1
|
Tseng PW, Lin CJ, Tsao YH, Kuo WL, Chen HC, Dufour S, Wu GC, Chang CF. The effect of gonadal hormones on the gene expression of brain-pituitary in protandrous black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2024; 351:114482. [PMID: 38432348 DOI: 10.1016/j.ygcen.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17β (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yuan-Han Tsao
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsin-Chih Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sylvie Dufour
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan; Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
2
|
Perdikaris P, Prouska P, Dermon CR. Social withdrawal and anxiety-like behavior have an impact on zebrafish adult neurogenesis. Front Behav Neurosci 2023; 17:1244075. [PMID: 37908201 PMCID: PMC10614005 DOI: 10.3389/fnbeh.2023.1244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Accumulating evidence highlights the key role of adult neurogenesis events in environmental challenges, cognitive functions and mood regulation. Abnormal hippocampal neurogenesis has been implicated in anxiety-like behaviors and social impairments, but the possible mechanisms remain elusive. Methods The present study questioned the contribution of altered excitation/inhibition as well as excessive neuroinflammation in regulating the neurogenic processes within the Social Decision-Making (SDM) network, using an adult zebrafish model displaying NMDA receptor hypofunction after sub-chronic MK-801 administration. For this, the alterations in cell proliferation and newborn cell densities were evaluated using quantitative 5-Bromo-2'-Deoxyuridine (BrdU) methodology. Results In short-term survival experiments. MK-801-treated zebrafish displayed decreased cell proliferation pattern within distinct neurogenic zones of telencephalic and preoptic SDM nodes, in parallel to the social withdrawal and anxiety-like comorbidity. BrdU+ cells co-expressed the pro-inflammatory marker IL-1β solely in MK-801-treated zebrafish, indicating a role of inflammation. Following the cessation of drug treatment, significant increases in the BrdU+ cell densities were accompanied by the normalization of the social and anxiety-like phenotype. Importantly, most labeled cells in neurogenic zones showed a radial glial phenotype while a population of newborn cells expressed the early neuronal marker TOAD or mGLuR5, the latter suggesting the possible involvement of metabotropic glutamate receptor 5 in neurogenic events. Discussion Overall, our results indicate the role of radial glial cell proliferation in the overlapping pathologies of anxiety and social disorders, observed in many neuropsychiatric disorders and possibly represent potential novel targets for amelioration of these symptoms.
Collapse
Affiliation(s)
| | | | - Catherine R. Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Natsaridis E, Perdikaris P, Fokos S, Dermon CR. Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain ( Danio rerio). Brain Sci 2023; 13:861. [PMID: 37371341 DOI: 10.3390/brainsci13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, β2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.
Collapse
Affiliation(s)
- Evangelos Natsaridis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Panagiotis Perdikaris
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Stefanos Fokos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
4
|
de Abreu MS, Parker MO, Kalueff AV. The critical impact of sex on preclinical alcohol research - Insights from zebrafish. Front Neuroendocrinol 2022; 67:101014. [PMID: 35810841 DOI: 10.1016/j.yfrne.2022.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
Sex is an important biological variable that is widely recognized in studies of alcohol-related effects. Complementing clinical and preclinical rodent research, the zebrafish (Danio rerio) is the second most used laboratory species, and a powerful model organism in biomedicine. Like clinical and rodent models, zebrafish demonstrate overt sex differences in alcohol-related responses. Collectively, this evidence shows that the zebrafish becomes a sensitive model species to further probe in-depth sex differences commonly reported in alcohol research.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, UK
| | - Allan V Kalueff
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov National Medical Research Center, St. Petersburg, Russia; COBRAIN Center - Brain Research Excellence Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia.
