1
|
Abad-Perez P, F.J. MP, Martínez-Otero L, Borrell V, Redondo R, Brotons-Mas J. Theta/gamma co-modulation disruption after nmdar blockade by mk801 is associated with spatial working memory deficits in mice. Neuroscience 2023; 519:162-176. [PMID: 36990270 DOI: 10.1016/j.neuroscience.2023.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Abnormal NMDAr function has been linked to oscillopathies, psychosis, and cognitive dysfunction in schizophrenia (SCZ). Here, we investigate the role of N-methyl-D-aspartate receptor (NMDAr) hypofunction in pathological oscillations and behavior. We implanted mice with tetrodes in the dorsal/intermediate hippocampus and medial prefrontal cortex (mPFC), administered the NMDAr antagonist MK-801, and recorded oscillations during spontaneous exploration in an open field and in the y-maze spatial working memory test. Our results show that NMDAr blockade disrupted the correlation between oscillations and speed of movement, crucial for internal representations of distance. In the hippocampus, MK-801 increased gamma oscillations and disrupted theta/gamma coupling during spatial working memory. In the mPFC, MK-801 increased the power of theta and gamma, generated high-frequency oscillations (HFO 155-185 Hz), and disrupted theta/gamma coupling. Moreover, the performance of mice in the spatial working memory version of the y-maze was strongly correlated with CA1-PFC theta/gamma co-modulation. Thus, theta/gamma mediated by NMDAr function might explain several of SCZ's cognitive symptoms and might be crucial to explaining hippocampal-PFC interaction.
Collapse
|
2
|
Zepeda NC, Crown LM, Medvidovic S, Choi W, Sheth M, Bergosh M, Gifford R, Folz C, Lam P, Lu G, Featherstone R, Liu CY, Siegel SJ, Lee DJ. Frequency-specific medial septal nucleus deep brain stimulation improves spatial memory in MK-801-treated male rats. Neurobiol Dis 2022; 170:105756. [PMID: 35584727 PMCID: PMC9343054 DOI: 10.1016/j.nbd.2022.105756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Few treatments exist for the cognitive symptoms of schizophrenia. Pharmacological agents resulting in glutamate N-methyl-d-aspartate (NMDA) receptor hypofunction, such as MK-801, mimic many of these symptoms and disrupt neural activity. Recent evidence suggests that deep brain stimulation (DBS) of the medial septal nucleus (MSN) can modulate medial prefrontal cortex (mPFC) and hippocampal activity and improve spatial memory. OBJECTIVE Here, we examine the effects of acute MK-801 administration on oscillatory activity within the septohippocampal circuit and behavior. We also evaluate the potential for MSN stimulation to improve cognitive behavioral measures following MK-801 administration. METHODS 59 Sprague Dawley male rats received either acute intraperitoneal (IP) saline vehicle injections or MK-801 (0.1 mg/kg). Theta (5-12 Hz), low gamma (30-50 Hz) and high frequency oscillatory (HFO) power were analyzed in the mPFC, MSN, thalamus and hippocampus. Rats underwent MSN theta (7.7 Hz), gamma (100 Hz) or no stimulation during behavioral tasks (Novel object recognition (NOR), elevated plus maze, Barnes maze (BM)). RESULTS Injection of MK-801 resulted in frequency-specific changes in oscillatory activity, decreasing theta while increasing HFO power. Theta, but not gamma, stimulation enhanced the anxiolytic effects of MK-801 on the elevated plus maze. While MK-801 treated rats exhibited spatial memory deficits on the Barnes maze, those that also received MSN theta, but not gamma, stimulation found the escape hole sooner. CONCLUSIONS These findings demonstrate that acute MK-801 administration leads to altered neural activity in the septohippocampal circuit and impaired spatial memory. Further, these findings suggest that MSN theta-frequency stimulation improves specific spatial memory deficits and may be a possible treatment for cognitive impairments caused by NMDA hypofunction.
