1
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
3
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Pichardo-Rojas D, Pichardo-Rojas PS, Cornejo-Bravo JM, Serrano-Medina A. Memantine as a neuroprotective agent in ischemic stroke: Preclinical and clinical analysis. Front Neurosci 2023; 17:1096372. [PMID: 36743806 PMCID: PMC9893121 DOI: 10.3389/fnins.2023.1096372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism for neuron death after an ischemic stroke is excitotoxic injury. Excessive depolarization leads to NMDA-mediated calcium entry to the neuron and, subsequently, cellular death. Therefore, the inhibition of the NMDA channel has been proposed as a neuroprotective measure in ischemic stroke. The high morbimortality associated with stroke warrants new therapies that can improve the functional prognosis of patients. Memantine is a non-competitive NMDA receptor antagonist which has gained attention as a potential drug for ischemic stroke. Here we analyze the available preclinical and clinical evidence concerning the use of memantine following an ischemic stroke. Preclinical evidence shows inhibition of the excitotoxic cascade, as well as improved outcomes in terms of motor and sensory function with the use of memantine. The available clinical trials of high-dose memantine in patients poststroke have found that it can improve patients' NIHSS and Barthel index and help patients with poststroke aphasia and intracranial hemorrhage. These results suggest that memantine has a clinically relevant neuroprotective effect; however, small sample sizes and other study shortcomings limit the impact of these findings. Even so, current studies show promising results that should serve as a basis to promote future research to conclusively determine if memantine does improve the outcomes of patients' post-ischemic stroke. We anticipate that future trials will fill current gaps in knowledge, and these latter results will broaden the therapeutic arsenal for clinicians looking to improve the prognosis of patients poststroke.
Collapse
Affiliation(s)
- Diego Pichardo-Rojas
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Pavel Salvador Pichardo-Rojas
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico,*Correspondence: Aracely Serrano-Medina,
| |
Collapse
|
5
|
Weiss MD, Carloni S, Vanzolini T, Coppari S, Balduini W, Buonocore G, Longini M, Perrone S, Sura L, Mohammadi A, Rocchi MBL, Negrini M, Melandri D, Albertini MC. Human-rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic-ischemic pathway melatonin-sensitive. J Pineal Res 2022; 73:e12818. [PMID: 35841265 PMCID: PMC9540681 DOI: 10.1111/jpi.12818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.
Collapse
Affiliation(s)
- Michael D. Weiss
- Department of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Tania Vanzolini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Sofia Coppari
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Giuseppe Buonocore
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Mariangela Longini
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Serafina Perrone
- Neonatal UnitUniversity Medical Center of Parma (AOUP) and University of ParmaParmaItaly
| | - Livia Sura
- Department of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Atefeh Mohammadi
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Massimo Negrini
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Davide Melandri
- O. U. Burns Center, Dermatology and Emilia Romagna Regional Skin Bank“M. Bufalini” HospitalCesenaItaly
| | | |
Collapse
|
6
|
Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. J Mol Neurosci 2022; 72:994-1007. [PMID: 35307786 DOI: 10.1007/s12031-022-01995-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention. Therefore, in the present study, the coordination of ipsilateral and contralateral hemispheres to evaluate delayed post-acute effect of melatonin was examined on recovery of the cell survival and apoptosis after stroke. Melatonin was administered (4 mg/kg/day) intraperitoneally for 45 days, starting 3 days after 30 min of middle cerebral artery occlusion. The genes and proteins related to the cell survival and apoptosis were investigated by immunofluorescence, western blotting, and RT-PCR techniques after behavioral experiments. Melatonin produced delayed neurological recovery by improving motor coordination on grip strength and rotarod tests. This neurological recovery was also reflected by high level of NeuN positive cells and low level of TUNEL-positive cells suggesting enhanced neuronal survival and reduced apoptosis at the fifty-fifth day of stroke. The increase of NGF, Nrp1, c-jun; activation of AKT; and dephosphorylation of ERK and JNK at the fifty-fifth day showed that cell survival and apoptosis signaling molecules compete to contribute to the remodeling of brain. Furthermore, an increase in the CREB and Atf-1 expressions suggested the melatonin's strong reformative effect on neuronal regeneration. The contralateral hemisphere was more active at the latter stages of the molecular and functional regeneration which provides a further proof of principle about melatonin's action on the promotion of brain plasticity and recovery after stroke.