| |
Collapse
|
5
|
Abstract
In this systematic review, we highlight the differences between the male and female zebrafish brains to understand their differentiation and their use in studying sex-specific neurological diseases. Male and female brains display subtle differences at the cellular level which may be important in driving sex-specific signaling. Sex differences in the brain have been observed in humans as well as in non-human species. However, the molecular mechanisms of brain sex differentiation remain unclear. The classical model of brain sex differentiation suggests that the steroid hormones derived from the gonads are the primary determinants in establishing male and female neural networks. Recent studies indicate that the developing brain shows sex-specific differences in gene expression prior to gonadal hormone action. Hence, genetic differences may also be responsible for differentiating the brain into male and female types. Understanding the signaling mechanisms involved in brain sex differentiation could help further elucidate the sex-specific incidences of certain neurological diseases. The zebrafish model could be appropriate for enhancing our understanding of brain sex differentiation and the signaling involved in neurological diseases. Zebrafish brains show sex-specific differences at the hormonal level, and recent advances in RNA sequencing have highlighted critical sex-specific differences at the transcript level. The differences are also evident at the cellular and metabolite levels, which could be important in organizing sex-specific neuronal signaling. Furthermore, in addition to having one ortholog for 70% of the human gene, zebrafish also shares brain structural similarities with other higher eukaryotes, including mammals. Hence, deciphering brain sex differentiation in zebrafish will help further enhance the diagnostic and pharmacological intervention of neurological diseases.
Collapse
|
6
|
Mazzitelli-Fuentes LS, Román FR, Castillo Elías JR, Deleglise EB, Mongiat LA. Spatial Learning Promotes Adult Neurogenesis in Specific Regions of the Zebrafish Pallium. Front Cell Dev Biol 2022; 10:840964. [PMID: 35646912 PMCID: PMC9130729 DOI: 10.3389/fcell.2022.840964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis could be considered as a homeostatic mechanism that accompanies the continuous growth of teleost fish. As an alternative but not excluding hypothesis, adult neurogenesis would provide a form of plasticity necessary to adapt the brain to environmental challenges. The zebrafish pallium is a brain structure involved in the processing of various cognitive functions and exhibits extended neurogenic niches throughout the periventricular zone. The involvement of neuronal addition as a learning-related plastic mechanism has not been explored in this model, yet. In this work, we trained adult zebrafish in a spatial behavioral paradigm and evaluated the neurogenic dynamics in different pallial niches. We found that adult zebrafish improved their performance in a cue-guided rhomboid maze throughout five daily sessions, being the fish able to relearn the task after a rule change. This cognitive activity increased cell proliferation exclusively in two pallial regions: the caudal lateral pallium (cLP) and the rostral medial pallium (rMP). To assessed whether learning impinges on pallial adult neurogenesis, mitotic cells were labeled by BrdU administration, and then fish were trained at different periods of adult-born neuron maturation. Our results indicate that adult-born neurons are being produced on demand in rMP and cLP during the learning process, but with distinct critical periods among these regions. Next, we evaluated the time course of adult neurogenesis by pulse and chase experiments. We found that labeled cells decreased between 4 and 32 dpl in both learning-sensitive regions, whereas a fraction of them continues proliferating over time. By modeling the population dynamics of neural stem cells (NSC), we propose that learning increases adult neurogenesis by two mechanisms: driving a chained proliferation of labeled NSC and rescuing newborn neurons from death. Our findings highlight adult neurogenesis as a conserved source of brain plasticity and shed light on a rostro-caudal specialization of pallial neurogenic niches in adult zebrafish.
Collapse
Affiliation(s)
- Laura S Mazzitelli-Fuentes
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Fernanda R Román
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Julio R Castillo Elías
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emilia B Deleglise
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Lucas A Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina
| |
Collapse
|
7
|
Molecular Markers of Adult Neurogenesis in the Telencephalon and Tectum of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2022; 23:ijms23031188. [PMID: 35163116 PMCID: PMC8835435 DOI: 10.3390/ijms23031188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.
