1
|
Serra M, Faustini G, Brembati V, Casu MA, Pizzi M, Morelli M, Pinna A, Bellucci A. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Exp Neurol 2024; 383:115040. [PMID: 39500391 DOI: 10.1016/j.expneurol.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB. This hints that pathological synaptic α-Syn aggregates may be the main trigger for the retrograde synapse-to-cell body degeneration pattern characterizing early prodromal phases of PD. Identifying reliable biomarkers of synaptopathy is therefore crucial for early diagnosis. Here, we studied the alterations of key dopaminergic and non-dopaminergic striatal synaptic markers during the initial phases of axonal and cell body degeneration in mice subjected to 3 or 10 administrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine + probenecid (MPTPp), a model for early prodromal PD. We found that MPTPp administration resulted in progressive deposition of α-Syn, advancing from synaptic terminals to axons and dopaminergic neuron cell bodies. This was accompanied by marked co-accumulation of Synapsin III (Syn III), a synaptic protein previously identified as a component of α-Syn fibrils in post-mortem PD brains and as a main stabilizer of α-Syn aggregates, as well as very early and severe reduction of vesicular monoamine transporter 2 (VMAT2), dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunoreactivity in nigrostriatal neurons. Results also showed that striatal α-Syn accumulation and VMAT2 decrease, unlike other markers, did not recover following washout from 10 MPTPp administrations, supporting that these changes were precocious and severe. Finally, we found that early changes in striatal α-Syn, Syn III, VMAT2 and DAT observed following 3 MPTPp administrations, correlated with nigrostriatal neuron loss after 10 MPTPp administrations. These findings indicate that α-Syn/Syn III co-deposition characterizes very early stages of striatal dopaminergic dysfunction in the MPTPp model and highlight that VMAT2 and Syn III could be two reliable molecular imaging biomarkers to predict dopamine neuron denervation and estimate α-Syn-related synaptopathy in prodromal and early symptomatic phases of PD.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Viviana Brembati
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Poleto KH, Janner DE, Dahleh MMM, Poetini MR, Fernandes EJ, Musachio EAS, de Almeida FP, Amador ECDM, Reginaldo JC, Carriço MRS, Roehrs R, Prigol M, Guerra GP. p-Coumaric acid potential in restoring neuromotor function and oxidative balance through the Parkin pathway in a Parkinson disease-like model in Drosophila melanogaster. Food Chem Toxicol 2024; 193:115002. [PMID: 39276910 DOI: 10.1016/j.fct.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
p-Coumaric acid is a significant phenolic compound known for its potent antioxidant activity. Thus, this study investigated the effects of p-coumaric acid on the behavioral and neurochemical changes induced in Drosophila melanogaster by exposure to rotenone in a Parkinson disease (PD)-like model. The flies were divided into four groups and maintained for seven days on different diets: a standard diet (control), a diet containing rotenone (500 μM), a control diet to which p-coumaric acid was added on the fourth day (0.3 μM), and a diet initially containing rotenone (500 μM) with p-coumaric acid added on the fourth day (0.3 μM). Exposure to p-coumaric acid ameliorated locomotor impairment and reduced mortality induced by rotenone. Moreover, p-coumaric acid normalized oxidative stress markers (ROS, TBARS, SOD, CAT, GST, and NPSH), mitigated oxidative damage, and reflected in the recovery of dopamine levels, AChE activity, and cellular viability post-rotenone exposure. Additionally, p-coumaric acid restored the immunoreactivity of Parkin and Nrf2. The results affirm that p-coumaric acid effectively mitigates PD-like model-induced damage, underscoring its antioxidant potency and potential neuroprotective effect.
Collapse
Affiliation(s)
- Kétnne Hanna Poleto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Francielli Polet de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elen Caroline de Matos Amador
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Murilo Ricardo Sigal Carriço
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rafael Roehrs
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Cheng W, Fang K, Ouyang X, Jin L, Song Y, Yu B. Vagus nerve stimulation with a small total charge transfer improves motor behavior and reduces neuroinflammation in a mouse model of Parkinson's disease. Neurochem Int 2024; 180:105871. [PMID: 39362497 DOI: 10.1016/j.neuint.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Conventional treatments are ineffective in reversing disease progression. Recently, the therapeutic and rehabilitation potential of vagus nerve stimulation (VNS) in PD has been explored. However, the underlying mechanisms remain largely unknown. In this study, we investigated the neuroprotective effects of VNS in a lateral lesioned mice model of PD. Excluding controls, experimental mice received cuff electrode implantation on the left vagus nerve and 6-hydroxydopamine administration into the bilateral striatum. After ten days, electrical stimulation was delivered for 11 consecutive days onto PD animals. Behavioral tests were performed after stimulation. The expression of TH, Iba-1, GFAP, adrenergic receptors and cytokines in the SN and striatum was detected by immunofluorescence or western blotting. The activity of noradrenergic neurons in the locus coeruleus (LC) was also measured. Our results suggest that VNS improved behavioral performance in rod rotation, open field tests and pole-climbing tests in PD mice, accompanied by a decrease in the loss of dopaminergic neurons in the SN and increased TH expression in the striatum. Neuroinflammation-related factors, such as GFAP, Iba-1, TNF-α and IL-1β were also suppressed in PD mice after VNS compared to those without treatment. Furthermore, the proportion of c-Fos-positive noradrenergic neurons in the LC increased when animals received VNS. Additionally, the expression of the adrenergic receptor of α1BR was also upregulated after VNS compared to PD mice. In conclusion, VNS has potential as a novel PD therapy for neuroprotective effects, and indicate that activation of norepinephric neurons in LC may plays an important role in VNS treatment for PD.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. Sci Rep 2024; 14:23861. [PMID: 39394439 PMCID: PMC11470019 DOI: 10.1038/s41598-024-74775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk suggesting targeting the Pink1/Parkin pathway in the periphery might have therapeutic potential.
