1
|
Ihara D, Oishi R, Kasahara S, Yamamoto A, Kaito M, Tabuchi A. The BDNF-ERK/MAPK axis reduces phosphatase and actin regulator1, 2 and 3 (PHACTR1, 2 and 3) mRNA expressions in cortical neurons. Drug Discov Ther 2024; 18:255-259. [PMID: 39183043 DOI: 10.5582/ddt.2024.01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.
Collapse
Affiliation(s)
- Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryotaro Oishi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shiho Kasahara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Aimi Yamamoto
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Maki Kaito
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Li Y, Chen X, Lan T, Wang W, Wang C, Chang M, Yu Z, Yu S. Targeting Phactr4 to rescue chronic stress-induced depression-like behavior in rats via regulating neuroinflammation and neuroplasticity. Int J Biol Macromol 2024; 273:132854. [PMID: 38838879 DOI: 10.1016/j.ijbiomac.2024.132854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Depression is a neuropsychiatric disorder characterized by persistent pleasure loss and behavioral despair. However, the potential mechanisms and therapeutic targets for depression treatment remain unclear. Therefore, identifying the underlying pathogenesis of depression would promote the development of novel treatment and provide effective targets for antidepressant drugs. In this study, proteomics analysis showed that the expression level of phosphatase and actin regulator 4 (Phactr4) was significantly increased in the CA1 hippocampus of depressed rats. The upregulated Phactr4 might induce dysfunction of the synaptic structure via suppressing the p-LIMK/p-Cofilin signaling pathway, and promote neuroinflammation via activating the NF-κB/NLRP3 pathway, which ultimately contributes to the pathogenesis of depression. In contrast, the downregulation of Phactr4 in hippocampal CA1 of depressed rats alleviated depression-like behaviors, along with reducing neuroinflammation and improving synaptic plasticity. In conclusion, these findings provide evidence that Phactr4 plays an important role in regulating neuroinflammatory response and impairment of synaptic plasticity, effects seem to involve in the pathogenesis of depression, and Phactr4 may serve as a potential target for antidepressant treatment.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Changmin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengni Chang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaoying Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Previtali R, Leidi A, Basso M, Izzo G, Stignani C, Spaccini L, Iascone M, Veggiotti P, Bova SM. Case report: Early-onset parkinsonism among the neurological features in children with PHACTR1 variants. Front Neurol 2023; 14:1181015. [PMID: 37483454 PMCID: PMC10359812 DOI: 10.3389/fneur.2023.1181015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
PACHTR1 is expressed in cardiovascular and neurological tissues. In the brain, it has a role in pre- and post-natal maturation. Previously reported PHACTR1-mutated patients showed early-onset epilepsy and intellectual disability. We describe two unreported cases with de novo pathogenic variants in PHACTR1 and their clinical pictures, compared with those of cases already reported in the literature. In line with previous reports, the two patients presented early-onset developmental and epileptic encephalopathy. In addition, one patient developed a speech disorder and a progressive movement disorder characterized by hypertonus, hypo-bradykinesia, hypomimia, ataxic gait, and retropulsion. She was treated with levodopa without any clinical improvement. Pathogenic variants in PHACTR1 may result in a cardiological or neurological phenotype. Severe developmental delay, intellectual disability, and early-onset developmental and epileptic encephalopathy are the main features of PHACTR1-mutated patients with neurological involvement. Movement and speech disorders have never previously been described and could be new features of the neurological phenotype.
