1
|
Li J, Pan C, Huang B, Qiu J, Jiang C, Dong Z, Li J, Lian Q, Wu B. NMDA receptor within nucleus accumbens shell regulates propofol self-administration through D1R/ERK/CREB signalling pathway. Addict Biol 2024; 29:e13401. [PMID: 38782631 PMCID: PMC11116088 DOI: 10.1111/adb.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 μg/0.3 μL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Chi Pan
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Jiani Qiu
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Chenchen Jiang
- Clinical Research UnitThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Jun Li
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Zhong T, Lin Y, Zhuge R, Lin Y, Huang B, Zeng R. Reviewing the mechanism of propofol addiction. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2174708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Tianhao Zhong
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yuyan Lin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ruohuai Zhuge
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yujie Lin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bingwu Huang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ruifeng Zeng
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
3
|
Involvement of the ERK signaling pathways in the NAc in propofol-seeking behavior induced by cues in rats. Pharmacol Biochem Behav 2022; 219:173447. [PMID: 35970339 DOI: 10.1016/j.pbb.2022.173447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Propofol, an intravenous short-acting anesthetic, has the potential to induce craving and relapse. Accumulated evidence demonstrates that extracellular signal-regulated kinase (ERK) plays an essential role in drug reward and relapse. In the previous study, we demonstrated that the ERK signaling pathways in the Nucleus accumbens (NAc) were involved in propofol reward. However, the role of the ERK signaling pathways in propofol relapse is still unknown. We first trained rats to self-administer propofol for 14 days, then evaluated propofol-seeking behavior of relapse induced by a contextual cues and conditioned cues after 14-day withdrawal. Meanwhile, MEK inhibitor U0126 was used to investigate the role of the ERK signal pathways in propofol-seeking behavior induced by contextual cues and conditioned cues. Results showed that the number of active nose-poke responses in propofol-seeking behavior induced by conditioned cues was much higher compared to contextual cues. U0126 (5.0 μg/side, Lateral Ventricle (LV)) pretreatment significantly decreased the active responses induced by conditioned cues, which was associated with a large decline in the expression of p-ERK in the NAc. Moreover, microinjectionofU0126 (2.0 μg/side) in the NAc also attenuated the active responses of propofol-seeking behavior. Additionally, microinjections with U0126 in the LV (5.0 μg/side) or NAc (2.0 μg/side) both failed to alter sucrose self-administration or locomotor activity of rats. Therefore, we conclude that ERK phosphorylation in the NAc maybe involved in propofol relapse.
Collapse
|
4
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Dong Z, Zhang G, Xiang S, Jiang C, Chen Z, Li Y, Huang B, Zhou W, Lian Q, Wu B. The Antagonism of Corticotropin-Releasing Factor Receptor-1 in Brain Suppress Stress-Induced Propofol Self-Administration in Rats. Front Behav Neurosci 2021; 15:775209. [PMID: 34924971 PMCID: PMC8674615 DOI: 10.3389/fnbeh.2021.775209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model. Thereafter, the rats were pretreated before the testing session at the bilateral lateral ventricle with one of the doses of antalarmin (CRF1R antagonist, 100–500 ng/site), antisauvagine 30 (CRF2R antagonist, 100–500 ng/site), and RU486 (glucocorticoid receptor antagonist, 100–500 ng/site) or vehicle. The dopamine D1 receptor (D1R) in the nucleus accumbens (NAc) was detected to explore the underlying molecular mechanism. The sucrose self-administration establishment and maintenance, and locomotor activities were also examined to determine the specificity. We found that the establishment of propofol self-administration was promoted in the tail clip treated group (the stress group), which was inhibited by antalarmin at the dose of 100–500 ng/site but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to change sucrose self-administration behavior or locomotor activities. This study supports the role of CRF1R in the brain in mediating the central reward processing through D1R in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic approach for the treatment of propofol addiction.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaolong Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiqiong Xiang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichuan Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Medical School, Institution of Reproductive Medicine, Nantong University, Nantong, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo Universtiy, Ningbo, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Dong Z, Huang B, Jiang C, Chen J, Lin H, Lian Q, Wu B. The Adenosine A2A Receptor Activation in Nucleus Accumbens Suppress Cue-Induced Reinstatement of Propofol Self-administration in Rats. Neurochem Res 2021; 46:1081-1091. [PMID: 33616808 PMCID: PMC8053194 DOI: 10.1007/s11064-021-03238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
Propofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5-10.0 ng/site), MSX-3 (A2AR antagonist, 5.0-20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75-3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75-3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0-20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Chen H, Xu D, Zhang Y, Yan Y, Liu J, Liu C, Shen W, Yu T, Liu J. Neurons in the Locus Coeruleus Modulate the Hedonic Effects of Sub-Anesthetic Dose of Propofol. Front Neurosci 2021; 15:636901. [PMID: 33767609 PMCID: PMC7985178 DOI: 10.3389/fnins.2021.636901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Propofol is a worldwide-used intravenous general anesthetic with ideal effects, but hedonic effects of propofol have been reported and cause addictive issue. There is little known about the neurobiological mechanism of hedonic effects of propofol. Increasing researches have shown that the dopaminergic nervous system of the ventral tegmental area (VTA) and the noradrenergic system of locus coeruleus (LC) play a crucial role in hedonic experiences, which are putative sites for mediating the hedonic effects of propofol. In the present study, rat hedonic response scale and place conditioning paradigm were employed to examine the euphoric effects of propofol. In vivo GCaMP-based (AVV-hSyn-GCaMP6s) fiber photometry calcium imaging was used to monitor the real-time neuronal activity in VTA and LC area in rats exhibiting propofol-induced euphoric behaviors. Then DREADDs (designer receptors exclusively activated by designer drugs) modulation using rAAV-hSyn-hM4D(Gi)-EGFP was performed to confirm the neuronal substrate that mediates the euphoric effects of propofol. The score of hedonic facial responses was significantly increased in the 4 mg/kg group compared with that of the 0 mg/kg group. The locomotor activity in the propofol-paired compartment was significantly increased at the 4 mg/kg dose compared with that of the saline-paired group. When compared with the 0 mg/kg group, the place preference increased in the 4 mg/kg group. Administration of 4 mg/kg of propofol triggers reliable increases in GcaMP fluorescence. However, in the VTA GcaMP-expressing rats, administration of 4 mg/kg of propofol did not induce any change of GcaMP signals. The facial score and the place preference, which increased by 4 mg/kg propofol were abolished by chemogenetic inhibition of the neuronal activity in the LC area. Our results suggest that LC noradrenergic neurons, not VTA dopaminergic neurons, are directly involved in the hedonic effects of sub-anesthetic dose of propofol.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Yan Yan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - JunXiao Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - ChengXi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Wei Shen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Uskur T, Şenöz AÖ, Çevreli B, Barlas A, Uzbay T. Propofol but not dexmedetomidine produce locomotor sensitization via nitric oxide in rats. Psychopharmacology (Berl) 2021; 238:569-577. [PMID: 33169201 DOI: 10.1007/s00213-020-05707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022]
Abstract
RATIONALE The abused potential of some anesthetics has been debated. Measurement of locomotor sensitization is a better way to detect the neurobehavioral plasticity of addiction. OBJECTIVES The present study aims to explore whether propofol and dexmedetomidine are capable of inducing locomotor sensitization. METHODS Male Wistar rats (250-300 g) were the subjects (n = 8 for each group). Propofol (20 and 40 mg/kg) and dexmedetomidine (2.5-20 μg/kg) or saline were injected to rats intraperitoneally (IP), and their locomotor activities were recorded for 15 min. Consequently, L-NAME (30 and 60 mg/kg)-a nitric oxide (NO) inhibitory agent-was injected to rats 30 min before propofol (40 mg/kg) or saline injections, and the locomotor activity was recorded. The process was carried out for 13 days, with 7 sessions applied every other day. RESULTS Dexmedetomidine did not produce any significant locomotor sensitization. While propofol (20 mg/kg) produced a significant locomotor sensitization in the last treatment session (day 13), at the higher dose, it prompted a significant locomotor sensitization from the 3rd treatment session. L-NAME blocked propofol-induced locomotor hyperactivity and sensitization significantly without producing any noteworthy changes on the locomotor activity during the testing period of 13 days when administered alone. CONCLUSIONS Our results suggest that propofol but not dexmedetomidine produced a significant locomotor sensitization via central nitrergic system. Dexmedetomidine may have a lesser psychostimulant type addictive potential than propofol. Sensitization development by propofol implies that this drug might be effective on the neuroadaptive processes associated with a stimulant type of dependence.