Collapse
Affiliation(s)
- Jane E Manganaro
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph W George
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L Stauch
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Lei J, Tang LL, Jing R, You HJ. Antinociceptive role of the thalamic dopamine D3 receptor in descending modulation of intramuscular formalin-induced muscle nociception in a rat model of Parkinson's disease. Exp Neurol 2024; 379:114846. [PMID: 38879111 DOI: 10.1016/j.expneurol.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
Pain in Parkinson's disease (PD) has been validated as one of the major non-motor dysfunctions affecting the quality of life and subsequent rehabilitation. In the present study, we investigated the role of the dopamine D3 receptor in the thalamic mediodorsal (MD) and ventromedial (VM) nuclei mediated descending control of nociception and intramuscular (i.m.) 2.5% formalin-induced persistent muscle nociception. Paw withdrawal reflexes were measured in naive rats and rats subjected to PD induced by unilateral microinjection of 6 μg 6-OHDA into the rat striatum. Formalin-induced muscle nociception in phase 1, inter-phase, and phase 2 was significantly greater in PD rats compared to naive and vehicle-treated rats (P < 0.001). PD rats exhibited bilaterally mechanical hyperalgesia and heat hypoalgesia in formalin-induced muscle nociception. Microinjection of SK609, a dopamine D3 receptor agonist, at various doses (2.5-7.5 nmol/0.5 μl) into the thalamic VM nucleus dose-dependently prolonged heat-evoked paw withdrawal latencies in both naive and PD rats. Administration of SK609 to either the MD or VM nuclei had no effect on noxious mechanically evoked paw withdrawal reflexes. Pre-treatment of the thalamic MD nucleus with SK609 significantly attenuated formalin-induced nociception, and reversed mechanical hyperalgesia, but not heat hypoalgesia. Pre-treatment of the thalamic VM nucleus with SK609 inhibited formalin-induced nociception in the late phase of phase 2 (30-75 min) and heat hypoalgesia, but not mechanical hyperalgesia (P < 0.05). It is suggested that the dopamine D3 receptors in the thalamus play an antinociceptive role in the descending modulation of nociception. Activation of D3 receptors within the thalamic MD and VM nuclei attenuates descending facilitation and enhances descending inhibition in rats during PD.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Rong Jing
- Department of Rehabilitation Medicine, Affiliated Hospital of Yan'an University, Yan'an 716000, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| |
Collapse
|
7
|
García-Revilla J, Ruiz R, Espinosa-Oliva AM, Santiago M, García-Domínguez I, Camprubí-Ferrer L, Bachiller S, Deierborg T, Joseph B, de Pablos RM, Rodríguez-Gómez JA, Venero JL. Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response. Cell Death Dis 2024; 15:625. [PMID: 39223107 PMCID: PMC11369297 DOI: 10.1038/s41419-024-07014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons (TH-C3KO) and investigated its effects in response to a subacute regime of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, which is known to trigger apoptotic loss of SNpc dopaminergic neurons. We found that Casp3 deletion did not protect the dopaminergic system in the long term. Instead, we observed a switch in the cell death pathway from apoptosis in wild-type mice to necrosis in TH-C3KO mice. Notably, we did not find any evidence of necroptosis in our model or in in vitro experiments using primary dopaminergic cultures exposed to 1-methyl-4-phenylpyridinium in the presence of pan-caspase/caspase-8 inhibitors. Furthermore, we detected an exacerbated microglial response in the ventral mesencephalon of TH-C3KO mice in response to MPTP, which mimicked the microglia neurodegenerative phenotype (MGnD). Under these conditions, it was evident the presence of numerous microglial phagocytic cups wrapping around apparently viable dopaminergic cell bodies that were inherently associated with galectin-3 expression. We provide evidence that microglia exhibit phagocytic activity towards both dead and stressed viable dopaminergic neurons through a galectin-3-dependent mechanism. Overall, our findings suggest that inhibiting apoptosis is not a beneficial strategy for treating PD. Instead, targeting galectin-3 and modulating microglial response may be more promising approaches for slowing PD progression.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
8
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
9
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
10
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
11
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. RESEARCH SQUARE 2024:rs.3.rs-4431604. [PMID: 38854001 PMCID: PMC11160909 DOI: 10.21203/rs.3.rs-4431604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.
Collapse
|
12
|
Liu M, Xue J, Cao Y, Hao Z, Wang Y, Li J, Jiang T, Shi J. The effects of Nardosinone on levodopa intervention in the treatment of Parkinson's disease. Biomed Pharmacother 2024; 174:116448. [PMID: 38522241 DOI: 10.1016/j.biopha.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The roots and rhizomes of Nardostachys jatamansi DC. are reported to be useful for the treatment of Parkinson's disease (PD). Previous research has also shown that Nardosinone, the main active component isolated from Nardostachys jatamansi DC., exhibits the potential to treat PD. AIM OF THE STUDY To investigate how the effects of Nardosinone could assist levodopa in the treatment of PD, how this process changes the intestinal flora, and to explore the effective forms of Nardosinone in the intestinal flora. MATERIAL AND METHODS We used behavioral experiments, and hematoxylin-eosin staining and immunohistochemical staining, to investigate the effects of a combination of Nardosinone and levodopa on rotenone-induced PD rats. In addition, we used LC/MS-MS to determine the levels of levodopa, 5-hydroxytryptamine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, and homovanillic acid, to investigate the effect of the intestinal flora on co-administration in the treatment of PD. LC/MS-MS was also used to detect the metabolites of Nardosinone on the gastrointestinal tract and intestinal flora. RESULTS The behavioral disorders and neuronal damage associated with PD were significantly improved following the co-administration. Analysis also revealed that the co-administration increased the levels of five neurotransmitters in the striatum, plasma and feces. In vitro experiments further demonstrated that the levels of dopamine and levodopa were increased in the intestinal flora. In total, five metabolites of Nardosinone were identified. CONCLUSION Our findings indicate that Nardosinone and its metabolites might act as a potential adjutant to enhance the efficacy of levodopa via the intestinal flora, thus expanding the therapeutic potential of the combination of Chinese and Western medicine as a treatment method for PD.
Collapse
Affiliation(s)
- Mengmeng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwen Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuangzhuang Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tingyue Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
13
|
Kim DY, Kim SM, Cho EJ, Kwak HB, Han IO. Protective effect of increased O-GlcNAc cycling against 6-OHDA induced Parkinson's disease pathology. Cell Death Dis 2024; 15:287. [PMID: 38654003 DOI: 10.1038/s41419-024-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea.
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
14
|
Tassan Mazzocco M, Serra M, Maspero M, Coliva A, Presotto L, Casu MA, Morelli M, Moresco RM, Belloli S, Pinna A. Positive relation between dopamine neuron degeneration and metabolic connectivity disruption in the MPTP plus probenecid mouse model of Parkinson's disease. Exp Neurol 2024; 374:114704. [PMID: 38281587 DOI: 10.1016/j.expneurol.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.