Collapse
Affiliation(s)
- Nancy C. Zepeda
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey M. Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sasha Medvidovic
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wooseong Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megha Sheth
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raymond Gifford
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Caroline Folz
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Phillip Lam
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles Y. Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA,USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, USA
| | - Steven J. Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA,USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, USA,Corresponding author at: Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street, Suite 3300, Los Angeles, CA 90033. (D.J. Lee)
| |
Collapse
|
3
|
Raymond N, Lizano P, Kelly S, Hegde R, Keedy S, Pearlson GD, Gershon ES, Clementz BA, Tamminga CA, Keshavan M. What can clozapine’s effect on neural oscillations tell us about its therapeutic effects? A scoping review and synthesis. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Jafarzadehgharehziaaddin M. Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 2021; 172:31-42. [PMID: 33848614 DOI: 10.1016/j.brainresbull.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Spinal Cord Injury (SCI), triggers neurodegenerative changes in the spinal cord, and simultaneously alters oscillatory manifestations of motor cortex. However, these disturbances may not be limited to motor areas and other parts such as hippocampus, which is vital in the neurogenesis and cognitive function, may be affected in the neurogenic and oscillatory manners. Addressing this remarkable complication of SCI, we evaluated the hippocampal neurogenesis and rhythms through acute phase of SCI. In the present study, we used 40 male rats (Sham.W1 = 10, SCI.W1 = 10, Sham.W2 = 10, SCI.W2 = 10), and findings revealed that contusive SCI declines hippocampal rhythms (Delta, Theta, Beta, Gamma) power and max-frequency. Also, there was a significant decrease in the DCX + and BrdU + cells of the dentate gyrus; correlated significantly with rhythms power decline. Considering the TUNEL assay analysis, there were significantly greater apoptotic cells, in the CA1, CA3, and DG regions of injured animals. Furthermore, according to the western blotting analysis, the expression of receptors (NMDA, GABAA, Muscarinic1), which are essential in the neurogenesis and generation of rhythms significantly attenuated following SCI. Our study demonstrated that acute SCI, alters the power and max-frequency of hippocampal rhythms parallel with changes in the hippocampal neurogenesis, apoptosis, and receptors expression.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Network Asynchrony Underlying Increased Broadband Gamma Power. J Neurosci 2021; 41:2944-2963. [PMID: 33593859 DOI: 10.1523/jneurosci.2250-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
Synchronous activity of cortical inhibitory interneurons expressing parvalbumin (PV) underlies expression of cortical γ rhythms. Paradoxically, deficient PV inhibition is associated with increased broadband γ power in the local field potential. Increased baseline broadband γ is also a prominent characteristic in schizophrenia and a hallmark of network alterations induced by NMDAR antagonists, such as ketamine. Whether enhanced broadband γ is a true rhythm, and if so, whether rhythmic PV inhibition is involved or not, is debated. Asynchronous and increased firing activities are thought to contribute to broadband power increases spanning the γ band. Using male and female mice lacking NMDAR activity specifically in PV neurons to model deficient PV inhibition, we here show that neuronal activity with decreased synchronicity is associated with increased prefrontal broadband γ power. Specifically, reduced spike time precision and spectral leakage of spiking activity because of higher firing rates (spike "contamination") affect the broadband γ band. Desynchronization was evident at multiple time scales, with reduced spike entrainment to the local field potential, reduced cross-frequency coupling, and fragmentation of brain states. Local application of S(+)-ketamine in (control) mice with intact NMDAR activity in PV neurons triggered network desynchronization and enhanced broadband γ power. However, our investigations suggest that disparate mechanisms underlie increased broadband γ power caused by genetic alteration of PV interneurons and ketamine-induced power increases in broadband γ. Our study confirms that enhanced broadband γ power can arise from asynchronous activities and demonstrates that long-term deficiency of PV inhibition can be a contributor.SIGNIFICANCE STATEMENT Brain oscillations are fundamental to the coordination of neuronal activity across neurons and structures. γ oscillations (30-80 Hz) have received particular attention through their association with perceptual and cognitive processes. Synchronous activity of inhibitory parvalbumin (PV) interneurons generates cortical γ oscillation, but, paradoxically, PV neuron deficiency is associated with increases in γ oscillations. We here reconcile this conundrum and show how deficient PV inhibition can lead to increased and asynchronous excitatory firing, contaminating the local field potential and manifesting as increased γ power. Thus, increased γ power does not always reflect a genuine rhythm. Further, we show that ketamine-induced γ increases are caused by separate network mechanisms.