Collapse
Affiliation(s)
- Tuğçe Uskur
- Faculty of Medicine, Department of Medical Pharmacology, Beykent University, Istanbul, Turkey
| | - Ayşe Özçetin Şenöz
- Neuropsychopharmacology Application and Research Center (NPFUAM), Üsküdar University, Istanbul, Turkey
| | - Burcu Çevreli
- Neuropsychopharmacology Application and Research Center (NPFUAM), Üsküdar University, Istanbul, Turkey
| | - Aydın Barlas
- School of Medicine, Department of Pharmacology, Altınbaş University, İstanbul, Turkey
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center (NPFUAM), Üsküdar University, Istanbul, Turkey.
- Faculty of Medicine, Department of Medical Pharmacology, Üsküdar University, İstanbul, Turkey.
| |
Collapse
|
9
|
Chen BP, Huang XX, Dong DM, Wu H, Zhu TQ, Wang BF. The role of NMDA receptors in rat propofol self-administration. BMC Anesthesiol 2020; 20:149. [PMID: 32539742 PMCID: PMC7294660 DOI: 10.1186/s12871-020-01056-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Propofol is among the most frequently used anesthetic agents, and it has the potential for abuse. The N-methyl-D-aspartate (NMDA) receptors are key mediators neural plasticity, neuronal development, addiction, and neurodegeneration. In the present study, we explored the role of these receptors in the context of rat propofol self-administration. METHODS Sprague-Dawley Rats were trained to self-administer propofol (1.7 mg/kg/infusion) using a fixed-ratio (FR) schedule over the course of 14 sessions (3 h/day). After training, rats were intraperitoneally administered the non-competitive NDMA receptor antagonist MK-801, followed 10 min later by a propofol self-administration session. RESULTS After training, rats successfully underwent acquisition of propofol self-administration, as evidenced by a significant and stable rise in the number of active nose-pokes resulting in propofol administration relative to the number of control inactive nose-pokes (P < 0.01). As compared to control rats, rats that had been injected with 0.2 mg/kg MK-801 exhibited a significantly greater number of propofol infusions (F (3, 28) = 4.372, P < 0.01), whereas infusions were comparable in the groups administered 0.1 mg/kg and 0.4 mg/kg of this compound. In addition, MK-801 failed to alter the numbers of active (F (3, 28) = 1.353, P > 0.05) or inactive (F (3, 28) = 0.047, P > 0.05) responses in these study groups. Animals administered 0.4 mg/kg MK-801 exhibited significantly fewer infusions than animals administered 0.2 mg/kg MK-801 (P = 0.006, P < 0.01). In contrast, however, animals in the 0.4 mg/kg MK-801 group displayed a significant reduction in the number of active nose-poke responses (F (3, 20) = 20.8673, P < 0.01) and the number of sucrose pellets (F (3, 20) = 23.77, P < 0.01), while their locomotor activity was increased (F (3, 20) = 22.812, P < 0.01). CONCLUSION These findings indicate that NMDA receptors may play a role in regulating rat self-administration of propofol.