Collapse
|
8
|
Kenney JW, Steadman PE, Young O, Shi MT, Polanco M, Dubaishi S, Covert K, Mueller T, Frankland PW. A 3D adult zebrafish brain atlas (AZBA) for the digital age. eLife 2021; 10:69988. [PMID: 34806976 PMCID: PMC8639146 DOI: 10.7554/elife.69988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023] Open
Abstract
Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, United States.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Patrick E Steadman
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Olivia Young
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Meng Ting Shi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Maris Polanco
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Saba Dubaishi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Kristopher Covert
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, United States
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Houcke J, Seuntjens E, Arckens L, De Groef L, Moons L. The killifish visual system as an in vivo model to study brain aging and rejuvenation. NPJ Aging Mech Dis 2021; 7:22. [PMID: 34404797 PMCID: PMC8371010 DOI: 10.1038/s41514-021-00077-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, people are getting older, and this prolonged lifespan unfortunately also results in an increased prevalence of age-related neurodegenerative diseases, contributing to a diminished life quality of elderly. Age-associated neuropathies typically include diseases leading to dementia (Alzheimer's and Parkinson's disease), as well as eye diseases such as glaucoma and age-related macular degeneration. Despite many research attempts aiming to unravel aging processes and their involvement in neurodegeneration and functional decline, achieving healthy brain aging remains a challenge. The African turquoise killifish (Nothobranchius furzeri) is the shortest-lived reported vertebrate that can be bred in captivity and displays many of the aging hallmarks that have been described for human aging, which makes it a very promising biogerontology model. As vision decline is an important hallmark of aging as well as a manifestation of many neurodegenerative diseases, we performed a comprehensive characterization of this fish's aging visual system. Our work reveals several aging hallmarks in the killifish retina and brain that eventually result in a diminished visual performance. Moreover, we found evidence for the occurrence of neurodegenerative events in the old killifish retina. Altogether, we introduce the visual system of the fast-aging killifish as a valuable model to understand the cellular and molecular mechanisms underlying aging in the vertebrate central nervous system. These findings put forward the killifish for target validation as well as drug discovery for rejuvenating or neuroprotective therapies ensuring healthy aging.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jolien Van Houcke
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Developmental Neurobiology Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
10
|
Dunlap KD, Teles MC, Oliveira RF. Social stimuli increase activity of adult-born cells in the telencephalon of zebrafish, Danio rerio. J Exp Biol 2021; 224:271856. [PMID: 34223613 DOI: 10.1242/jeb.242253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Fish have particularly high levels of adult neurogenesis, and this high neurogenic capacity may contribute to behavioural plasticity. While it is known that adult-born cells can differentiate into neurons and incorporate into neural circuits, it is unclear whether they are responsive to external stimuli and thereby capable of contributing to behavioural change. We tested whether cells born in the telencephalon of adult zebrafish are activated by social stimuli. We marked cell birth with BrdU and, 40 d later, exposed fish to brief (15 min) visual social stimuli and assayed cellular activity through immunolocalization of phospho-S6-ribosomal protein (pS6). BrdU+/pS6+ colabeled cells were found in six brain regions, and, in four regions (D, Dl, Dm and POA), the number of colabelled cells and fraction of BrdU+ cells that labeled pS6+ increased during social stimulation. These results are consistent with the hypothesis that adult-born neurons play a role in regulating social behaviour.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciências, Oeiras, Portugal.,ISPA-Instituto Universitário, Lisboa, Portugal.,Champalimaud Neuroscience Programme, Lisboa, Portugal
| |
Collapse
|
11
|
Mack AF, DeOliveira-Mello L, Mattheus U, Neckel PH. Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni. J Comp Neurol 2021; 529:2813-2823. [PMID: 33580516 DOI: 10.1002/cne.25126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10-12 cm in this fish species, corresponding to a more than 100-fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue-cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Laura DeOliveira-Mello
- Department of Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León, University of Salamanca, Spain
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Das T, Soren K, Yerasi M, Kumar A, Chakravarty S. Revealing sex-specific molecular changes in hypoxia-ischemia induced neural damage and subsequent recovery using zebrafish model. Neurosci Lett 2019; 712:134492. [PMID: 31518677 DOI: 10.1016/j.neulet.2019.134492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Functional recovery from hypoxia-ischemia depends on an individual's response to the ischemic damage and recovery. Many of the neurological disorders, including cerebral stroke have sex-specific characteristics. Deciphering the differential molecular mechanisms of sex-specific recovery from hypoxic-ischemic insult can improve medical practice in the treatment of cerebral stroke. In the present study, we describe the establishment of a sex-specific global hypoxia-ischemia neural damage and repair model in zebrafish. During hypoxic exposure a delayed behavioural response was observed in female fish that resumed normal swimming pattern earlier than their male counterparts. Moreover, female appeared more affected as they showed restricted locomotor and exploratory behaviour in novel tank test, reduced mitochondrial enzyme activity, enhanced DNA damage, and cell death after hypoxia insult. However, they showed a faster recovery as compared to male. Analysis of mRNA and protein expression levels of some characteristic hypoxic-ischemic markers showed notable sex-specific differences. Using zebrafish model, we have uncovered cellular and molecular differences in sex-specific systemic responses during the post-hypoxia recovery. This insight might help in devising better therapeutic strategy for stroke in female patients.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Kalyani Soren
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Mounica Yerasi
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India.