Collapse
Affiliation(s)
- Margherita Tassan Mazzocco
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy; Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marco Maspero
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Angela Coliva
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Milan, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy; School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| |
Collapse
|
15
|
Cui J, Zhao D, Xu M, Li Z, Qian J, Song N, Wang J, Xie J. Characterization of graded 6-Hydroxydopamine unilateral lesion in medial forebrain bundle of mice. Sci Rep 2024; 14:3721. [PMID: 38355892 PMCID: PMC10866897 DOI: 10.1038/s41598-024-54066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 μg, 1 μg, 2 μg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 μg 6-OHDA lesioned mice, and more extensive in 1 μg group. Despite the loss of more neurons from 2 μg 6-OHDA, there was no further impairment in behaviors compared to 1 μg 6-OHDA. Our data have implications that 1 μg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Zhao
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zheheng Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
16
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
17
|
Smit RD, Ghosh B, Campion TJ, Stingel R, Lavell E, Hooper R, Fan X, Soboloff J, Smith GM. STAT3 protects dopaminergic neurons against degeneration in animal model of Parkinson's disease. Brain Res 2024; 1824:148691. [PMID: 38030102 PMCID: PMC10842767 DOI: 10.1016/j.brainres.2023.148691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is the most prevalent disorder of the basal ganglia, propagated by the degeneration of axon terminals within the striatum and subsequent loss of dopaminergic neurons in the substantia nigra (SN). Exposure of environmental neurotoxins and mutations of several mitochondrial and proteasomal genes are primarily responsible. METHODS To determine whether signal transducer and activator of transcription 3 (STAT3) could protect dopaminergic neurons against degeneration, we first screened it in the in vitro capacity using immortalized rat dopaminergic N27 cells under 6-OHDA neurotoxicity. We then evaluated the effectiveness of constitutively active (ca) STAT3 as a neuroprotective agent on N27 cells in a 6-hydroxydopamine (6-OHDA) induced rat model of PD and compared it to control animals or animals where AAV/caRheb was expressed in SN. Behavioral outcomes were assessed using rotational and cylinder assays and mitochondrial function using reactive oxygen species (ROS) levels. RESULTS Using flow cytometry, the in vitro analysis determined caSTAT3 significantly decreased dopaminergic neuronal death under 6-OHDA treatment conditions. Importantly, in vivo overexpression of caSTAT3 in SN dopaminergic neurons using AAV-mediated expression demonstrated significant neuroprotection of dopaminergic neurons following 6-OHDA. Both caSTAT3 and caRheb + caSTAT3 co-injection into substantia nigra reduced D-amphetamine-induced rotational behavior and increased ipsilateral forelimb function when compared to control animals. In addition, caSTAT3 decreased mitochondrial ROS production following 6-OHDA induced neurotoxicity. CONCLUSION caSTAT3 confers resistance against ROS production in mitochondria of susceptible SN dopaminergic neurons potentially offering a new avenue for treatment against PD.
Collapse
Affiliation(s)
- Rupert D Smit
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA.
| | - Biswarup Ghosh
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Thomas J Campion
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Rachel Stingel
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Emily Lavell
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Robert Hooper
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - George M Smith
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| |
Collapse
|
18
|
Caria I, Nunes MJ, Ciraci V, Carvalho AN, Ranito C, Santos SG, Gama MJ, Castro-Caldas M, Rodrigues CMP, Ruas JL, Rodrigues E. NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166980. [PMID: 38061599 DOI: 10.1016/j.bbadis.2023.166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.
Collapse
Affiliation(s)
- Inês Caria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Viviana Ciraci
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Catarina Ranito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Susana G Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Jorge L Ruas
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
19
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Hashish S, Salama M, Mudyanselage AW, James L, Carter WG. Differential Effects of Paraquat, Rotenone, and MPTP on Cellular Bioenergetics of Undifferentiated and Differentiated Human Neuroblastoma Cells. Brain Sci 2023; 13:1717. [PMID: 38137165 PMCID: PMC10741680 DOI: 10.3390/brainsci13121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Paraquat (PQ), rotenone (RO), and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are neurotoxicants that can damage human health. Exposure to these neurotoxicants has been linked to neurodegeneration, particularly Parkinson's disease. However, their mechanisms of action have not been fully elucidated, nor has the relative vulnerability of neuronal subtypes to their exposures. To address this, the current study investigated the cytotoxic effects of PQ, RO, and MPTP and their relative effects on cellular bioenergetics and oxidative stress on undifferentiated human neuroblastoma (SH-SY5Y) cells and those differentiated to dopaminergic (DA) or cholinergic (CH) phenotypes. The tested neurotoxicants were all cytotoxic to the three cell phenotypes that correlated with both concentration and exposure duration. At half-maximal effective concentrations (EC50s), there were significant reductions in cellular ATP levels and reduced activity of the mitochondrial complexes I and III, with a parallel increase in lactate production. PQ at 10 µM significantly decreased ATP production and mitochondrial complex III activity only in DA cells. RO was the most potent inhibitor of mitochondrial complex 1 and did not inhibit mitochondrial complex III even at concentrations that induced a 50% loss of cell viability. MPTP was the most potent toxicant in undifferentiated cells. All neurotoxicants significantly increased reactive oxygen species, lipid peroxidation, and nuclear expression of Nrf2, with a corresponding inhibition of the antioxidant enzymes catalase and superoxide dismutase. At a 10 µM exposure to PQ or RO, oxidative stress biomarkers were significant in DA cells. Collectively, this study underscores the importance of mitochondrial dysfunction and oxidative stress in PQ, RO, and MPTP-induced cytotoxicity and that neuronal phenotypes display differential vulnerability to these neurotoxicants.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
| | - Sara Hashish
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt; (S.H.); (M.S.)
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt; (S.H.); (M.S.)
| | - Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Lipta James
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
| |
Collapse
|
20
|
Pogorelov VM, Martini ML, Jin J, Wetsel WC, Caron MG. Dopamine-Depleted Dopamine Transporter Knockout (DDD) Mice: Dyskinesia with L-DOPA and Dopamine D1 Agonists. Biomolecules 2023; 13:1658. [PMID: 38002340 PMCID: PMC10669682 DOI: 10.3390/biom13111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
L-DOPA is the mainstay of treatment for Parkinson's disease (PD). However, over time this drug can produce dyskinesia. A useful acute PD model for screening novel compounds for anti-parkinsonian and L-DOPA-induced dyskinesia (LID) are dopamine-depleted dopamine-transporter KO (DDD) mice. Treatment with α-methyl-para-tyrosine rapidly depletes their brain stores of DA and renders them akinetic. During sensitization in the open field (OF), their locomotion declines as vertical activities increase and upon encountering a wall they stand on one leg or tail and engage in climbing behavior termed "three-paw dyskinesia". We have hypothesized that L-DOPA induces a stereotypic activation of locomotion in DDD mice, where they are unable to alter the course of their locomotion, and upon encountering walls engage in "three-paw dyskinesia" as reflected in vertical counts or beam-breaks. The purpose of our studies was to identify a valid index of LID in DDD mice that met three criteria: (a) sensitization with repeated L-DOPA administration, (b) insensitivity to a change in the test context, and (c) stimulatory or inhibitory responses to dopamine D1 receptor agonists (5 mg/kg SKF81297; 5 and 10 mg/kg MLM55-38, a novel compound) and amantadine (45 mg/kg), respectively. Responses were compared between the OF and a circular maze (CM) that did not hinder locomotion. We found vertical counts and climbing were specific for testing in the OF, while oral stereotypies were sensitized to L-DOPA in both the OF and CM and responded to D1R agonists and amantadine. Hence, in DDD mice oral stereotypies should be used as an index of LID in screening compounds for PD.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
21
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
22
|
Bhatt R, Vaishnav D, Airao V, Sharma T, Rachamalla M, Mani S, Gupta AK, Upadhye V, Jha SK, Jha NK, Parmar S. Neuroprotective potential of saroglitazar in 6-OHDA induced Parkinson's disease in rats. Chem Biol Drug Des 2023; 102:955-971. [PMID: 37518817 DOI: 10.1111/cbdd.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects 2%-3% of the population worldwide. Clinical presentation of PD includes motor and non-motor symptoms. The interplay between pathogenic factors such as increased oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis are responsible for neurodegeneration in PD. Intrastriatal administration of 6-hydroxy dopamine (6-OHDA) in rat brain provoked oxidative and nitrosative stress by decreasing endogenous antioxidants such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione reductase. Consequently, interleukin-6, tumour necrosis-α, interferon-γ and cyclooxygenase-2 mediated neuroinflammation leads to mitochondrial dysfunction, involving inhibition of complex-II and IV activities, followed by apoptosis and degeneration of striatal dopaminergic neurons. Degeneration of dopaminergic neurons resulted in reduced dopamine turnover, consequently induced behavioural abnormalities in rats. Activation of peroxisome proliferator-activated receptors (PPARs) have protective role in PD by modulating response of antioxidant enzymes, neuroinflammation and apoptosis in various animal models of PD. Saroglitazar (SG) being dual PPAR-α/γ agonist activates both PPAR-α and PPAR-γ receptors and provide neuroprotection by reducing oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis of dopaminergic cells in 6-OHDA induced PD in rats. Thereby, SG restored striatal histopathological damage and dopamine concentration in rat striatum, and behavioural alterations in rats. Thus, SG proved neuroprotective effects in rat model of PD. Potential benefits of SG in rat model of PD advocates to consider it for further preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Rohit Bhatt
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Devendra Vaishnav
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Vishal Airao
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Tejas Sharma
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ashish Kumar Gupta
- Department of Biophysics, All India Institute of Medical Science (AIIMS), New Delhi, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D) and Department of Microbiology, Parul University, Vadodara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sachin Parmar
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| |
Collapse
|
23
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Rafie F, Rajizadeh MA, Shahbazi M, Pourranjbar M, Nekouei AH, Sheibani V, Peterson D. Effects of voluntary, and forced exercises on neurotrophic factors and cognitive function in animal models of Parkinson's disease. Neuropeptides 2023; 101:102357. [PMID: 37393777 DOI: 10.1016/j.npep.2023.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly. Cognitive dysfunction represents a common and challenging non-motor symptom for people with Parkinson's disease. The number of neurotrophic proteins in the brain is critical in neurodegenerative diseases such as Parkinson's. This research aims to compare the effects of two types of exercise, forced and voluntary, on spatial memory and learning and neurochemical factors (CDNF and BDNF). METHODS In this research, 60 male rats were randomly divided into six groups (n = 10): the control (CTL) group without exercise, the Parkinson's groups without and with forced (FE) and voluntary (VE) exercises, and the sham groups (with voluntary and forced exercise). The animals in the forced exercise group were placed on the treadmill for four weeks (five days a week). At the same time, voluntary exercise training groups were placed in a special cage equipped with a rotating wheel. At the end of 4 weeks, learning and spatial memory were evaluated with the Morris water maze test. BDNF and CDNF protein levels in the hippocampus were measured by the ELISA method. RESULTS The results showed that although the PD group without exercise was at a significantly lower level than other groups in terms of cognitive function and neurochemical factors, both types of exercise, could improve these problems. CONCLUSION According to our results, 4 weeks of voluntary and forced exercises were all found to reverse the cognitive impairments of PD rats.
Collapse
Affiliation(s)
- Forouzan Rafie
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Shahbazi
- Department of Physical Education & Exercise Science, Tehran University, Tehran, Iran
| | - Mohammad Pourranjbar
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir H Nekouei
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Daniel Peterson
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Pheonix VA Medical Center. Phoenix, AZ, USA
| |
Collapse
|
25
|