Collapse
|
6
|
Lopes-Aguiar C, Ruggiero RN, Rossignoli MT, Esteves IDM, Peixoto-Santos JE, Romcy-Pereira RN, Leite JP. Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo. Sci Rep 2020; 10:7167. [PMID: 32346044 PMCID: PMC7188848 DOI: 10.1038/s41598-020-63979-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Ingrid de Miranda Esteves
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | | | - João P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
7
|
Yang SS, Chang H, Chang S. Does ketamine ameliorate the social stress‐related bladder dysfunction in mice? Neurourol Urodyn 2020; 39:935-944. [DOI: 10.1002/nau.24324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen Shei‐Dei Yang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| | - Hsi‐Hsien Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
| | - Shang‐Jen Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| |
Collapse
|
8
|
Takeuchi Y, Berényi A. Oscillotherapeutics - Time-targeted interventions in epilepsy and beyond. Neurosci Res 2020; 152:87-107. [PMID: 31954733 DOI: 10.1016/j.neures.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/09/2023]
Abstract
Oscillatory brain activities support many physiological functions from motor control to cognition. Disruptions of the normal oscillatory brain activities are commonly observed in neurological and psychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, anxiety/trauma-related disorders, major depressive disorders, and drug addiction. Therefore, these disorders can be considered as common oscillation defects despite having distinct behavioral manifestations and genetic causes. Recent technical advances of neuronal activity recording and analysis have allowed us to study the pathological oscillations of each disorder as a possible biomarker of symptoms. Furthermore, recent advances in brain stimulation technologies enable time- and space-targeted interventions of the pathological oscillations of both neurological disorders and psychiatric disorders as possible targets for regulating their symptoms.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
9
|
Abrahao KP, Pava MJ, Lovinger DM. Dose-dependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology 2019; 164:107913. [PMID: 31843396 DOI: 10.1016/j.neuropharm.2019.107913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Alcohol is commonly used as a sleep inducer/aid by humans. However, individuals diagnosed with alcohol use disorders have sleep problems. Few studies have examined the effect of ethanol on physiological features of sedation and anesthesia, particularly at high doses. This study used polysomnography and a rapid, unbiased scoring of vigilance states with an automated algorithm to provide a thorough characterization of dose-dependent acute ethanol effects on sleep and electroencephalogram (EEG) power spectra in C57BL/6J male mice. Ethanol had a narrow dose-response effect on sleep. Only a high dose (4.0 g/kg) produced a unique, transient state that could not be characterized in terms of canonical sleep-wake states, so we dubbed this novel state Drug-Induced State with a Characteristic Oscillation in the Theta Band (DISCO-T). After this anesthetic effect, the high dose of alcohol promoted NREM sleep by increasing the duration of NREM bouts while reducing wake. REM sleep was differentially responsive to the circadian timing of ethanol administration. EEG power spectra proved more sensitive to ethanol than sleep measures as there were clear effects of ethanol at 2.0 and 4.0 g/kg doses. Ethanol promoted delta oscillations and suppressed faster frequencies, but there were clear, differential effects on wake and REM EEG power based on the timing of the ethanol injection. Understanding the neural basis of the extreme soporific effects of high dose ethanol may aid in treating acute toxicity brought about by patterns of excessive binge consumption commonly observed in young people.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Matthew J Pava
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
NMDA attenuates the neurovascular response to hypercapnia in the neonatal cerebral cortex. Sci Rep 2019; 9:18900. [PMID: 31827200 PMCID: PMC6906464 DOI: 10.1038/s41598-019-55468-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/29/2019] [Indexed: 11/12/2022] Open
Abstract
Cortical spreading depolarization (SD) involves activation of NMDA receptors and elicit neurovascular unit dysfunction. NMDA cannot trigger SD in newborns, thus its effect on neurovascular function is not confounded by other aspects of SD. The present study investigated if NMDA affected hypercapnia-induced microvascular and electrophysiological responses in the cerebral cortex of newborn pigs. Anesthetized piglets were fitted with cranial windows over the parietal cortex to study hemodynamic and electrophysiological responses to graded hypercapnia before/after topically applied NMDA assessed with laser-speckle contrast imaging and recording of local field potentials (LFP)/neuronal firing, respectively. NMDA increased cortical blood flow (CoBF), suppressed LFP power in most frequency bands but evoked a 2.5 Hz δ oscillation. The CoBF response to hypercapnia was abolished after NMDA and the hypercapnia-induced biphasic changes in δ and θ LFP power were also altered. MK-801 prevented NMDA-induced increases in CoBF and the attenuation of microvascular reactivity to hypercapnia. The neuronal nitric oxide synthase (nNOS) inhibitor (N-(4 S)-4-amino-5-[aminoethyl]aminopentyl-N′-nitroguanidin) also significantly preserved the CoBF response to hypercapnia after NMDA, although it didn’t reduce NMDA-induced increases in CoBF. In conclusion, excess activation of NMDA receptors alone can elicit SD-like neurovascular unit dysfunction involving nNOS activity.