Collapse
Affiliation(s)
| | | | | | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Cecilia Stignani
- Department of Pediatric Orthopedics, V. Buzzi Children's Hospital, Milan, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Maria Iascone
- Molecular Genetics Section, Medical Genetics Laboratory, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pierangelo Veggiotti
- Department of Biomedical and Clinical Sciences, L. Sacco, University of Milan, Milan, Italy
- Pediatric Neurology Unit, Vittore Buzzi Children's Hospital, Milan, Italy
| | | |
Collapse
|
4
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
5
|
MicroRNA Expression Profile in TSC Cell Lines and the Impact of mTOR Inhibitor. Int J Mol Sci 2022; 23:ijms232214493. [PMID: 36430972 PMCID: PMC9694073 DOI: 10.3390/ijms232214493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess the potential implication of microRNA on tuberous sclerosis (TSC) pathogenesis by performing microRNA profiling on cell lines silencing TSC1 or TSC2 genes using qPCR panels, before and after incubation with rapamycin. Significant differences in expression were observed between samples before and after rapamycin treatment in nineteen miRNAs in TSC1, five miRNAs in TSC2 and seven miRNAs in controls. Of miRNAs dysregulated before rapamycin treatment, three normalized after treatment in the TSC1 group (miR-21-3p, miR-433-3p, let-7g-3p) and one normalized in the TSC2 group (miR-1224-3p). Of the miRNAs dysregulated before rapamycin treatment in the TSC1 and TSC2 groups, two did not normalize after treatment (miR-33a-3p, miR-29a-3p). The results of the possible targets indicated that there are four common genes with seed regions susceptible to regulation by those miRNAs: ZBTB20, PHACTR2, PLXNC1 and ATP1B4. Our data show no changes in mRNA expression of these targets after rapamycin treatment. In conclusion, results of our study indicate the involvement of miRNA dysregulation in the pathogenesis of TSC. Some of the miRNA might be used as markers of treatment efficacy and autonomic miRNA as a target for future therapy.
Collapse
|
6
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
7
|
Park J, Kim J, Kim E, Kim WJ, Won S. Prenatal lead exposure and cord blood DNA methylation in the Korean Exposome Study. ENVIRONMENTAL RESEARCH 2021; 195:110767. [PMID: 33515580 DOI: 10.1016/j.envres.2021.110767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Prenatal lead exposure has been reported to affect infant growth and nervous system development, as well as to influence DNA methylation. We conducted an epigenome-wide association study to identify associations between prenatal lead exposure and cord blood DNA methylation in Korean infants. METHODS Cord blood samples were assayed with the Illumina HumanMethylationEPIC BeadChip kits, and maternal blood lead levels during early and late pregnancy, as well as cord blood lead level, were measured. The association between CpG methylation and lead level was analyzed using the limma package, with adjusting for infant sex, maternal pre-pregnancy body mass index, and estimated leukocyte composition. RESULTS Among 364 blood samples (182 males and 182 females), those for which maternal and cord blood lead concentrations during early and later pregnancy was known were used for analysis. Maternal lead concentration in blood during early pregnancy was significantly associated with the methylation status of specific positions. After data stratification by infant sex, we found that, in males, the level of maternal blood lead was associated with 18 CpG sites during early pregnancy, and with one CpG site near the NBAS gene, during late pregnancy. In female samples, there was no significant association between DNA methylation and lead concentrations. CONCLUSIONS Prenatal lead exposure was associated with altered, gender-specific patterns of DNA methylation in Korean infants.
Collapse
Affiliation(s)
- Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Esther Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea.
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Miyata T, Kikuchi K, Ihara D, Kaito M, Ishibashi Y, Hakamata T, Yamada T, Ishikawa M, Mizukoshi M, Shoji S, Fukuchi M, Tsuda M, Hida Y, Ohtsuka T, Kaneda M, Tabuchi A. Neuron-enriched phosphatase and actin regulator 3 (Phactr3)/ nuclear scaffold-associated PP1-inhibiting protein (Scapinin) regulates dendritic morphology via its protein phosphatase 1-binding domain. Biochem Biophys Res Commun 2020; 528:322-329. [DOI: 10.1016/j.bbrc.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
|
9
|
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). FASEB J 2020; 34:1591-1601. [PMID: 31914597 PMCID: PMC6956700 DOI: 10.1096/fj.201902366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.