Collapse
Affiliation(s)
- Bei-Ping Chen
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Xi-Xi Huang
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China
| | - Dong-Mei Dong
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Tian-Qi Zhu
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ben-Fu Wang
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
Wang Y, Ge F, Li X, Ni C, Wu K, Zheng W, Chen Y, Lian Q, Ge RS. Propofol Inhibits Androgen Production in Rat Immature Leydig Cells. Front Pharmacol 2019; 10:760. [PMID: 31333471 PMCID: PMC6624235 DOI: 10.3389/fphar.2019.00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Propofol is a widely used anesthetic. Whether propofol inhibits androgen production by rat Leydig cells and the underlying mechanism remains unclear. The objective of the current study was to examine the effects of propofol exposure to rat primary immature Leydig cells and to define propofol-induced inhibition of steroidogenic enzymes in both rat and human testes in vitro. Methods: Immature Leydig cells were purified from 35-day-old male Sprague–Dawley rats and were exposed to propofol for 3 h. The androgen production by Leydig cells under basal, luteinizing hormone, 8bromo-cAMP, and steroid-substrate stimulated conditions and gene expression of Leydig cells after exposure to propofol were measured. Immature Leydig cells were treated with propofol for 3 h and switched to propofol-free medium for additional 3 and 9 h to test whether propofol-induced inhibition is reversible. 3H-Steroids were used to evaluate the direct action of propofol on cytochrome P450 cholesterol side chain cleavage (CYP11A1), 3β-hydroxysteroid dehydrogenase (HSD3B), cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1), and 17β-hydroxysteroid dehydrogenase 3 (HSD17B3) activities in rat and human testes in vitro. Results: Propofol significantly lowered luteinizing hormone and 8bromo-cAMP stimulated androgen production by Leydig cells after 3-h exposure. Further investigation showed that propofol down-regulated the expression of Cyp11a1 and Cyp17a1 and their proteins at 5 and 50 µM, although it up-regulated Lhcgr expression at 50 µM. Propofol significantly suppressed phosphorylation of ERK1/2 and induced ROS production in immature Leydig cells at 5 and 50 µM. Propofol significantly induced apoptosis of immature Leydig cells at 50 µM. Propofol specifically inhibited rat and human testis HSD3B activities in vitro. The half maximal inhibitory concentrations of propofol for rat and human HSD3B enzymes were 1.011 ± 0.065 and 3.498 ± 0.067 µM, respectively. The mode of action of propofol of inhibiting HSD3B was competitive when pregnenolone was added. At 50 µM, propofol did not directly inhibit rat and human testis CYP11A1, CYP17A1, and HSD17B3 activities in vitro. Conclusion: Propofol inhibits androgen production via both directly inhibiting HSD3B activity and down-regulating Cyp11a1 and Cyp17a1 expression in Leydig cells. Suppression of steroidogenic enzymes is presumably associated with the lower production of androgen by Leydig cells after propofol treatment. However, propofol-induced inhibition on androgen production is reversible.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Abstract
Propofol as an agonist of GABAA receptor has a rewarding and discriminative stimulus effect. However, which subtype of the GABAA receptor is involved in the discriminative stimulus effects of propofol is still not clear. We observed the effects of an agonist or an antagonist of the subtype-selective GABAA receptor on discriminative stimulus effects of propofol. Male Sprague-Dawley rats were trained to discriminate 10 mg/kg (intraperitoneal) propofol from intralipid under a fixed-ratio 10 schedule of food reinforcement. We found that propofol produced dose-dependent substitution for propofol at 10 mg/kg, with response rate reduction only at a dose above those producing the complete substitution. CL218,872 (1–3 mg/kg, intraperitoneal), an α1 subunit-selective GABAA receptor agonist, and SL651,498 (0.3–3 mg/kg, intraperitoneal), an α2/3 GABAA receptor selective agonist, could partially substitute for the discriminative stimulus effects of propofol (40–80% propofol-appropriate responding). Meanwhile, L838,417 (0.2–0.6 mg/kg, intravenous), a α2/3/5 GABAA receptor selective agonist, could produce near 100% propofol-appropriate responding and completely substitute for propofol effects. Moreover, the administration of L655,708, the α5 GABAA receptor inverse agonist, could dose dependently attenuate the discriminative stimulus of propofol. In contrast, the α1 GABAA receptor antagonist β-CCt (1–3 mg/kg) combined with propofol (10 mg/kg) failed to block the propofol effect. The data showed that propofol produces discriminative stimulus effects in a dose-dependent manner and acts mainly on the α5 GABAA to produce the discriminative stimulus effect.