| |
Collapse
|
13
|
Ferrando S, Amaroli A, Gallus L, Di Blasi D, Carlig E, Rottigni M, Vacchi M, Parker SJ, Ghigliotti L. Olfaction in the Antarctic toothfish Dissostichus mawsoni: clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol 2019. [DOI: 10.1007/s00300-019-02496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Rosenkrantz TS, Hussain Z, Fitch RH. Sex Differences in Brain Injury and Repair in Newborn Infants: Clinical Evidence and Biological Mechanisms. Front Pediatr 2019; 7:211. [PMID: 31294000 PMCID: PMC6606734 DOI: 10.3389/fped.2019.00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Differences in the development of the male and female brain are an evolving area of investigation. We are beginning to understand the underpinnings of male and female advantages due to differences in brain development as well as the consequences following hypoxic-ischemic brain injury in the newborn. The two main factors that appear to affect outcomes are gestation age at the time of injury and sex of the subject. This review starts with a summary of differences in the anatomy and physiology of the developing male and female brain. This is followed by a review of the major factors responsible for the observed differences in the face of normal development and hypoxic injury. The last section reviews the response of male and female subjects to various neuroprotective strategies that are currently being used and where there is a need for additional information for more precise therapy based on the sex of the infant.
Collapse
Affiliation(s)
- Ted S Rosenkrantz
- Division of Neonatology, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Zeenat Hussain
- Department of Volunteer Services, UCONN Health, Farmington, CT, United States.,Department of Anthropology, New York University, New York, NY, United States
| | - Roslyn Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
15
|
Adams MM, Kafaligonul H. Zebrafish-A Model Organism for Studying the Neurobiological Mechanisms Underlying Cognitive Brain Aging and Use of Potential Interventions. Front Cell Dev Biol 2018; 6:135. [PMID: 30443547 PMCID: PMC6221905 DOI: 10.3389/fcell.2018.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey.,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics Department Zebrafish Facility, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
16
|
Hong X, Chen R, Hou R, Yuan L, Zha J. Triphenyl Phosphate (TPHP)-Induced Neurotoxicity in Adult Male Chinese Rare Minnows ( Gobiocypris rarus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11895-11903. [PMID: 30251850 DOI: 10.1021/acs.est.8b04079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The neurotoxicity of triphenyl phosphate (TPHP) in exposed humans and laboratory animals is under debate. The rapid crossing of the blood-brain barrier (BBB) and high distribution of TPHP in fish brains have raised widespread concerns about potential neurotoxicity. Adult male Chinese rare minnows ( Gobiocypris rarus) were used as a model and exposed to 0, 20, or 100 μg/L TPHP for 28 days. We evaluated the BBB permeability, neuroinflammatory response, cell proliferation and apoptosis, synaptic plasticity and synapse loss in fish brains via the learning/memory performance of fish following 28 days of TPHP exposure. TPHP significantly increased the BBB permeability, activated the neuroinflammatory response, and decreased the tight junction-related mRNA levels of claudin-5α and occludin in the fish brain. In addition, cell proliferation was inhibited by treatment with 100 μg/L TPHP, but no significant apoptosis was observed in the brain. Fish exposed to 100 μg/L TPHP exhibited significantly decreased dendritic arborization in pyramidal neurons in the cerebellum (Ce), and the maze test indicated impaired learning/memory performance. Taken together, these findings provide scientific evidence that TPHP is neurotoxic to fish and further suggest that TPHP may not be a safe alternative for aquatic organisms.