and ameliorate the ICCs networks partly in gastric antrum of STZ -induced diabetic rats, which may has benefits on regulating the GI motility.
Collapse
Affiliation(s)
- Huan Chen
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijian Zhu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinqing Fan
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luning Sun
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaohui Zhang
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqing Wang
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T. Spinal afferent nerve endings in visceral organs: recent advances. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1056-G1063. [PMID: 27856418 DOI: 10.1152/ajpgi.00319.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric). We recently developed a surgical approach in live mice that allows selective labeling of spinal afferent axons and their endings, revealing a diverse array of different types of varicose and nonvaricose terminals in visceral organs, particularly the large intestine. In total, 13 different morphological types of endings were distinguished in the mouse distal large intestine, originating from lumbosacral DRG. Interestingly, the stomach, esophagus, bladder, and uterus had less diversity in their types of spinal afferent endings. Taken together, spinal afferent endings (at least in the large intestine) appear to display greater morphological diversity than vagal afferent endings that have previously been extensively studied. We discuss some of the new insights that these findings provide.
Collapse
Affiliation(s)
- Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
32
|
Vagal afferents, sympathetic efferents and the role of the PVN in heart failure. Auton Neurosci 2016; 199:38-47. [DOI: 10.1016/j.autneu.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023]
|
33
|
Spencer NJ, Kyloh M, Beckett EA, Brookes S, Hibberd T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J Comp Neurol 2016; 524:3064-83. [DOI: 10.1002/cne.24006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Elizabeth A Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide; Adelaide 5000 South Australia Australia
| | - Simon Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| |
Collapse
|
34
|
Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Phillips RJ. Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat. J Comp Neurol 2015; 524:713-37. [PMID: 26355387 DOI: 10.1002/cne.23892] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/14/2023]
Abstract
The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin-biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 µm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm(3) . Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Cherie N Hudson
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Jennifer L McAdams
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Elizabeth A Baronowsky
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| |
Collapse
|
35
|
Hepworth KL, Wang XY, Huizinga JD, Ratcliffe EM. Vagal Fibers Form Associations With Interstitial Cells of Cajal During Fetal Development. Anat Rec (Hoboken) 2015; 298:1780-5. [DOI: 10.1002/ar.23192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Kelly L. Hepworth
- Department of Pediatrics; McMaster University; Hamilton Ontario Canada
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
| | - Xuan-yu Wang
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Elyanne M. Ratcliffe
- Department of Pediatrics; McMaster University; Hamilton Ontario Canada
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
| |
Collapse
|
36
|
The enteric nervous system and gastrointestinal innervation: integrated local and central control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:39-71. [PMID: 24997029 DOI: 10.1007/978-1-4939-0897-4_3] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The digestive system is innervated through its connections with the central nervous system (CNS) and by the enteric nervous system (ENS) within the wall of the gastrointestinal tract. The ENS works in concert with CNS reflex and command centers and with neural pathways that pass through sympathetic ganglia to control digestive function. There is bidirectional information flow between the ENS and CNS and between the ENS and sympathetic prevertebral ganglia.The ENS in human contains 200-600 million neurons, distributed in many thousands of small ganglia, the great majority of which are found in two plexuses, the myenteric and submucosal plexuses. The myenteric plexus forms a continuous network that extends from the upper esophagus to the internal anal sphincter. Submucosal ganglia and connecting fiber bundles form plexuses in the small and large intestines, but not in the stomach and esophagus. The connections between the ENS and CNS are carried by the vagus and pelvic nerves and sympathetic pathways. Neurons also project from the ENS to prevertebral ganglia, the gallbladder, pancreas and trachea.The relative roles of the ENS and CNS differ considerably along the digestive tract. Movements of the striated muscle esophagus are determined by neural pattern generators in the CNS. Likewise the CNS has a major role in monitoring the state of the stomach and, in turn, controlling its contractile activity and acid secretion, through vago-vagal reflexes. In contrast, the ENS in the small intestine and colon contains full reflex circuits, including sensory neurons, interneurons and several classes of motor neuron, through which muscle activity, transmucosal fluid fluxes, local blood flow and other functions are controlled. The CNS has control of defecation, via the defecation centers in the lumbosacral spinal cord. The importance of the ENS is emphasized by the life-threatening effects of some ENS neuropathies. By contrast, removal of vagal or sympathetic connections with the gastrointestinal tract has minor effects on GI function. Voluntary control of defecation is exerted through pelvic connections, but cutting these connections is not life-threatening and other functions are little affected.