Collapse
|
12
|
Wang S, Wang X, Lin W, Bao S, Wang B, Wu B, Su Y, Lian Q. Dopamine D 1 Receptor Within Basolateral Amygdala Is Involved in Propofol Relapse Behavior Induced by Cues. Neurochem Res 2018; 43:2393-2403. [PMID: 30357654 DOI: 10.1007/s11064-018-2667-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Propofol has been proven to be potentially abused by humans and laboratory animals; however, studies that have examined propofol relapse behavior are limited, and its underlying mechanism remains unclear. In this study, we examined whether basolateral amygdala-specific or systematic administration of the dopamine receptor antagonist alters cue-induced propofol-seeking behaviors in a rat model. Male Sprague-Dawley rats first received 14 days of propofol self-administration training, where active nose poke resulted in the delivery of propofol infusion paired with a tone and light cues. After 1-30 days of forced abstinence, the cue-induced propofol-seeking behaviors were tested in the operant chamber. We demonstrated, for the first time, after a few days of withdrawal from intravenous bolus administration of propofol, propofol-related cues could induce robust reinstatement of drug-seeking behavior. Systematic administration of dopamine D1 receptor antagonist (SCH-23390) or dopamine D2 receptor antagonist (spiperone) inhibited propofol relapse behavior induced by drug-related cues. Furthermore, we show that microinfusion of SCH-23390 into basolateral amygdala dose-dependently attenuated cue-induced propofol drug-seeking behavior, whereas infusion of spiperone had no effect on the propofol relapse behavior. Our results reveal the involvement of dopamine receptors within the basolateral amygdala in the cue-induced propofol relapse behavior in rats.
Collapse
Affiliation(s)
- Sicong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China
| | - Xin Wang
- Department of Anesthesiology, Suzhou Municipal Hospital, Suzhou, 234000, China
| | - Wenxuan Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Suhao Bao
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China
| | - Benfu Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China
| | - Ying Su
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xue-yuan Road(West), Lu-cheng District, Wenzhou, 325027, China.
| |
Collapse
|
13
|
Muñoz B, Yevenes GE, Förstera B, Lovinger DM, Aguayo LG. Presence of Inhibitory Glycinergic Transmission in Medium Spiny Neurons in the Nucleus Accumbens. Front Mol Neurosci 2018; 11:228. [PMID: 30050406 PMCID: PMC6050475 DOI: 10.3389/fnmol.2018.00228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/11/2018] [Indexed: 02/04/2023] Open
Abstract
It is believed that the rewarding actions of drugs are mediated by dysregulation of the mesolimbic dopaminergic system leading to increased levels of dopamine in the nucleus accumbens (nAc). It is widely recognized that GABAergic transmission is critical for neuronal inhibition within nAc. However, it is currently unknown if medium spiny neurons (MSNs) also receive inhibition by means of glycinergic synaptic inputs. We used a combination of proteomic and electrophysiology studies to characterize the presence of glycinergic input into MSNs from nAc demonstrating the presence of glycine transmission into nAc. In D1 MSNs, we found low frequency glycinergic miniature inhibitory postsynaptic currents (mIPSCs) which were blocked by 1 μM strychnine (STN), insensitive to low (10, 50 mM) and high (100 mM) ethanol (EtOH) concentrations, but sensitive to 30 μM propofol. Optogenetic experiments confirmed the existence of STN-sensitive glycinergic IPSCs and suggest a contribution of GABA and glycine neurotransmitters to the IPSCs in nAc. The study reveals the presence of glycinergic transmission in a non-spinal region and opens the possibility of a novel mechanism for the regulation of the reward pathway.