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100085 , China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Rui Hou
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100085 , China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
17
|
Cloning, partial sequencing and expression analysis of the neural form of P450 aromatase (cyp19a1b) in the South America catfish Rhamdia quelen. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:11-17. [DOI: 10.1016/j.cbpb.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
|
18
|
Affaticati P, Simion M, De Job E, Rivière L, Hermel JM, Machado E, Joly JS, Jenett A. zPACT: Tissue Clearing and Immunohistochemistry on Juvenile Zebrafish Brain. Bio Protoc 2017; 7:e2636. [PMID: 34595304 DOI: 10.21769/bioprotoc.2636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023] Open
Abstract
In studies of brain function, it is essential to understand the underlying neuro-architecture. Very young zebrafish larvae are widely used for neuroarchitecture studies, due to their size and natural transparency. However, this model system has several limitations, due to the immaturity, high rates of development and limited behavioral repertoire of the animals used. We describe here a modified version of the passive clearing technique (PACT) ( Chung et al., 2013 ; Tomer et al., 2014 ; Yang et al., 2014 ; Treweek et al., 2015) , which facilitates neuroanatomical studies on large specimens of aquatic species. This method was initially developed for zebrafish (Danio rerio) ( Frétaud et al., 2017 ; Mayrhofer et al., 2017 ; Xavier et al., 2017 ), but has also been successfully tested on other fish, such as medaka (Oryzias latipes) ( Dambroise et al., 2017 ), Mexican cave fish (Astyanax mexicaus) and African zebra mbuna (Metriaclima zebra), and on other aquatic species, such as Xenopus spp. (Xenopus laevis, Xenopus tropicalis) ( Fini et al., 2017 ) . This protocol, based on the CLARITY method developed and modified by Deisseroth's laboratory and others ( Chung et al., 2013 ; Tomer et al., 2014 ; Yang et al., 2014 ), was adapted for use in aquatic species, including zebrafish in particular (zPACT). This protocol is designed to render zebrafish specimens optically transparent while preserving the overall architecture of the tissue, through crosslinking in a polyacrylamide/formaldehyde mesh. Most of the lipids present in the specimen are then removed by SDS treatment, to homogenize the refractive index of the specimen by eliminating light scattering at the water/lipid interface, which causes opacity. The final clearing step, consists of the incubation of the specimen in a fructose-based mounting medium (derived from SeeDB) ( Ke et al., 2013 ) , with a refractive index matching that of the objective lens of the microscope. The combination of this technique with the use of genetically modified zebrafish in which green fluorescent protein (GFP) is expressed in specific cell populations provides opportunities to describe anatomical details not visible with other techniques.