Collapse
|
11
|
Jiang G, Pu T, Li Z, Zhang X, Zhou R, Cao X, Yu J, Wang X. Lithium affects rat hippocampal electrophysiology and epileptic seizures in a dose dependent manner. Epilepsy Res 2018; 146:112-120. [DOI: 10.1016/j.eplepsyres.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
12
|
Ruggiero RN, Rossignoli MT, Lopes-Aguiar C, Leite JP, Bueno-Junior LS, Romcy-Pereira RN. Lithium modulates the muscarinic facilitation of synaptic plasticity and theta-gamma coupling in the hippocampal-prefrontal pathway. Exp Neurol 2018; 304:90-101. [DOI: 10.1016/j.expneurol.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
|
13
|
Szczurowska E, Ahuja N, Jiruška P, Kelemen E, Stuchlík A. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:275-283. [PMID: 28935586 DOI: 10.1016/j.pnpbp.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/19/2022]
Abstract
The discoordination hypothesis of schizophrenia posits discoordination of neural activity as the central mechanism that underlies some psychotic symptoms (including 'hallmark' cognitive symptoms) of schizophrenia. To test this proposition, we studied the activity of hippocampal neurons in urethane anesthetized Long Evans rats after 0.15mg/kg dizocilpine (MK-801), an N-Methyl-d-aspartate (NMDA) glutamate receptor antagonist, which can cause psychotic symptoms in humans and cognitive control impairments in animals. We observed that MK-801 altered the temporal coordination, but not rate, of neuronal firing. Coactivation between neurons increased, driven primarily by increased coincident firing of cell pairs that did not originally fire together before MK-801 injection. Increased pairwise coactivation manifested as disorganized discharge on the level of neuronal ensembles, which in turn could lead to disorganization in information processing. Disorganization of neuronal activity after a psychotomimetic dose of MK-801 supports the discoordination hypothesis of psychosis.
Collapse
Affiliation(s)
- Ewa Szczurowska
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Nikhil Ahuja
- Department of Neurophysiology of Memory and Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Přemysl Jiruška
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eduard Kelemen
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - Aleš Stuchlík
- Department of Neurophysiology of Memory and Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
14
|
Amat-Foraster M, Leiser SC, Herrik KF, Richard N, Agerskov C, Bundgaard C, Bastlund JF, de Jong IE. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture. Neuropharmacology 2017; 113:45-59. [DOI: 10.1016/j.neuropharm.2016.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/14/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
|
15
|
Electrophysiological alterations in a complex rat model of schizophrenia. Behav Brain Res 2016; 307:65-72. [DOI: 10.1016/j.bbr.2016.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022]
|
16
|
Nagy D, Stoiljkovic M, Menniti FS, Hajós M. Differential Effects of an NR2B NAM and Ketamine on Synaptic Potentiation and Gamma Synchrony: Relevance to Rapid-Onset Antidepressant Efficacy. Neuropsychopharmacology 2016; 41:1486-94. [PMID: 26404843 PMCID: PMC4832008 DOI: 10.1038/npp.2015.298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/26/2015] [Accepted: 09/19/2015] [Indexed: 12/23/2022]
Abstract
Ketamine, a pan-NMDA receptor channel blocker, and CP-101,606, an NR2B-selective negative allosteric modulator, have antidepressant effects in humans that develop rapidly after the drugs are cleared from the body. It has been proposed that the antidepressant effect of ketamine results from delayed synaptic potentiation. To further investigate this hypothesis and potential mechanistic underpinnings we compared the effects of ketamine and CP-101,606 on neurophysiological biomarkers in rats immediately after drug administration and after the drugs had been eliminated. Local field and auditory-evoked potentials (AEPs) were recorded from primary auditory cortex and hippocampus in freely moving rats. Effects of different doses of ketamine or CP-101,606 were evaluated on amplitude of AEPs, auditory gating, and absolute power of delta and gamma oscillations 5-30 min (drug-on) and 5-6 h (drug-off) after systemic administration. Both ketamine and CP-101,606 significantly enhanced AEPs in cortex and hippocampus in the drug-off phase. In contrast, ketamine but not CP-101,606 disrupted auditory gating and increased gamma-band power during the drug-on period. Although both drugs affected delta power, these changes did not correlate with increase in AEPs in the drug-off phase. Our findings show that both ketamine and CP-101,606 augment AEPs after drug elimination, consistent with synaptic potentiation as a mechanism for antidepressant efficacy. However, these drugs had different acute effects on neurophysiological parameters. These results have implications for understanding the underlying mechanisms for the rapid-onset antidepressant effects of NMDA receptor inhibition and for the use of electrophysiological measures as translatable biomarkers.