Collapse
|
37
|
Spencer NJ, Kyloh M, Duffield M. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS One 2014; 9:e112466. [PMID: 25383884 PMCID: PMC4226564 DOI: 10.1371/journal.pone.0112466] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified must underlie the transduction of noxious and/or innocuous stimuli from the large intestine.
Collapse
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
- * E-mail:
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Michael Duffield
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
38
|
Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch 2014; 467:191-200. [PMID: 25366494 DOI: 10.1007/s00424-014-1635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/14/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
Coordinated contractions of the smooth muscle layers of the gastrointestinal (GI) tract are required to produce motor patterns that ensure normal GI motility. The crucial role of the enteric nervous system (ENS), the intrinsic ganglionated network located within the GI wall, has long been recognized in the generation of the main motor patterns. However, devising an appropriate motility requires the integration of informations emanating from the lumen of the GI tract. As already found more than half a century ago, the ability of the GI tract to respond to mechanical forces such as stretch is not restricted to neuronal mechanisms. Instead, mechanosensitivity is now recognized as a property of several non-neuronal cell types, the excitability of which is probably involved in shaping the motor patterns. This brief review gives an overview on how mechanosensitivity of different cell types in the GI tract has been established and, whenever available, on what ionic conductances are involved in mechanotransduction and their potential impact on normal GI motility.
Collapse
Affiliation(s)
- Bruno Mazet
- Aix Marseille Université, CNRS, CRN2M UMR 7286, CS80011 Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| |
Collapse
|
39
|
Borer KT. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes 2014; 5:606-629. [PMID: 25317239 PMCID: PMC4138585 DOI: 10.4239/wjd.v5.i5.606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 05/15/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses.
Collapse
|
40
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
41
|
Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep 2014; 16:363. [PMID: 24408748 DOI: 10.1007/s11894-013-0363-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic science and clinical interest in the networks of interstitial cells of Cajal (ICC) keep growing, and here, research from 2010 to mid-2013 is highlighted. High-resolution gastrointestinal manometry and spatiotemporal mapping are bringing exciting new insights into motor patterns, their function and their myogenic and neurogenic origins, as well as the role of ICC. Critically important knowledge is emerging on the partaking of PDGFRα+ cells in ICC pacemaker networks. Evidence is emerging that ICC and PDGFRα+ cells have unique direct roles in muscle innervation. Chronic constipation is associated with loss and injury to ICC, which is stimulating extensive research into maintenance and repair of ICC after injury. In gastroparesis, high-resolution electrical and mechanical studies are beginning to elucidate the pathophysiological role of ICC and the pacemaker system in this condition. Receptors and ion channels that play a role in ICC function are being discovered and characterized, which paves the way for pharmacological interventions in gut motility disorders through ICC.
Collapse
Affiliation(s)
- Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, HSC-3N8, 1200 Main Street West, Hamilton, ON, Canada, L8N 3Z5,
| | | |
Collapse
|
42
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
43
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
44
|
Plasticity of gastro-intestinal vagal afferent endings. Physiol Behav 2014; 136:170-8. [PMID: 24657740 DOI: 10.1016/j.physbeh.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity.