Collapse
Affiliation(s)
- Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E Yevenes
- Laboratory of Neuropharmacology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
14
|
Wu B, Lin W, Wang H, Abdullah T, Wang B, Su Y, Ge RS, Lian Q. Glucocorticoid receptor in rat nucleus accumbens: Its roles in propofol addictions. Neurosci Lett 2017; 662:115-121. [PMID: 29037790 DOI: 10.1016/j.neulet.2017.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Propofol has been demonstrated as a drug of abuse in humans. Our previous study indicated that dexamethasone, a potent agonist of glucocorticoid receptor (GR), inhibited propofol-maintained rat self-administration behaviors by systematic injection. However, the direct effect of GR in the nucleus accumbens (NAc) on propofol self-administration behavior has not been explored. The propofol-maintained self-administration was established in rats after a successive 3-h daily self-administration of propofol for 14days. On day 15, 30min prior to the last training, rats received one of three doses (0.3, 1.0, or 3.0μg/site) of dexamethasone or vehicle via intra-NAc injection. The number of active nose-poke responses, propofol injections, and inactive nose-poke responses was recorded. Dopamine D1 receptor and c-Fos expressions were detected. Plasma corticosterone level was measured by enzyme-linked immunosorbent assay. Intra-NAc administration of dexamethasone (1.0 and 3.0μg/site) facilitated the active nose-poke responses, which was accompanied by the upregulation of D1 receptor and c-Fos in the NAc. Plasma corticosterone level was not changed in dexamethasone-treated groups. This study provides crucial evidence that GR in the NAc plays an important role in regulating propofol self-administration behaviors in rats, which may be mediated by changes in D1 receptor and c-Fos expressions, and this also needs further examination with GR antagonist in the future.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenxuan Lin
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hong Wang
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Taha Abdullah
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Benfu Wang
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Su
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Qingquan Lian
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
15
|
Shahzadi A, Uskur T, Akkan AG, Çevreli B, Uzbay T. Effects of propofol on conditioned place preference in male rats: Involvement of nitrergic system. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:167-174. [PMID: 28750179 DOI: 10.1080/00952990.2017.1344681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drug-induced conditioned place preference (CPP) is linked to the addictive properties of the drug used. The number of studies that have investigated the effects of propofol on CPP is limited. Research findings suggest that nitric oxide (NO) might play an important role in substance use disorders. OBJECTIVES The present study sought to investigate the role of the nitrergic system on the rewarding effects of propofol by using the CPP protocol in rats. METHODS The experiment followed habituation, pre-conditioning, conditioning, and post conditioning sessions. Male Wistar albino rats weighing 240-290 g were divided into eight groups: control (saline), propofol (10, 20, and 40 mg/kg), the NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) alone (30 and 60 mg/kg), and in combination with propofol (30 and 60 mg/kg L-NAME plus 40 mg/kg propofol) (n = 8 for each group). The CPP effects of propofol, L-NAME, saline, and their combinations were evaluated. All the drug and saline administrations were performed by intraperitoneal (ip) injections. RESULTS Propofol (10-40 mg/kg) produced CPP that was statistically significant relative to saline. Propofol-induced CPP was significantly reversed by pretreatment with L-NAME. When administered alone, L-NAME did not produce CPP and also did not produce any significant change on locomotor activity of naïve rats. CONCLUSION Our results suggest that propofol produces CPP effects in rats and that NO-related mechanisms may be responsible for propofol-induced CPP. Thus, propofol might have the potential to be addictive, and this possibility should be considered during clinical applications of this drug.