Collapse
Affiliation(s)
- Dávid Nagy
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Mihály Hajós
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA,Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, 310 Cedar St MBL 330, New Haven, CT 06520, USA, Tel: +1 203 737 7649, Fax: +1 203 785 7499, E-mail:
| |
Collapse
|
17
|
Scott L, Kiss T, Kawabe TT, Hajós M. Neuronal network activity in the hippocampus of tau transgenic (Tg4510) mice. Neurobiol Aging 2016; 37:66-73. [DOI: 10.1016/j.neurobiolaging.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
18
|
Stoiljkovic M, Kelley C, Nagy D, Hajós M. Modulation of hippocampal neuronal network oscillations by α7 nACh receptors. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, Hodgdon H, Hurst R, Nagy D, Piser T, Tang C, Townsend M, Tu Z, Bertrand D, Koenig G, Hajós M. Concentration-response relationship of the α7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays. Biochem Pharmacol 2015. [PMID: 26206187 DOI: 10.1016/j.bcp.2015.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pharmacological activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) may improve cognition in schizophrenia and Alzheimer's disease. The present studies describe an integrated pharmacological analysis of the effects of FRM-17874, an analogue of encenicline, on α7 nAChRs in vitro and in behavioral and neurophysiological assays relevant to cognitive function. FRM-17874 demonstrated high affinity binding to human α7 nAChRs, displacing [(3)H]-methyllacaconitine (Ki=4.3nM). In Xenopus laevis oocytes expressing human α7 nAChRs, FRM-17874 acted as an agonist, evoking inward currents with an EC50 of 0.42μM. Lower concentrations of FRM-17874 (0.01-3nM) elicited no detectable current, but primed receptors to respond to sub-maximal concentrations of acetylcholine. FRM-17874 improved novel object recognition in rats, and enhanced memory acquisition and reversal learning in the mouse water T-maze. Neurophysiological correlates of cognitive effects of drug treatment, such as synaptic transmission, long-term potentiation, and hippocampal theta oscillation were also evaluated. Modulation of synaptic transmission and plasticity was observed in rat hippocampal slices at concentrations of 3.2 and 5nM. FRM-17874 showed a dose-dependent facilitation of stimulation-induced hippocampal theta oscillation in mice and rats. The FRM-17874 unbound brain concentration-response relationship for increased theta oscillation power was similar in both species, exhibited a biphasic pattern peaking around 3nM, and overlapped with active doses and exposures observed in cognition assays. In summary, behavioral and neurophysiological assays indicate a bell-shaped effective concentration range and this report represents the first attempt to explain the concentration-response function of α7 nAChR-mediated pro-cognitive effects in terms of receptor pharmacology.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| | - Liza Leventhal
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Angela Chen
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Ting Chen
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Rachelle Driscoll
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Dorothy Flood
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Hilliary Hodgdon
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Raymond Hurst
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - David Nagy
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| | - Timothy Piser
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Cuyue Tang
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Matthew Townsend
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Zhiming Tu
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| | - Gerhard Koenig
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Mihaly Hajós
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 2015; 77:1020-30. [PMID: 25850619 PMCID: PMC4444389 DOI: 10.1016/j.biopsych.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.