Collapse
Affiliation(s)
- Syed Rydwan Ali
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Prechova
- Signalling and Transcription Group, The Francis Crick Institute, London, UK
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ
| | - Leonard Konrad Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Jing Y, Zhang L, Xu Z, Chen H, Ju S, Ding J, Guo Y, Tian H. Phosphatase Actin Regulator-1 (PHACTR-1) Knockdown Suppresses Cell Proliferation and Migration and Promotes Cell Apoptosis in the bEnd.3 Mouse Brain Capillary Endothelial Cell Line. Med Sci Monit 2019; 25:1291-1300. [PMID: 30772888 PMCID: PMC6391858 DOI: 10.12659/msm.912586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The phosphatase actin regulator-1 (PHACTR-1) gene on chromosome 6 encodes an actin and protein phosphatase 1 (PP1) binding protein, Phactr-1, which is highly expressed in brain tissues. Phactr-1 expression is involved in physiological and pathological cerebral microvascular events. This study aimed to investigate the role of expression of Phactr-1 in a mouse brain capillary endothelial cell line, bEnd.3, by knockdown the PHACTR-1 gene. MATERIAL AND METHODS Three bEnd.3 cell groups were studied, CON (normal control cells), NC (control scramble transfected cells), and KD (cells with PHACTR-1 gene knockdown). The PHACTR-1 gene was knocked down using transfection with small hairpin RNA (shRNA). In the three cell groups cell proliferation, migration, and apoptosis were studied by MTT and colony formation assays, transwell and scratch assays, and flow cytometry. The related cell pathways of associated with Phactr-1 knockdown were studied by Western blot. RESULTS Phactr-1 knockdown suppressed bEnd.3 cell proliferation and migration, promoted cell apoptosis, and downregulated the expressions of migration-associated proteins, including matrix metalloproteinase (MMP)-2 and MMP-9 and upregulated apoptosis-associated proteins, including Bax, Bcl-2, cleaved caspase-3, and caspase-3. CONCLUSIONS Phactr-1 was shown to have a role in the inhibition of endothelial cell proliferation and migration, promoted cell apoptosis, and regulated matrix metalloproteinases and apoptosis-associated proteins. These findings indicate that the expression of the Phactr-1 should be studied further in the cerebral microvasculature, both in vitro and in vivo, regarding its potential as a diagnostic and therapeutic target for cerebral microvascular disease.
Collapse
|
11
|
Kim JH, Jang MJ, Choi J, Lee E, Song KD, Cho J, Kim KT, Cha HJ, Sun W. Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Sci Rep 2018; 8:12815. [PMID: 30143733 PMCID: PMC6109102 DOI: 10.1038/s41598-018-31153-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Tissue-clearing techniques have received great attention for volume imaging and for the potential to be applied in optical diagnosis. In principle, tissue clearing is achieved by reducing light scattering through a combination of lipid removal, size change, and matching of the refractive index (RI) between the imaging solution and the tissue. However, the contributions of these major factors in tissue clearing have not been systematically evaluated yet. In this study, we experimentally measured and mathematically calculated the contribution of these factors to the clearing of four organs (brain, liver, kidney, and lung). We found that these factors differentially influence the maximal clearing efficacy of tissues and the diffusivity of materials inside the tissue. We propose that these physical properties of organs can be utilized for the quality control (Q/C) process during tissue clearing, as well as for the monitoring of the pathological changes of tissues.
Collapse
Affiliation(s)
- June Hoan Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Min Jee Jang
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jungyoon Choi
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Kyung-Deok Song
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, 02841, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Keun-Tae Kim
- Department of Life Science, Sogang University, 35th Baekbum-ro Mapo-gu, Seoul, 04107, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Department of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Johnson SA, Spollen WG, Manshack LK, Bivens NJ, Givan SA, Rosenfeld CS. Hypothalamic transcriptomic alterations in male and female California mice ( Peromyscus californicus) developmentally exposed to bisphenol A or ethinyl estradiol. Physiol Rep 2018; 5:5/3/e13133. [PMID: 28196854 PMCID: PMC5309579 DOI: 10.14814/phy2.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine‐disrupting chemical (EDC) prevalent in many household items. Rodent models and human epidemiological studies have linked this chemical to neurobehavior impairments. In California mice, developmental exposure to BPA results in sociosexual disorders at adulthood, including communication and biparental care deficits, behaviors that are primarily regulated by the hypothalamus. Thus, we sought to examine the transcriptomic profile in this brain region of juvenile male and female California mice offspring exposed from periconception through lactation to BPA or ethinyl estradiol (EE, estrogen present in birth control pills and considered a positive estrogen control for BPA studies). Two weeks prior to breeding, P0 females were fed a control diet, or this diet supplemented with 50 mg BPA/kg feed weight or 0.1 ppb EE, and continued on the diets through lactation. At weaning, brains from male and female offspring were collected, hypothalamic RNA isolated, and RNA‐seq analysis performed. Results indicate that BPA and EE groups clustered separately from controls with BPA and EE exposure leading to unique set of signature gene profiles. Kcnd3 was downregulated in the hypothalamus of BPA‐ and EE‐exposed females, whereas Tbl2, Topors, Kif3a, and Phactr2 were upregulated in these groups. Comparison of transcripts differentially expressed in BPA and EE groups revealed significant enrichment of gene ontology terms associated with microtubule‐based processes. Current results show that perinatal exposure to BPA or EE can result in several transcriptomic alterations, including those associated with microtubule functions, in the hypothalamus of California mice. It remains to be determined whether these genes mediate BPA‐induced behavioral disruptions.