Barroso-Chinea P, Salas-Hernández J, Cruz-Muros I, López-Fernández J, Freire R, Afonso-Oramas D. Expression of RAD9B in the mesostriatal system of rats and humans: Overexpression in a 6-OHDA rat model of Parkinson's disease. Ann Anat 2023; 250:152135. [PMID: 37460044 DOI: 10.1016/j.aanat.2023.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that affects primarily the dopaminergic (DAergic) neurons of the mesostriatal system, among other nuclei of the brain. Although it is considered an idiopathic disease, oxidative stress is believed to be involved in DAergic neuron death and therefore plays an important role in the onset and development of the disease. RAD9B is a paralog of the RAD9 checkpoint, sharing some similar functions related to DNA damage resistance and apoptosis, as well as the ability to form 9-1-1 heterotrimers with RAD1 and HUS1. METHODS In addition to immunohistochemistry, immunofluorescence and Western-blot analysis, we implemented Quantitative RT-PCR and in situ hybridization techniques. RESULTS We demonstrated RAD9B expression in rat and human mesencephalic DAergic cells using specific markers. Additionally, we observed significant overexpression of RAD9B mRNA (p<0.01) and protein (p<0.01) in the midbrain 48 h after inducing damage with 150 µg of 6-hydroxydopamine (6-OHDA) injected in a rat model of PD. Regarding protein expression, the increased levels were observed in neurons of the mesostriatal system and returned to normal 5 days post-injury. CONCLUSIONS This response to a neurotoxin, known to produce oxidative stress specifically on DAergic neurons indicates the potential importance of RAD9B in this highly vulnerable population to cell death. In this model, RAD9B function appears to provide neuroprotection, as the induced lesion resulted in only mild degeneration. This observation highlights the potential of RAD9B checkpoint protein as a valuable target for future therapeutic interventions aimed at promoting neuroprotection.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| | - Josmar Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Jonathan López-Fernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
26
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
27
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
28
|
Kartik S, Pal R, Chaudhary MJ, Tiwari PC, Nath R, Kumar M. Anti-oxidative and anti-neuroinflammatory role of Necrostatin-1s and docosahexaenoic acid in RIP-1-mediated neurotoxicity in MPTP-induced Parkinson's disease model. Fundam Clin Pharmacol 2023. [PMID: 36807936 DOI: 10.1111/fcp.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Parkinson's disease (PD) is a neuromuscular ailment that affects people in their later years and causes both motor and non-motor deficits. Receptor-interacting protein-1 (RIP-1) is a critical participant in necroptotic cell death, possibly through an oxidant-antioxidant imbalance and cytokine cascade activation in PD pathogenesis. The present study examined the role of RIP-1-mediated necroptosis and neuroinflammation in the MPTP-induced PD mouse model, as well as their protection by Necrostatin-1s (an RIP signalling inhibitor), antioxidant DHA and their functional interaction. BALB/c mice were given acute MPTP therapy (4 injections of 15 mg/kg i.p. at 2-h intervals) on day 1. After MPTP intoxication, Necrostatin-1s (Nec-1s; 8 mg/kg/day, i.p.) and DHA (300 mg/kg/day, p.o.) treatments were given once daily for 7 days. The Nec-1s treatment prevented MPTP-induced behavioural, biochemical and neurochemical alterations, and the addition of DHA increases Nec-1s' neuroprotective impact. In addition, Nec-1s and DHA significantly improve the survival of TH-positive dopaminergic neurons and lower expression levels of the inflammatory cytokines, IL-1β and TNF-α. Furthermore, Nec-1s dramatically reduced RIP-1 expression, whereas DHA had little effect. Our research raises the possibility that neuroinflammatory signalling and acute MPTP-induced necroptosis are both mediated by TNFR1-driven RIP-1 activity. In this study, RIP-1 ablation through Nec-1s and the addition of DHA showed a reduction in the levels of pro-inflammatory and oxidative markers, as well as protection from MPTP-driven dopaminergic degeneration and neurobehavioural changes, suggesting potential therapeutic applications. For a better understanding, additional research about the mechanism(s) behind Nec-1s and DHA is required.
Collapse
Affiliation(s)
- Shipra Kartik
- Department of Pharmacology & Therapeutics, King George's Medical University, 226003, Lucknow, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, 226003, Lucknow, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, India
| | - Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George's Medical University, 226003, Lucknow, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George's Medical University, 226003, Lucknow, India
| | - Madhu Kumar
- Department of Pathology, King George's Medical University, Lucknow, 226003, India
| |
Collapse
|
29
|
The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023; 11:biomedicines11020541. [PMID: 36831077 PMCID: PMC9953742 DOI: 10.3390/biomedicines11020541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.
Collapse
|
30
|
Therapeutic Molecular Insights into the Active Engagement of Cannabinoids in the Therapy of Parkinson's Disease: A Novel and Futuristic Approach. Neurotox Res 2023; 41:85-102. [PMID: 36567416 DOI: 10.1007/s12640-022-00619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death. Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain's dopaminergic systems, a condition for which there is now no treatment. The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson's disease, making it immensely useful in the treatment of such a debilitating illness.
Collapse
|
31
|
Gut-initiated neuroprotection in Parkinson's disease: When microbes turn the tables in the battle against neuroinflammation. Brain Behav Immun 2023; 108:350-352. [PMID: 36549579 DOI: 10.1016/j.bbi.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/22/2022] Open
|
32
|
García E, Arturo García‐De‐La‐Rosa L, Fernanda Veloz‐Castillo M, Ángel Méndez‐Rojas M, Chavarría A. Preservation of Dopamine Levels in a Mouse Model of Parkinson's Disease by Carboxymethylated Silica and Starch Nanoparticles Coupled to Silybin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Esperanza García
- Laboratorio de Neuroinmunología Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S México
| | | | | | | | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina Universidad Nacional Autónoma de México México
| |
Collapse
|
33
|
Santulli C, Bon C, De Cecco E, Codrich M, Narkiewicz J, Parisse P, Perissinotto F, Santoro C, Persichetti F, Legname G, Espinoza S, Gustincich S. Neuronal haemoglobin induces loss of dopaminergic neurons in mouse Substantia nigra, cognitive deficits and cleavage of endogenous α-synuclein. Cell Death Dis 2022; 13:1048. [PMID: 36526614 PMCID: PMC9758156 DOI: 10.1038/s41419-022-05489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) presents the selective loss of A9 dopaminergic (DA) neurons of Substantia Nigra pars compacta (SNpc) and the presence of intracellular aggregates called Lewy bodies. α-synuclein (α-syn) species truncated at the carboxy-terminal (C-terminal) accumulate in pathological inclusions and promote α-syn aggregation and toxicity. Haemoglobin (Hb) is the major oxygen carrier protein in erythrocytes. In addition, Hb is expressed in A9 DA neurons where it influences mitochondrial activity. Hb overexpression increases cells' vulnerability in a neurochemical model of PD in vitro and forms cytoplasmic and nucleolar aggregates upon short-term overexpression in mouse SNpc. In this study, α and β-globin chains were co-expressed in DA cells of SNpc in vivo upon stereotaxic injections of an Adeno-Associated Virus isotype 9 (AAV9) and in DA iMN9D cells in vitro. Long-term Hb over-expression in SNpc induced the loss of about 50% of DA neurons, mild motor impairments, and deficits in recognition and spatial working memory. Hb triggered the formation of endogenous α-syn C-terminal truncated species. Similar α-syn fragments were found in vitro in DA iMN9D cells over-expressing α and β- globins when treated with pre-formed α-syn fibrils. Our study positions Hb as a relevant player in PD pathogenesis for its ability to trigger DA cells' loss in vivo and the formation of C-terminal α-syn fragments.