Collapse
Affiliation(s)
- Pierre Affaticati
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Simion
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,CASBAH group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elodie De Job
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurie Rivière
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- CASBAH group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elodie Machado
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,CASBAH group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arnim Jenett
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Anand SK, Mondal AC. Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 2017; 77:1188-1205. [PMID: 28589616 DOI: 10.1002/dneu.22508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter-species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188-1205, 2017.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| |
Collapse
|
20
|
Karoglu ET, Halim DO, Erkaya B, Altaytas F, Arslan-Ergul A, Konu O, Adams MM. Aging alters the molecular dynamics of synapses in a sexually dimorphic pattern in zebrafish ( Danio rerio ). Neurobiol Aging 2017; 54:10-21. [DOI: 10.1016/j.neurobiolaging.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
21
|
Fokos S, Pavlidis M, Yiotis T, Tsalafouta A, Papandroulakis N, Dermon CR. Early life low intensity stress experience modifies acute stress effects on juvenile brain cell proliferation of European sea bass (D. Labrax). Behav Brain Res 2016; 317:109-121. [PMID: 27638037 DOI: 10.1016/j.bbr.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 02/06/2023]
Abstract
Early life adversity may be critical for the brain structural plasticity that in turn would influence juvenile behaviour. To address this, we questioned whether early life environment has an impact on stress responses latter in life, using European sea bass, Dicentrarchus labrax, as a model organism. Unpredictable chronic low intensity stress (UCLIS), using a variety of moderate intensity stressors, was applied during two early ontogenetic stages, flexion or formation all fins. At juvenile stage, fish were exposed to acute stress and plasma cortisol, brain mRNA expression of corticosteroid receptors' genes (gr1, gr2, mr) and brain cell proliferation (using BrdU immunohistochemistry) were determined in experimental and matched controls. UCLIS treatment specifically decreased brain gr1 expression in juveniles, but had no effect on the juvenile brain cell proliferation pattern within the major neurogenic zones studied of dorsal (Dm, Dld) and ventral (Vv) telencephalic, preoptic (NPO) areas, periventricular tectum gray zone (PGZ) and valvula cerebellum (VCe). In contrast, exposure to acute stress induced significant plasma cortisol rise, decreases of cerebral cell proliferation in juveniles, not previously exposed to UCLIS, but no effect detected on the expression levels of gr1, gr2 and mr in all groups of different early life history. Interestingly, juveniles with UCLIS history showed modified responses to acute stress, attenuating acute stress-induced cell proliferation decreases, indicating a long-lasting effect of early life treatment. Taken together, early life mild stress experience influences an acute stress plasticity end-point, cerebral cell proliferation, independently of the stress-axis activation, possibly leading to more effective coping styles.
Collapse
Affiliation(s)
- S Fokos
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - M Pavlidis
- Dept. of Biology, University of Crete, Greece
| | - T Yiotis
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - A Tsalafouta
- Dept. of Biology, University of Crete, Greece; Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - N Papandroulakis
- Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - C R Dermon
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1).
| |
Collapse
|
22
|
Abstract
Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio). Behav Brain Res 2016; 312:385-93. [PMID: 27363927 DOI: 10.1016/j.bbr.2016.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.
Collapse
|
24
|
Pellegrini E, Diotel N, Vaillant-Capitaine C, Pérez Maria R, Gueguen MM, Nasri A, Cano Nicolau J, Kah O. Steroid modulation of neurogenesis: Focus on radial glial cells in zebrafish. J Steroid Biochem Mol Biol 2016; 160:27-36. [PMID: 26151741 DOI: 10.1016/j.jsbmb.2015.06.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Estrogens are known as steroid hormones affecting the brain in many different ways and a wealth of data now document effects on neurogenesis. Estrogens are provided by the periphery but can also be locally produced within the brain itself due to local aromatization of circulating androgens. Adult neurogenesis is described in all vertebrate species examined so far, but comparative investigations have brought to light differences between vertebrate groups. In teleost fishes, the neurogenic activity is spectacular and adult stem cells maintain their mitogenic activity in many proliferative areas within the brain. Fish are also quite unique because brain aromatase expression is limited to radial glia cells, the progenitor cells of adult fish brain. The zebrafish has emerged as an interesting vertebrate model to elucidate the cellular and molecular mechanisms of adult neurogenesis, and notably its modulation by steroids. The main objective of this review is to summarize data related to the functional link between estrogens production in the brain and neurogenesis in fish. First, we will demonstrate that the brain of zebrafish is an endogenous source of steroids and is directly targeted by local and/or peripheral steroids. Then, we will present data demonstrating the progenitor nature of radial glial cells in the brain of adult fish. Next, we will emphasize the role of estrogens in constitutive neurogenesis and its potential contribution to the regenerative neurogenesis. Finally, the negative impacts on neurogenesis of synthetic hormones used in contraceptive pills production and released in the aquatic environment will be discussed.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France.