Collapse
Affiliation(s)
- Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Animal Sciences, University of Missouri, Columbia, Missouri
| | - William G Spollen
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Informatics Research Core Facility University of Missouri, Columbia, Missouri
| | - Lindsey K Manshack
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri
| | - Scott A Givan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri .,Informatics Research Core Facility University of Missouri, Columbia, Missouri.,Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri .,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Ito H, Mizuno M, Noguchi K, Morishita R, Iwamoto I, Hara A, Nagata KI. Expression analyses of Phactr1 (phosphatase and actin regulator 1) during mouse brain development. Neurosci Res 2018; 128:50-57. [DOI: 10.1016/j.neures.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
|
14
|
Mosakhani N, Sarhadi V, Panula P, Partinen M, Knuutila S. Narcolepsy patients' blood-based miRNA expression profiling: miRNA expression differences with Pandemrix vaccination. Acta Neurol Scand 2017; 136:462-469. [PMID: 28251619 DOI: 10.1111/ane.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Narcolepsy is a neurological sleep disorder characterized by excessive daytime sleepiness and nighttime sleep disturbance. Among children and adolescents vaccinated with Pandemrix vaccine in Finland and Sweden, the number of narcolepsy cases increased. Our aim was to identify miRNAs involved in narcolepsy and their association with Pandemrix vaccination. MATERIALS AND METHODS We performed global miRNA proofing by miRNA microarrays followed by RT-PCR verification on 20 narcolepsy patients (Pandemrix-associated and Pandemrix-non-associated) and 17 controls (vaccinated and non-vaccinated). RESULTS Between all narcolepsy patients and controls, 11 miRNAs were differentially expressed; 17 miRNAs showed significantly differential expression between Pandemrix-non-associated narcolepsy patients and non-vaccinated healthy controls. MiR-188-5p and miR-4499 were over-expressed in narcolepsy patients vs healthy controls. Two miRNAs, miR-1470 and miR-4455, were under-expressed in Pandemrix-associated narcolepsy patients vs Pandemrix-non-associated narcolepsy patients. CONCLUSIONS We identified miRNA expression patterns in narcolepsy patients that linked them to mRNA targets known to be involved in brain-related pathways or brain disorders.
Collapse
Affiliation(s)
- N. Mosakhani
- Department of Pathology; University of Helsinki; Helsinki Finland
| | - V. Sarhadi
- Department of Pathology; University of Helsinki; Helsinki Finland
| | - P. Panula
- Neuroscience Center; Biomedicum; University of Helsinki; Helsinki Finland
| | - M. Partinen
- Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Helsinki Sleep Clinic; Vitalmed Research Center; Helsinki Finland
| | - S. Knuutila
- Department of Pathology; University of Helsinki; Helsinki Finland
| |
Collapse
|
15
|
Chang WH, Kim H, Sun W, Kim JY, Shin YI, Kim YH. Effects of extradural cortical stimulation on motor recovery in a rat model of subacute stroke. Restor Neurol Neurosci 2016; 33:589-96. [PMID: 25735240 DOI: 10.3233/rnn-140445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Previous studies demonstrated that administering extradural cortical stimulation (ECS) to rats during the acute phase of a photothrombotic infarct enhances motor recovery. However, the effect of ECS during the subacute phase was unknown. We aimed to evaluate the effects of ECS on motor recovery in a rat model of subacute photothrombotic stroke. METHODS Photothrombotic ischemic injury to the left sensorimotor cortex (SMC) was induced in 41 male Sprague-Dawley rats using Rose-bengal dye (20 mg/kg) and cold light. The rats were randomly divided into two groups: ECS on infarcted SMC (ECS group) and no ECS on infarcted SMC (non-stimulated group). The ECS group received continuous ECS for 14 days starting from day 5 after the stroke onset. Behavioral training with the single-pellet reaching task (SPRT) was performed daily for all of the rats from the fifth day after stroke onset. After 19 days, brain sections were immunostained to allow the quantification of infarct volumes and the evaluation of the neuronal markers. RESULTS The SPRT scores showed significantly faster and greater improvement in the ECS group than in the non-stimulated group. There were no significant differences in infarct size. However, in the ECS group, significantly more doublecortin-labeled cells were identified close to the penumbra region of the cerebral cortex. CONCLUSIONS ECS in the subacute phase improved the behavior motor function in the stroke rat model, and induced a significant axonal sprouting in the peri-infarct area.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Joo Yeon Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Yong-Il Shin