Collapse
Affiliation(s)
- Chiara Santulli
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Bon
- grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Elena De Cecco
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marta Codrich
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Pietro Parisse
- grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy ,grid.472635.10000 0004 6476 9521Istituto Officina dei Materiali – Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Fabio Perissinotto
- grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Claudio Santoro
- grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Persichetti
- grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Legname
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy ,grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Stefano Espinoza
- grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy ,grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Gustincich
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy ,grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
34
|
Barbiero JK, Ramos DC, Boschen S, Bassani T, Da Cunha C, Vital MABF. Fenofibrate promotes neuroprotection in a model of rotenone-induced Parkinson's disease. Behav Pharmacol 2022; 33:513-526. [PMID: 36094044 DOI: 10.1097/fbp.0000000000000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the etiology of which remains unknown, but some likely causes include oxidative stress, mitochondrial dysfunction and neuroinflammation. Peroxisome-proliferator-activated receptor (PPAR) agonists have been studied in animal models of Parkinson's disease and have shown neuroprotective effects. In this study, we aimed to (1) confirm the neuroprotective effects of PPAR-alpha agonist fenofibrate. To this end, male rats received fenofibrate (100 mg/kg) orally for 15 days, 5 days before the intraperitoneal injections of rotenone (2.5 mg/kg for 10 days). After finishing the treatment with rotenone and fenofibrate, animals were subjected to the open field, the forced swim test and the two-way active avoidance task. Subsequently, rats were euthanized for measurement of dopamine and metabolites levels in the striatum and quantification of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (SNpc). In addition, we aimed to (2) evaluate the neuroprotective effects of fenofibrate on the accumulation of α-synuclein aggregates. Here, rats were treated for 5 days with fenofibrate continuing for over 28 days with rotenone. Then, animals were perfused for immunohistochemistry analysis of α-synuclein. The results showed that fenofibrate reduced depressive-like behavior and memory impairment induced by rotenone. Moreover, fenofibrate diminished the depletion of striatal dopamine and protected against dopaminergic neuronal death in the SNpc. Likewise, the administration of fenofibrate attenuated the aggregation of α-synuclein in the SNpc and striatum in the rotenone-lesioned rats. Our study confirmed that fenofibrate exerted neuroprotective effects because parkinsonian rats exhibited reduced behavioral, neurochemical and immunohistochemical changes, and importantly, a lower number of α-synuclein aggregates.
Collapse
Affiliation(s)
- Janaína K Barbiero
- Departamento de Farmacologia, Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Prunell G, Olivera-Bravo S. A Focus on Astrocyte Contribution to Parkinson's Disease Etiology. Biomolecules 2022; 12:biom12121745. [PMID: 36551173 PMCID: PMC9775515 DOI: 10.3390/biom12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease of high prevalence, characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta, which produces dopamine deficiency, leading to classic motor symptoms. Although PD has traditionally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have an active role in the neurodegeneration observed. In the present review, we discuss several studies evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The revised information provides significant evidence that allows astrocytes to be positioned as crucial players in PD etiology, a factor that needs to be taken into account when considering therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Giselle Prunell
- Laboratorio de Neurodegeneración y Neuroprotección, Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| | - Silvia Olivera-Bravo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| |
Collapse
|
36
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
37
|
Heng Y, Li YY, Wen L, Yan JQ, Chen NH, Yuan YH. Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse. Molecules 2022; 27:7414. [PMID: 36364248 PMCID: PMC9656042 DOI: 10.3390/molecules27217414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2024] Open
Abstract
Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.
Collapse
Affiliation(s)
- Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Qing Yan
- Department of Pharmacy, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union, Medical College, Beijing 100021, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
38
|
Sheta R, Teixeira M, Idi W, Pierre M, de Rus Jacquet A, Emond V, Zorca CE, Vanderperre B, Durcan TM, Fon EA, Calon F, Chahine M, Oueslati A. Combining NGN2 programming and dopaminergic patterning for a rapid and efficient generation of hiPSC-derived midbrain neurons. Sci Rep 2022; 12:17176. [PMID: 36229560 PMCID: PMC9562300 DOI: 10.1038/s41598-022-22158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
The use of human derived induced pluripotent stem cells (hiPSCs) differentiated to dopaminergic (DA) neurons offers a valuable experimental model to decorticate the cellular and molecular mechanisms of Parkinson's disease (PD) pathogenesis. However, the existing approaches present with several limitations, notably the lengthy time course of the protocols and the high variability in the yield of DA neurons. Here we report on the development of an improved approach that combines neurogenin-2 programming with the use of commercially available midbrain differentiation kits for a rapid, efficient, and reproducible directed differentiation of hiPSCs to mature and functional induced DA (iDA) neurons, with minimum contamination by other brain cell types. Gene expression analysis, associated with functional characterization examining neurotransmitter release and electrical recordings, support the functional identity of the iDA neurons to A9 midbrain neurons. iDA neurons showed selective vulnerability when exposed to 6-hydroxydopamine, thus providing a viable in vitro approach for modeling PD and for the screening of small molecules with neuroprotective proprieties.
Collapse
Affiliation(s)
- Razan Sheta
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Maxime Teixeira
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marion Pierre
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada
| | - Aurelie de Rus Jacquet
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Vincent Emond
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
| | - Cornelia E. Zorca
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoît Vanderperre
- grid.38678.320000 0001 2181 0211Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC Canada ,Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Montreal, Canada
| | - Thomas M. Durcan
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A. Fon
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Frédéric Calon
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - Mohamed Chahine
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
39
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
40
|
Ukgansan Protects Dopaminergic Neurons against MPTP-Induced Neurotoxicity via the Nurr1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7393557. [PMID: 36193151 PMCID: PMC9526663 DOI: 10.1155/2022/7393557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Nuclear receptor-related 1 protein (Nurr1) is a nuclear hormone receptor that protects dopaminergic neurons and is a promising therapeutic target for Parkinson’s disease (PD). Parkinson’s disease is a neurodegenerative disorder caused by the destruction of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the long-term use of conventional dopamine replacement therapies causes many side effects, highlighting the need for new treatments such as complementary and alternative medicine. Ukgansan has been used in East Asia to treat neurological disorders, including neurodegenerative diseases, and has been reported to have strong effects in treating patients with PD. In addition, recent studies have reported that Ukgansan has a neuroprotective potential. However, there are no detailed studies on the mechanism of action of Nurr1. Thus, unlike previous studies, we focused on the Nurr1 pathways. We confirmed neurotoxicity and apoptosis signaling in the differentiated PC12 cells. In addition, to confirm the protective effect of Ukgansan, we conducted behavioral tests (motor coordination and postural balance, and bradykinesia) and tyrosine hydroxylase immunohistochemistry in both the SNpc and striatum. Specifically, this study demonstrated the effect of Ukgansan in protecting dopaminergic neurons and increasing Nurr1 involved in maintaining dopamine levels by activating Nurr1 expression in MPTP-induced PC12 cells and a mouse model of PD. In this mechanism, the loss of dopaminergic neurons and dopamine depletion were suppressed, and motor impairment caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity was improved. These results provide evidence that Ukgansan ameliorates PD’s motor symptoms and progression.