Collapse
Affiliation(s)
- Benjamin R. Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA,Corresponding author. Please send correspondence to: 111 Cummington Mall, Boston MA 02215. Phone: 617-353-2560. Fax: 617-353-8100., (Benjamin R. Pittman-Polletta)
| | - Bernat Kocsis
- Cognitive Rhythms Collaborative, Boston, MA,Department of Psychiatry, Beth Israel Medical Center, Harvard Medical School, Boston MA
| | - Sujith Vijayan
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| | - Miles A. Whittington
- Cognitive Rhythms Collaborative, Boston, MA,Department of Neuroscience, Hull York Medical School, York University, UK
| | - Nancy J. Kopell
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| |
Collapse
|
21
|
Zheng C, Zhang T. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience 2015; 292:170-80. [PMID: 25684752 DOI: 10.1016/j.neuroscience.2015.01.071] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/25/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
It is believed that phase synchronization facilitates neural communication and neural plasticity throughout the hippocampal-cortical network, and further supports cognition and memory. The pathway from the ventral hippocampus to the medial prefrontal cortex (mPFC) is thought to play a significant role in emotional memory processing. Therefore, the information transmission on the pathway was hypothesized to be disrupted in the depressive state, which could be related to its impaired synaptic plasticity. In this study, local field potentials (LFPs) from both ventral CA1 (vCA1) and mPFC were recorded in both normal and chronic unpredictable stress (CUS) model rats under urethane anesthesia. LFPs of all rats were recorded before and after the long-term potentiation (LTP) induced on the vCA1-mPFC pathway in order to figure out the correlation of oscillatory synchronization of LFPs and synaptic plasticity. Our results showed the vCA1-to-mPFC unidirectional phase coupling of the theta rhythm, rather than the power of either region, was significantly enhanced by LTP induction, with less enhancement in the CUS model rats compared to that in the normal rats. In addition, theta phase coupling was positively correlated with synaptic plasticity on vCA1-mPFC pathway. Moreover, the theta-slow gamma phase-amplitude coupling in vCA1 was long-term enhanced after high frequency stimulation. These results suggest that the impaired synaptic plasticity in vCA1-mPFC pathway could be reflected by the attenuated theta phase coupling and theta-gamma cross frequency coupling of LFPs in the depression state.
Collapse
Affiliation(s)
- C Zheng
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China; Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - T Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
22
|
Nagy D, Tingley FD, Stoiljkovic M, Hajós M. Application of neurophysiological biomarkers for Huntington's disease: Evaluating a phosphodiesterase 9A inhibitor. Exp Neurol 2015; 263:122-31. [DOI: 10.1016/j.expneurol.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/04/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|
23
|
Hamelin S, Pouyatos B, Khalaf-Nazzal R, Chabrol T, Francis F, David O, Depaulis A. Long-term modifications of epileptogenesis and hippocampal rhythms after prolonged hyperthermic seizures in the mouse. Neurobiol Dis 2014; 69:156-68. [DOI: 10.1016/j.nbd.2014.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 05/17/2014] [Indexed: 01/15/2023] Open
|
24
|
NMDA-glutamatergic activation of the ventral tegmental area induces hippocampal theta rhythm in anesthetized rats. Brain Res Bull 2014; 107:43-53. [PMID: 24915630 DOI: 10.1016/j.brainresbull.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Glutamate afferents reaching the ventral tegmental area (VTA) affect dopamine (DA) cells in this structure probably mainly via NMDA receptors. VTA appears to be one of the structures involved in regulation of hippocampal theta rhythm, and this work aimed at assessing the role of glutamatergic activation of the VTA in the theta regulation. Male Wistar rats (n=17) were divided into groups, each receiving intra-VTA microinjection (0.5 μl) of either solvent (water), glutamatergic NMDA agonist (0.2 μg) or antagonist (MK-801, 3.0 μg). Changes in local field potential were assessed on the basis of peak power (Pmax) and corresponding peak frequency (Fmax) for the delta (0.5-3 Hz) and theta (3-6 Hz) bands. NMDA microinjection evoked long-lasting hippocampal theta. The rhythm appeared with a latency of ca. 12 min post-injection and lasted for over 30 min; Pmax in this band was significantly increased for 50 min, while simultaneously Pmax in the delta band remained lower than in control conditions. Theta Fmax and delta Fmax were increased in almost entire post-injection period (by 0.3-0.5 Hz and 0.3-0.7 Hz, respectively). MK-801 depressed the sensory-evoked theta: tail pinch could not induce theta for 30 min after the injection; Pmax significantly decreased in the theta band and at the same time it increased in the delta band. Theta Fmax decreased 10 and 20 min post injection (by 0.4-0.5 Hz) and delta Fmax decreased in almost entire post injection period (by 0.3-0.7 Hz). NMDA injection generates theta rhythm probably through stimulation of dopaminergic activity within the VTA.