- Department of Physical and Rehabilitation Medicine, Pusan National University College of Medicine, Yangsan Hospital, Pusan, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
16
|
Kim JY, Sun W, Park E, Lee J, Kim H, Shin YI, Kim YH, Chang WH. Day/night difference in extradural cortical stimulation for motor relearning in a subacute stroke rat model. Restor Neurol Neurosci 2016; 34:379-87. [PMID: 26923617 DOI: 10.3233/rnn-150593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The aim of this study was to assess the proper timing of extradural cortical stimulation (ECS) on the motor relearning in a rat model of subacute photothrombotic stroke. METHODS Photothrombotic infarction was induced on the dominant sensorimotor cortex in male Sprague-Dawley rats after training in a single-pellet reaching task (SPRT). Rats were randomly divided into three groups after stroke: ECS during the inactive period (Day-ECS group), ECS during the active period (Night-ECS group) and no ECS (Non-stimulated group). Six sham-operated rats were assigned to the control group. The Day- and Night-ECS group received continuous ECS for 12 hours during the day or night for 2 weeks from day 4 after the stroke. Behavioral assessment with SPRT was performed daily. RESULTS SPRT showed a significantly faster and greater improvement in the Day and Night-ECS groups than in the Non-stimulated group. In the Day- and Night-ECS groups, the success rate of SPRT differed significantly from Non-stimulated group on day 11 and day 8, respectively. In addition, the Night-ECS group showed a significantly higher SPRT success rate than the Day-ECS group from days 10 to 13. CONCLUSION ECS during the active period might be more effective for motor relearning in the subacute stroke rat model.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeong Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Pusan, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, Kim SY, Lee HJ, Cho K, Jung N, Hur EM, Jeong SJ, Moon C, Choe Y, Rhyu IJ, Kim H, Sun W. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep 2016; 6:18631. [PMID: 26750588 PMCID: PMC4707495 DOI: 10.1038/srep18631] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the structural organization of organs and organisms at the cellular level is a fundamental challenge in biology. This task has been approached by reconstructing three-dimensional structure from images taken from serially sectioned tissues, which is not only labor-intensive and time-consuming but also error-prone. Recent advances in tissue clearing techniques allow visualization of cellular structures and neural networks inside of unsectioned whole tissues or the entire body. However, currently available protocols require long process times. Here, we present the rapid and highly reproducible ACT-PRESTO (active clarity technique-pressure related efficient and stable transfer of macromolecules into organs) method that clears tissues or the whole body within 1 day while preserving tissue architecture and protein-based signals derived from endogenous fluorescent proteins. Moreover, ACT-PRESTO is compatible with conventional immunolabeling methods and expedites antibody penetration into thick specimens by applying pressure. The speed and consistency of this method will allow high-content mapping and analysis of normal and pathological features in intact organs and bodies.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Jungyoon Choi
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Youhwa Jo
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Yu Jin Jang
- Department of Neural Development and Disease, Korea Brain Research Institute, 701-300 Daegu, Korea
| | - Hye Myeong Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, 701-300 Daegu, Korea
| | - So Yeun Kim
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ho-Jae Lee
- Logos Biosystems, Inc. Anyang-Si, Gyunggi-Do, 431-755, Republic of Korea
| | - Keunchang Cho
- Logos Biosystems, Inc. Anyang-Si, Gyunggi-Do, 431-755, Republic of Korea
| | - Neoncheol Jung
- Logos Biosystems, Inc. Anyang-Si, Gyunggi-Do, 431-755, Republic of Korea
| | - Eun Mi Hur
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sung Jin Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute, 701-300 Daegu, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Youngshik Choe