Collapse
|
41
|
Guo SY, Guan RX, Chi XD, Yue-Zhang, Sui AR, Zhao W, Kundu S, Yang JY, Zhao J, Li S. Scorpion venom heat-resistant synthetic peptide protects dopamine neurons against 6-hydroxydopamine neurotoxicity in C. elegans. Brain Res Bull 2022; 190:195-203. [DOI: 10.1016/j.brainresbull.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
|
42
|
Parekh P, Serra M, Allaw M, Perra M, Marongiu J, Tolle G, Pinna A, Casu MA, Manconi M, Caboni P, Manzoni OJJ, Morelli M. Characterization of Nasco grape pomace-loaded nutriosomes and their neuroprotective effects in the MPTP mouse model of Parkinson’s disease. Front Pharmacol 2022; 13:935784. [PMID: 36059998 PMCID: PMC9428270 DOI: 10.3389/fphar.2022.935784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Grape pomaces have recently received great attention for their richness in polyphenols, compounds known to exert anti-inflammatory and antioxidant effects. These pomaces, however, have low brain bioavailability when administered orally due to their extensive degradation in the gastrointestinal tract. To overcome this problem, Nasco pomace extract was incorporated into a novel nanovesicle system called nutriosomes, composed of phospholipids (S75) and water-soluble maltodextrin (Nutriose® FM06). Nutriosomes were small, homogeneously dispersed, had negative zeta potential, and were biocompatible with intestinal epithelial cells (Caco-2). Nasco pomace extract resulted rich in antioxidant polyphenols (gallic acid, catechin, epicatechin, procyanidin B2, and quercetin). To investigate the neuroprotective effect of Nasco pomace in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), Nasco nutriosomes or Nasco suspension was administered intragastrically and their neuroprotective effects were evaluated. Degeneration of nigro-striatal dopaminergic neurons induced by subacute MPTP treatment, the pathological hallmark of PD, was assessed through immunohistochemical evaluation of tyrosine hydroxylase (TH) in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc), and the dopamine transporter (DAT) in CPu. Immunohistochemical analysis revealed that Nasco nutriosomes significantly prevented the reduction in TH- and DAT-positive fibres in CPu, and the number of TH-positive cells in SNc following subacute MPTP treatment, while Nasco suspension counteracted MPTP toxicity exclusively in SNc. Overall, these results highlight the therapeutic effects of Nasco pomace extract when administered in a nutriosome formulation in the subacute MPTP mouse model of PD and validate the effectiveness of the nutriosome preparation over suspension as an innovative nano-drug delivery system for in vivo administration.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- *Correspondence: Marcello Serra,
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Giulia Tolle
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | | | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
43
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci 2022; 14:955258. [PMID: 35965783 PMCID: PMC9363704 DOI: 10.3389/fnsyn.2022.955258] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are peptide hormones and growth factors. A major pathological feature of both Alzheimer’s dis-ease (AD) and Parkinson’s disease (PD) is the loss of synaptic transmission in the cortex in AD and the loss of dopaminergic synapses in the nigra-striatal dopaminergic projection. Several studies demonstrate that GLP-1 and GIP receptor agonists protect synapses and synaptic transmission from the toxic events that underlie AD and PD. In a range of AD animal models, treatment with GLP-1, GIP, or dual-GLP-1/GIP receptor agonists effectively protected cognition, synaptic trans-mission, long-term potentiation (LTP), and prevented the loss of synapses and neurons. In PD models, dopaminergic production resumed and synapses became functional again. Importantly, the GLP-1 receptor agonists exendin-4 and liraglutide have shown good protective effects in clinical trials in AD and PD patients. Studies show that growth factors and peptide drugs that can cross the blood–brain barrier (BBB) better are more potent than those that do not cross the BBB. We therefore developed dual-GLP-1/GIP receptor agonists that can cross the BBB at an enhanced rate and showed superior protective properties on synapses in animal models of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
44
|
Alarcon-Gil J, Sierra-Magro A, Morales-Garcia JA, Sanz-SanCristobal M, Alonso-Gil S, Cortes-Canteli M, Niso-Santano M, Martínez-Chacón G, Fuentes JM, Santos A, Perez-Castillo A. Neuroprotective and Anti-Inflammatory Effects of Linoleic Acid in Models of Parkinson's Disease: The Implication of Lipid Droplets and Lipophagy. Cells 2022; 11:cells11152297. [PMID: 35892594 PMCID: PMC9331796 DOI: 10.3390/cells11152297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease. The principal pathological feature of PD is the progressive loss of dopaminergic neurons in the ventral midbrain. This pathology involves several cellular alterations: oxidative stress, mitochondrial dysfunction, loss of proteostasis, and autophagy impairment. Moreover, in recent years, lipid metabolism alterations have become relevant in PD pathogeny. The modification of lipid metabolism has become a possible way to treat the disease. Because of this, we analyzed the effect and possible mechanism of action of linoleic acid (LA) on an SH-SY5Y PD cell line model and a PD mouse model, both induced by 6-hydroxydopamine (6-OHDA) treatment. The results show that LA acts as a potent neuroprotective and anti-inflammatory agent in these PD models. We also observed that LA stimulates the biogenesis of lipid droplets and improves the autophagy/lipophagy flux, which resulted in an antioxidant effect in the in vitro PD model. In summary, we confirmed the neuroprotective effect of LA in vitro and in vivo against PD. We also obtained some clues about the novel neuroprotective mechanism of LA against PD through the regulation of lipid droplet dynamics.
Collapse
Affiliation(s)
- Jesus Alarcon-Gil
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Cellular Neurobiology Laboratory, Neurobiology Department, Instituto Ramón y Cajal de Investigaciones Sanitarias, Hospital Ramón y Cajal, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, 28029 Madrid, Spain
| | - Ana Sierra-Magro
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
| | - Jose A. Morales-Garcia
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
| | - Marta Cortes-Canteli
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz, 28040 Madrid, Spain
| | - Mireia Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 06006 Cáceres, Spain
| | - Guadalupe Martínez-Chacón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 06006 Cáceres, Spain
| | - Jose M. Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 06006 Cáceres, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain; (J.A.-G.); (A.S.-M.); (J.A.M.-G.); (M.S.-S.); (S.A.-G.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.C.-C.); (M.N.-S.); (G.M.-C.); (J.M.F.); (A.S.)