Collapse
Affiliation(s)
- Andleeb Shahzadi
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Tuğçe Uskur
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - A Gökhan Akkan
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Burcu Çevreli
- b Neuropsychopharmacology Application and Research Center (NPARC) , Üsküdar University , Istanbul , Turkey
| | - Tayfun Uzbay
- b Neuropsychopharmacology Application and Research Center (NPARC) , Üsküdar University , Istanbul , Turkey
| |
Collapse
|
16
|
Wang B, Yang X, Sun A, Xu L, Wang S, Lin W, Lai M, Zhu H, Zhou W, Lian Q. Extracellular Signal-Regulated Kinase in Nucleus Accumbens Mediates Propofol Self-Administration in Rats. Neurosci Bull 2016; 32:531-537. [PMID: 27783327 DOI: 10.1007/s12264-016-0066-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
Clinical and animal studies have indicated that propofol has potential for abuse, but the specific neurobiological mechanism underlying propofol reward is not fully understood. The purpose of this study was to investigate the role of extracellular signal-regulated kinase (ERK) signal transduction pathways in the nucleus accumbens (NAc) in propofol self-administration. We tested the expression of p-ERK in the NAc following the maintenance of propofol self-administration in rats. We also assessed the effect of administration of SCH23390, an antagonist of the D1 dopamine receptor, on the expression of p-ERK in the NAc in propofol self-administering rats, and examined the effects of intra-NAc injection of U0126, an MEK inhibitor, on propofol reinforcement in rats. The results showed that the expression of p-ERK in the NAc increased significantly in rats maintained on propofol, and pre-treatment with SCH23390 inhibited the propofol self-administration and diminished the expression of p-ERK in the NAc. Moreover, intra-NAc injection of U0126 (4 µg/side) attenuated the propofol self-administration. The data suggest that ERK signal transduction pathways coupled with D1 dopamine receptors in the NAc may be involved in the maintenance of propofol self-administration and its rewarding effects.
Collapse
Affiliation(s)
- Benfu Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Yang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Anna Sun
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, 315010, China
| | - Lanman Xu
- Department of Infection and Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sicong Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenxuan Lin
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, 315010, China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, 315010, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, 315010, China.
| | - Qingquan Lian
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Wu B, Liang Y, Dong Z, Chen Z, Zhang G, Lin W, Wang S, Wang B, Ge RS, Lian Q. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens. Neuroscience 2016; 328:184-93. [PMID: 27126557 DOI: 10.1016/j.neuroscience.2016.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuyuan Liang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanglei Dong
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhichuan Chen
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Gaolong Zhang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenxuan Lin
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Sicong Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Benfu Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Qingquan Lian
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
18
|
Hantson P, Bonbled F. Le propofol comme agent de suicide ou d’abus. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2016. [DOI: 10.1016/j.toxac.2015.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Locomotor stimulation by acute propofol administration in rats: Role of the nitrergic system. Pharmacol Rep 2015; 67:980-5. [PMID: 26398394 DOI: 10.1016/j.pharep.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/21/2015] [Accepted: 03/05/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND The addictive potential of propofol has been scientifically discussed. Drugs' psychostimulant properties that can be assessed via measurements of locomotor activity are linked to their addictive properties. No studies that have investigated the effects of propofol on locomotor activity have been reported to date. The present study sought to investigate the effects and possible mechanisms of action of propofol on locomotor activity in rats. METHODS Adult male albino Wistar rats (250-330g) were used as subjects. The locomotor activities of the rats were recorded for 30min immediately following intraperitoneal administration of propofol (20 and 40mg/kg), saline or vehicle (n=8 for each group). NG-nitro arginine methyl ester (l-NAME, 15-60mg/kg), a nitric oxide (NO) synthase inhibitor, and haloperidol (0.125-5mg/kg), a non-specific dopamine receptor antagonist, were also administered to other groups of rats 30min prior to the propofol (40mg/kg) injections, and locomotor activity was recorded for 30min immediately after propofol administration (n=8 for each group). RESULTS Propofol produced significant increases in the locomotor activities of the rats in the first 5min of the observation period [F(2,21)=9.052; p<0.001]. l-NAME [F(4,35)=3.112; p=0.02] but not haloperidol [F(4,35)=2.440; p=0.067] pretreatment blocked the propofol-induced locomotor hyperactivity. l-NAME did not cause any significant change in locomotor activity in naïve rats [F(2,21)=0.569; p=0.57]. CONCLUSIONS Our results suggest that propofol might cause a short-term induction of locomotor activity in rats and that this effect might be related to nitrergic but not dopaminergic mechanisms.
Collapse
|