Collapse
|
45
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Martin FN, Mason JK, Phillips RJ. Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution? Auton Neurosci 2014; 183:36-48. [PMID: 24656895 DOI: 10.1016/j.autneu.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/16/2023]
Abstract
The pylorus is innervated by vagal mechanoreceptors that project to gastrointestinal smooth muscle, but the distributions and specializations of vagal endings in the sphincter have not been fully characterized. To evaluate their organization, the neural tracer dextran biotin was injected into the nodose ganglia of rats. Following tracer transport, animals were perfused, and their pylori and antra were prepared as whole mounts. Specimens were processed to permanently label the tracer, and subsets were counterstained with Cuprolinic blue or immunostained for c-Kit. Intramuscular arrays (IMAs) in the circular muscle comprised the principal vagal afferent innervation of the sphincter. These pyloric ring IMAs were densely distributed and evidenced a variety of structural specializations. Morphometric comparisons between the arbors innervating the pylorus and a corresponding sample of IMAs in the adjacent antral circular muscle highlighted that sphincter IMAs branched profusely, forming more than twice as many branches as did antral IMAs (means of 405 vs. 165, respectively), and condensed their numerous neurites into compact receptive fields (∼48% of the area of antral IMAs) deep in the circular muscle (∼6μm above the submucosa). Separate arbors of IMAs in the sphincter interdigitated and overlapped to form a 360° band of mechanoreceptors encircling the pyloric canal. The annulus of vagal IMA arbors, putative stretch receptors tightly intercalated in the sphincter ring and situated near the lumen of the pyloric canal, creates an architecture with the potential to generate gut reflexes on the basis of pyloric sensory maps of high sensitivity and fine spatial resolution.
Collapse
Affiliation(s)
- Terry L Powley
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| | - Cherie N Hudson
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | - Jennifer L McAdams
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | - Elizabeth A Baronowsky
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | - Felecia N Martin
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | - Jacqueline K Mason
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | - Robert J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| |
Collapse
|
47
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
48
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
49
|
Enteric sensory neurons communicate with interstitial cells of Cajal to affect pacemaker activity in the small intestine. Pflugers Arch 2013; 466:1467-75. [PMID: 24101295 DOI: 10.1007/s00424-013-1374-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Enteric sensory neurons (the AH neurons) play a role in control of gastrointestinal motor activity; AH neuron activation has been proposed to change propulsion into segmentation. We sought to find a mechanism underlying this phenomenon. We formulated the hypothesis that AH neurons increase local ICC-MP (interstitial cells of Cajal associated with the myenteric plexus) pacemaker frequency to disrupt peristalsis and promote absorption. To that end, we sought structural and physiological evidence for communication between ICC-MP and AH neurons. We designed experiments that allowed us to simultaneously activate AH neurons and observe changes in ICC calcium transients that underlie its pacemaker activity. Neurobiotin injection in AH neurons together with ICC immunohistochemistry proved the presence of multiple contacts between AH neuron varicosities and the cell bodies and processes of ICC-MP. Generating action potential activity in AH neurons led to increase in the frequency and amplitude of calcium transients underlying pacemaker activity in ICC. When no rhythmicity was seen, rhythmic calcium transients were evoked in ICC. As a control, we stimulated nitrergic S neurons, which led to reduction in ICC calcium transients. Hence, we report here the first demonstration of communication between AH neurons and ICC. The following hypothesis can now be formulated: AH neuron activation can disrupt peristalsis directed by ICC-MP slow wave activity, through initiation of a local pacemaker by increasing ICC pacemaker frequency through increasing the frequency of ICC calcium transients. Evoking new pacemakers distal to the proximal lead pacemaker will initiate both retrograde and antegrade propulsion causing back and forth movements that may disrupt peristalsis.
Collapse
|
50
|
Udit S, Gautron L. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci 2013; 7:134. [PMID: 23914153 PMCID: PMC3728986 DOI: 10.3389/fnins.2013.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | |
Collapse
|