- Correspondence:
| |
Collapse
|
45
|
Hu YK, Bai XL, Yuan H, Zhang Y, Ayeni EA, Liao X. Polyphenolic Glycosides from the Fruits Extract of Lycium ruthenicum Murr and Their Monoamine Oxidase B Inhibitory and Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7968-7980. [PMID: 35729693 DOI: 10.1021/acs.jafc.2c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruits ofLycium ruthenicum Murr have long been consumed as health food and used in folk medicine in China. Apart from the well-known polysaccharides, the active small molecular constituents in this fruit have not been fully studied. In this work, a systematic phytochemical study was carried out to investigate the small molecules and their potential health benefits. Nine new polyphenolic glycosides, lyciumserin A-I (1-9), together with 16 known compounds (10-25), were isolated and elucidated by high-resolution electrospray ionization mass spectrometry and comprehensive NMR analyses in combination with chemical hydrolysis. Compounds 1, 2, and 16 exhibited moderate inhibitory activity of monoamine oxidase B (MAO-B), while compounds 1 (50 μM) and 2 (100 μM) displayed significant neuroprotective effects (69.22 and 72.38% of cell viability, respectively) in the 6-hydroxydopamine-induced injury of the PC12 cell model (54.41%), comparable to the positive drug rasagiline (70.45%). The neuroprotective effect of 1 and 2 was further evidenced by the observation of the morphological change and fluorescein diacetate/propidium iodide staining. In addition, the levels of the major active compounds (1, 3, 5/6, and 16-18) vary from 21.5 to 892.3 μg/g. This is the first report on phenolic glycosides from the fruits ofL. ruthenicum Murr that possess both significant MAO-B inhibitory and neuroprotective effects, indicating the promising potential of the fruits for the development of health care products and even therapeutic agents for the treatment of Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
46
|
Schor JS, Gonzalez Montalvo I, Spratt PWE, Brakaj RJ, Stansil JA, Twedell EL, Bender KJ, Nelson AB. Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. eLife 2022; 11:e75253. [PMID: 35786442 PMCID: PMC9342952 DOI: 10.7554/elife.75253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) relieves many motor symptoms of Parkinson's disease (PD), but its underlying therapeutic mechanisms remain unclear. Since its advent, three major theories have been proposed: (1) DBS inhibits the STN and basal ganglia output; (2) DBS antidromically activates motor cortex; and (3) DBS disrupts firing dynamics within the STN. Previously, stimulation-related electrical artifacts limited mechanistic investigations using electrophysiology. We used electrical artifact-free GCaMP fiber photometry to investigate activity in basal ganglia nuclei during STN DBS in parkinsonian mice. To test whether the observed changes in activity were sufficient to relieve motor symptoms, we then combined electrophysiological recording with targeted optical DBS protocols. Our findings suggest that STN DBS exerts its therapeutic effect through the disruption of movement-related STN activity, rather than inhibition or antidromic activation. These results provide insight into optimizing PD treatments and establish an approach for investigating DBS in other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jonathan S Schor
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Isabelle Gonzalez Montalvo
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Perry WE Spratt
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Rea J Brakaj
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Jasmine A Stansil
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Emily L Twedell
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Kevin J Bender
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra B Nelson
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
47
|
Medvedev A, Buneeva O. Tryptophan Metabolites as Mediators of Microbiota-Gut-Brain Communication: Focus on Isatin. Front Behav Neurosci 2022; 16:922274. [PMID: 35846785 PMCID: PMC9280024 DOI: 10.3389/fnbeh.2022.922274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022] Open
Abstract
Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting various behavioral, biological, and pharmacological activities. Synthesis of isatin includes several crucial stages: cleavage of the tryptophan side chain and subsequent oxidation of the indole nucleus. Although these stages require concerted action of bacterial and host enzymes, there are two pathways of isatin formation: the host and bacterial pathways. Isatin acts as a neuroprotector in different experimental models of neurodegeneration. Its effects are realized via up- and downregulation of isatin-responsive genes and via interaction with numerous isatin-binding proteins identified in the brain. The effect of isatin on protein-protein interactions in the brain may be important for realization of weak inhibition of multiple receptor targets.
Collapse
|
48
|
Morais VA, Vos M. Reduced penetrance of Parkinson's disease models. MED GENET-BERLIN 2022; 34:117-124. [PMID: 38835909 PMCID: PMC11006373 DOI: 10.1515/medgen-2022-2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The etiology and progression of Parkinson's Disease (PD), the second most prevalent neurological disorder, have been widely investigated for several decades; however, a cure is still lacking. Despite the development of several neurotoxins and animal models to study this rather heterogeneous disease, a complete recapitulation of the neurophysiology and neuropathology of PD has not been fully achieved. One underlying cause for this could be that mutations in PD-associated genes have reduced penetrance. Therefore, the quest for novel PD models is required where a double hit approach needs to be evoked - a combination of genetic alterations and environmental factors need to be accounted for in one unique model simultaneously.
Collapse
Affiliation(s)
- Vanessa A Morais
- iMM, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160 building 67, 23562 Luebeck, Germany
| |
Collapse
|
49
|
Cai G, Lin F, Wu D, Lin C, Chen H, Wei Y, Weng H, Chen Z, Wu M, Huang E, Ye Z, Ye Q. Rosmarinic Acid Inhibits Mitochondrial Damage by Alleviating Unfolded Protein Response. Front Pharmacol 2022; 13:859978. [PMID: 35652041 PMCID: PMC9149082 DOI: 10.3389/fphar.2022.859978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are essential organelles that perform important roles in cell biologies such as ATP synthesis, metabolic regulation, immunomodulatory, and apoptosis. Parkinson’s disease (PD) is connected with mitochondrial neuronal damage related to mitochondrial unfolded protein response (mtUPR). Rosmarinic acid (RA) is a naturally occurring hydroxylated polyphenolic chemical found in the Boraginaceae and the Labiatae subfamily Nepetoideae. This study looked into RA’s protective effect against mitochondrial loss in the substantia nigra (SN) caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the underlying mechanism associated with the mtUPR. Pretreatment with RA reduced motor impairments and dopaminergic neuronal degeneration in the SN of a mouse model injected with MPTP. Pretreatment of SH-SY5Y cells from cell viability loss, morphological damage, and oxidative stress. Furthermore, RA pre-injection suppressed MPTP-induced mtUPR, lowered the expression of HSPA9, HSPE1, CLPP, LONP1, and SIRT 4, and protected the MPTP-mice and SH-SY5Y cells from mitochondrial failure. These findings imply that RA can prevent Parkinson’s disease by preventing mitochondrial damage in dopaminergic neurons in Parkinson’s disease via alleviating mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Dihang Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chenxin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Huiyun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Minxia Wu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - En Huang
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| |
Collapse
|
50
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|