Collapse
|
25
|
Pagliardini S, Gosgnach S, Dickson CT. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice. PLoS One 2013; 8:e70411. [PMID: 23936201 PMCID: PMC3728022 DOI: 10.1371/journal.pone.0070411] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS) and activated patterns resembling rapid eye movement (REM) sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like) to activated (REM-like) states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.
Collapse
Affiliation(s)
- Silvia Pagliardini
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
26
|
Shaffer CL, Hurst RS, Scialis RJ, Osgood SM, Bryce DK, Hoffmann WE, Lazzaro JT, Hanks AN, Lotarski S, Weber ML, Liu J, Menniti FS, Schmidt CJ, Hajós M. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574. J Pharmacol Exp Ther 2013; 347:212-24. [PMID: 23899905 DOI: 10.1124/jpet.113.204735] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulation (i.e., "potentiation") has been proposed to overcome cognitive impairments in schizophrenia, but AMPAR overstimulation can be excitotoxic. Thus, it is critical to define carefully a potentiator's mechanism-based therapeutic index (TI) and to determine confidently its translatability from rodents to higher-order species. Accordingly, the novel AMPAR potentiator N-{(3R,4S)-3-[4-(5-cyano-2-thienyl)phenyl]tetrahydro-2H-pyran-4-yl}propane-2-sulfonamide (PF-4778574) was characterized in a series of in vitro assays and single-dose animal studies evaluating AMPAR-mediated activities related to cognition and safety to afford an unbound brain compound concentration (Cb,u)-normalized interspecies exposure-response relationship. Because it is unknown which AMPAR subtype(s) may be selectively potentiated for an optimal TI, PF-4778574 binding affinity and functional potency were determined in rodent tissues expected to express a native mixture of AMPAR subunits and their associated proteins to afford composite pharmacological values. Functional activity was also quantified in recombinant cell lines stably expressing human GluA2 flip or flop homotetramers. Procognitive effects of PF-4778574 were evaluated in both rat electrophysiological and nonhuman primate (nhp) behavioral models of pharmacologically induced N-methyl-d-aspartate receptor hypofunction. Safety studies assessed cerebellum-based AMPAR activation (mouse) and motor coordination disruptions (mouse, dog, and nhp), as well as convulsion (mouse, rat, and dog). The resulting empirically derived exposure-response continuum for PF-4778574 defines a single-dose-based TI of 8- to 16-fold for self-limiting tremor, a readily monitorable clinical adverse event. Importantly, the Cb,u mediating each physiological effect were highly consistent across species, with efficacy and convulsion occurring at just fractions of the in vitro-derived pharmacological values.
Collapse
Affiliation(s)
- Christopher L Shaffer
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism (C.L.S., R.J.S., S.M.O., J.L.) and the Neuroscience Research Unit (R.S.H., D.K.B., W.E.H., J.T.L., A.N.H., S.L., M.L.W., F.S.M., C.J.S., M.H.), Worldwide Research and Development, Groton Laboratories, Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|