| | - Nicolas Diotel
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Inserm UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde F-97490, France
| | - Colette Vaillant-Capitaine
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Rita Pérez Maria
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI. CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Marie-Madeleine Gueguen
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Ahmed Nasri
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratoire de Biosurveillance de l'Environnement, Unité d'Ecologie côtière et d'Ecotoxicologie, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia
| | - Joel Cano Nicolau
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Olivier Kah
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| |
Collapse
|
25
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
26
|
Aromatase, estrogen receptors and brain development in fish and amphibians. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:152-62. [PMID: 25038582 DOI: 10.1016/j.bbagrm.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Abstract
Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
27
|
Makantasi P, Dermon CR. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. Neuroscience 2014; 277:306-20. [PMID: 25034512 DOI: 10.1016/j.neuroscience.2014.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
While estrogens are known to play a crucial role in the neurogenesis of the mammalian and avian brain, their role in teleost adult proliferation pattern is not yet fully understood. The present study aimed to determine the estrogen effects in adult brain proliferation zones, using zebrafish, as a model organism. Indeed, teleost fish brain provides a unique adult neurogenesis model, based on its extensive proliferation, contrasting the restricted adult telencephalic neurogenesis observed in birds and mammals. To determine the effect of estrogens, 17-β estradiol was administrated for 7 days in adult female zebrafish, followed by bromodeoxyuridine (BrdU)-immunohistochemistry and double immunofluorescence. Stereological analyses of the BrdU-positive cells within the neurogenic zones, showed region-specific decreases of actively proliferating cells in the estrogen-treated animals, compared to matched controls. Interestingly, the most prominent estradiol effects were found in the number of cycling cells of the ventral nucleus of ventral telencephalic area (Vv) and cerebellar areas. Significant decreases were also determined in the dorso-lateral telencephalic, preoptic and dorsal hypothalamic areas. In contrast, medial dorsal telencephalic, caudal (Hc) and ventral (Hv) hypothalamic areas were unaffected by estrogen treatment. The majority of the BrdU-labeled cells were found to co-express PCNA proliferating marker in Hc, Hv and Vv. Additionally, a population of proliferating cells co-expressed the early neuronal marker TOAD in all areas studied. These results provide significant evidence on the 17-β estradiol impact on adult neurogenesis, down-regulating the fast-cycling and post-mitotic cells within the female zebrafish brain neurogenetic zones.
Collapse
Affiliation(s)
- P Makantasi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece
| | - C R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece.
| |
Collapse
|
28
|
Arslan-Ergul A, Adams MM. Gene expression changes in aging zebrafish (Danio rerio) brains are sexually dimorphic. BMC Neurosci 2014; 15:29. [PMID: 24548546 PMCID: PMC3937001 DOI: 10.1186/1471-2202-15-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/11/2014] [Indexed: 01/04/2023] Open
Abstract
Background Brain aging is a multi-factorial process due to both genetic and environmental factors. The zebrafish has recently become a popular model organism for examining aging and age-related diseases because as in humans they age gradually and exhibit cognitive decline. Few studies have examined the biological changes in the aging brain that may contribute to these declines and none have examined them within individuals with respect to gender. Our aim was to identify the main genetic pathways associated with zebrafish brain aging across gender. We chose males and females from specific age groups (young, 7.5-8.5 months and old, 31-36 months) based on the progression of cognitive decline in zebrafish. RNA was isolated from individual brains and subjected to microarray and qPCR analysis. Statistical analyses were performed using a two-way ANOVA and the relevant post-hoc tests. Results Our results demonstrated that in the brains of young and old male and female zebrafish there were over 500 differentially expressed genes associated with multiple pathways but most notably were those related to neurogenesis and cell differentiation, as well as brain and nervous system development. Conclusions The gene expression of multiple pathways is altered with age and differentially expressed in males and females. Future studies will be aimed at determining the causal relationships of age-related changes in gene expression in individual male and female brains, as well as possible interventions that counteract these alterations.
Collapse
Affiliation(s)
| | - Michelle M Adams
- BilGen Genetics and Biotechnology Center, Bilkent University, Ankara, Turkey.
| |
Collapse
|