Collapse
|
7
|
Fan W, Liu Z, Chen J, Liu S, Chen T, Li Z, Lin D. Effect of memantine on the survival of an ischemic random skin flap and the underlying mechanism. Biomed Pharmacother 2021; 143:112163. [PMID: 34517281 DOI: 10.1016/j.biopha.2021.112163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skin flap transplantation is a common wound repair method in orthopedic surgery, but skin flap necrosis remains problematic. Memantine, an excitatory amino acid receptor antagonist, is currently used in the treatment of moderate to severe Alzheimer's disease, due to its ability to promote angiogenesis and reduce oxidative stress. This study investigated the effect of memantine on the survival of random skin flaps in Sprague-Dawley (SD) rats. MATERIALS AND METHODS Thirty six male SD rats were divided into control, high-dose (20 mg/kg per day), and low-dose (10 mg/kg per day) groups and underwent a McFarland flap procedure. Seven days later, the survival of the flap was evaluated, The microvascular density and neutrophil density were measured by hematoxylin and eosin staining. Lead angiography was used to detect angiogenesis, and laser Doppler was used to detect blood perfusion. Expression levels of vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, Toll-like receptor (TLR) 4, nuclear factor kappa B(NF-κB) and Mitogen-activated protein kinase(MAPK)were detected by immunohistochemistry. Oxidative stress was evaluated by measuring the levels of malondialdehyde (MDA) and superoxide dismutase (SOD). RESULTS Compared with the control group, the flap survival area of memantine group, especially the high-dose group, was larger, VEGF expression, microvascular density, angiogenesis, blood perfusion, and superoxide dismutase in the flap were higher in the Memantine-H group than in the Memantine-L and control groups (P < 0.01). In addition, levels of neutrophil density, IL-1β, IL-6, TNF-α, TLR4, NF-κB, MAPK and malondialdehyde decreased significantly in the Memantine-H group (P < 0.01). CONCLUSIONS Memantine can promote the survival of skin flap in rats by improving the blood supply, promoting angiogenesis, inhibiting the inflammatory response, and reducing ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenhua Liu
- Department of Orthopaedics, The First People's Hospital of Jiande, Jiande, Zhejiang, China
| | - Jianpeng Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaodong Liu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingxiang Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhijie Li
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Huang SJ, Zuo MT, Qi XJ, Huang CY, Liu ZY. Phosphoproteomics reveals NMDA receptor-mediated excitotoxicity as a key signaling pathway in the toxicity of gelsenicine. Food Chem Toxicol 2021; 156:112507. [PMID: 34389372 DOI: 10.1016/j.fct.2021.112507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023]
Abstract
Gelsenicine is one of the most toxic compounds in the genus Gelsemium, but the mechanism of toxicity is not clear. In this paper, tandem mass tag quantitative phosphoproteomics was used to study the changes in protein phosphorylation in different brain regions at different time points after gelsenicine poisoning in mice. The correlation between neurotransmitter receptors and the toxicity of gelsenicine was analyzed by molecular docking and rescue experiments. Parallel reaction monitoring (PRM) was used to verify the related proteins. A total of 17877 unique phosphosites were quantified and mapped to 4170 brain proteins to understand the signaling pathways. Phosphoproteomics revealed gelsenicine poisoning mainly affected protein phosphorylation levels in the hippocampus, and through bioinformatics analysis, it was found gelsenicine poisoning significantly affected neurotransmitter synaptic pathway. The molecular docking results showed that gelsenicine could bind to the N-methyl-D-aspartic acid receptor (NMDAR). In addition, we found that NMDA was effective in improving the survival rate of the animals tested, and this effect was associated with reduced protein phosphorylation by PRM validation. The results revealed that gelsenicine affects neurotransmitter release and receptor function. This is the first demonstration that NMDA receptor-mediated excitotoxicity is a key signaling pathway in the toxicity of gelsenicine.
Collapse
Affiliation(s)
- Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
9
|
Protective Effect of Lutein/Zeaxanthin Isomers in Traumatic Brain Injury in Mice. Neurotox Res 2021; 39:1543-1550. [PMID: 34129176 DOI: 10.1007/s12640-021-00385-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Previous studies revealed that oxidative stress and inflammation are the main contributors to secondary injury after traumatic brain injury (TBI). In an earlier study, we reported that lutein/zeaxanthin isomers (L/Zi) exert antioxidative and anti-inflammatory effects by activating the nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) pathways. However, its precise role and underlying mechanisms were largely unknown after TBI. This study was conducted to investigate the potential mechanism of L/Zi isomers in a TBI model induced by a cold injury model in mice. To investigate the effects of L/Zi, male C57BL/6j mice-induced brain injury using the cold trauma model was allocated into two groups (n = 7): (i) TBI + vehicle group and (ii) TBI + L/Zi group (20 mg/kg BW). Brain samples were collected 24 h later for analyses. L/Zi given immediately after the injury decreased infarct volume and blood-brain barrier (BBB) permeability; L/Zi treatment also significantly reduced proinflammatory cytokines, including interleukin1 beta (IL-1β), interleukin 6 (IL-6), and NF-κB levels and increased growth-associated protein 43 (GAP-43), neural cell adhesion molecule (NCAM), brain-derived neurotrophic factor (BDNF), and Nrf2 levels compared with vehicle control. These data suggest that L/Zi improves mitochondrial function in TBI models, possibly decreasing inflammation and activating the Nrf2 pathway.