- Department of Neural Development and Disease, Korea Brain Research Institute, 701-300 Daegu, Korea
| | - Im Joo Rhyu
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea
| |
Collapse
|
18
|
Cho HM, Kim JY, Kim H, Sun W. Phosphatase and actin regulator 4 is associated with intermediate filaments in adult neural stem cells and their progenitor astrocytes. Histochem Cell Biol 2014; 142:411-9. [PMID: 24748504 DOI: 10.1007/s00418-014-1220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Phosphatase and actin regulator 4 (Phactr4) is a newly discovered protein that inhibits protein phosphatase 1 and shows actin-binding activity. We previously found that Phactr4 is expressed in the neurogenic niche in adult mice, although its precise subcellular localization and possible function in neural stem cells (NSCs) is not yet understood. Here, we show that Phactr4 formed punctiform clusters in the cytosol of subventricular zone-derived adult NSCs and their progeny in vitro. These Phactr4 signals were not associated with F-actin fibers but were closely associated with intermediate filaments such as nestin and glial fibrillary acidic protein (GFAP) fibers. Direct binding of Phactr4 with nestin and GFAP filaments was demonstrated using Duolink protein interaction analyses and immunoprecipitation assays. Interestingly, when nestin fibers were de-polymerized during the mitosis or by the phosphatase inhibitor, Phactr4 appeared to be dissociated from nestin, suggesting that their protein interaction is regulated by the protein phosphorylation. These results suggest that Phactr4 forms functional associations with intermediate filament networks in adult NSCs.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea
| | | | | | | |
Collapse
|
19
|
Castiglione A, Guaran V, Astolfi L, Orioli E, Zeri G, Gemmati D, Bovo R, Montaldi A, Alghisi A, Martini A. Karyotype-phenotype correlation in partial trisomies of the short arm of chromosome 6: a family case report and review of the literature. Cytogenet Genome Res 2013; 141:243-59. [PMID: 23942271 DOI: 10.1159/000353846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
The first child (proband) of nonconsanguineous Caucasian parents underwent genetic investigation because she was affected with congenital choanal atresia, heart defects and kidney hyposplasia with mild transient renal insufficiency. The direct DNA sequencing after PCR of the CHD7 gene, which is thought to be responsible for approximately 60-70% of the cases of CHARGE syndrome/association, found no mutations. The cytogenetic analysis (standard GTG banding karyotype) revealed the presence of extrachromosomal material on 10q. The chromosome analysis was completed with array CGH (30 kb resolution), MLPA and FISH, which allowed the identification of three 6p regions (6p.25.3p23 × 3): 2 of these regions are normally located on chromosome 6, and the third region is translocated to the long arm of chromosome 10. The same chromosomal rearrangement was subsequently found in the father, who was affected with congenital ptosis and progressive hearing loss, and in the proband's sister, the second child, who presented at birth with choanal atresia and congenital heart defects. The mutated karyotypes, which were directly inherited, are thought to be responsible for a variable phenotype, including craniofacial dysmorphisms, choanal atresia, congenital ptosis, sensorineural hearing loss, heart defects, developmental delay, and renal dysfunction. Nevertheless, to achieve a complete audiological assessment of the father, he underwent further investigation that revealed an increased level of the coagulation factor XIII (300% increased activity), fluctuating levels of fibrin D-dimer degradation products (from 296 to 1,587 ng/ml) and a homoplasmic mitochondrial DNA mutation: T961G in the MTRNR1 (12S rRNA) gene. He was made a candidate for cochlear implantation. Preoperative high-resolution computed tomography and magnetic resonance imaging of the temporal bone revealed the presence of an Arnold-Chiari malformation type I. To the best of our knowledge, this study is the second report on partial 6p trisomy that involves the 10q terminal region. Furthermore, we report the first case of documented Arnold-Chiari malformation type I and increased factor XIII activity associated with 6p trisomy. We present a comprehensive report of the familial cases and an exhaustive literature review.
Collapse
Affiliation(s)
- A Castiglione
- Department of Neurosciences, Complex Operative Unit of Otorhinolaryngology and Otosurgery, Padua University Hospital, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|