Collapse
|
10
|
Amer ME, Othamn AI, El-Missiry MA. Melatonin ameliorates diabetes-induced brain injury in rats. Acta Histochem 2021; 123:151677. [PMID: 33401187 DOI: 10.1016/j.acthis.2020.151677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023]
Abstract
Diabetic brain is a serious complication of diabetes, and it is associated with oxidative stress and neuronal injury. This study investigated the protective effect of melatonin (MLT) on diabetes-induced brain injury. A rat model of type 2 diabetes mellitus was produced by intraperitoneal injection of nicotinamide 100 mg/kg, followed by intraperitoneal injection of streptozotocin 55 mg/kg. The diabetic rats were orally administered MLT 10 mg/kg of body weight for 15 days. MLT remarkably downregulated serum glucose levels. It also improved levels of the lipid peroxidation product 4-hydroxynonenal, improved levels of antioxidants including glutathione, glutathione peroxidase and glutathione reductase in the brains of the diabetic rats, and this is indicative of the antioxidant potential of MLT. MLT also prevented increase in homocysteine, amyloid-β42 and tau levels in diabetic rats, and this suggests that it can reduce the risk of dementia. This is associated with reduction in the levels of the dopamine, serotonin, and glutamate and is indicative of the regulatory effect of MLT on neurotransmitters. Treatment with MLT improved diabetes-induced structural alteration in the hippocampus and cerebral cortex. MLT significantly reduced caspase-3 and Bax as well as significantly increase Bcl-2 protein and GFAP-positive astrocytes indicating its anti-apoptotic effect. MLT showed remarkable ameliorative effect against biochemical and molecular alterations in the brains of diabetic rats most likely through its antioxidant property.
Collapse
Affiliation(s)
- Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Azza I Othamn
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
11
|
MartInez-Coria H, Arrieta-Cruz I, Cruz ME, López-Valdés HE. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regen Res 2021; 16:433-439. [PMID: 32985462 PMCID: PMC7996012 DOI: 10.4103/1673-5374.293129] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease and is caused by an interruption of blood flow in the brain. In this disease, two different damage areas are identifying: the lesion core, in which cells quickly die; and the penumbra (surrounding the lesion core), in which cells are functionally weakened but may recover and restore their functions. The currently approved treatments for ischemic stroke are the recombinant tissue plasminogen activator and endovascular thrombectomy, but they have a short therapeutic window (4.5 and 6 hours after stroke onset, respectively) and a low percentage of stroke patients actually receive these treatments. Memantine is an approved drug for the treatment of Alzheimer’s disease. Memantine is a noncompetitive, low affinity and use-dependent antagonist of N-methyl-D-aspartate glutamate receptor. Memantine has several advantages over developing a new drug to treat focal ischemic stroke, but the most important is that it has sufficient safe probes in preclinical models and humans, and if the preclinical studies provide more evidence about pharmacological actions in tissue protection and repair, this could help to increase the number of clinical trials. The present review summarizes the physiopathology of isquemic stroke and the pharmacological actions in neuroprotection and neuroplasticity of memantine in the post stroke stage of preclinical stroke models, to illustrate their potential to improve functional recovery in human patients.
Collapse
Affiliation(s)
- Hilda MartInez-Coria
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Laboratorio Experimental de Enfermedades Neurodegenerativas, Facultad de Medicina, UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de México, México
| | - María-Esther Cruz
- Unidad de Investigación en Biología de la Reproducción, Laboratorio de Neuroendocrinología, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, México
| | - Héctor E López-Valdés
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Unidad Periférica de Neurociencia, Facultad de Medicina, UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
12
|
Kılıç E, Çağlayan B, Caglar Beker M. Physiological and pharmacological roles of melatonin in the pathophysiological components of cellular injury after ischemic stroke. Turk J Med Sci 2020; 50:1655-1664. [PMID: 32962330 PMCID: PMC7672349 DOI: 10.3906/sag-2008-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Apart from its metabolic or physiological functions, melatonin has a potent cytoprotective activity in the physiological and pathological conditions. It is synthetized by the pineal gland and released into the blood circulation but particularly cerebrospinal fluid in a circadian manner. It can also easily diffuse through cellular membranes due its small size and lipophilic structure. Its cytoprotective activity has been linked to its potent free radical scavenger activity with the desirable characteristics of a clinically- reliable antioxidant. Melatonin detoxifies oxygen and nitrogen-based free radicals and oxidizing agents, including the highly toxic hydroxyl-and peroxynitrite radicals, initiating cellular damage. However, the cytoprotective activity of melatonin is complex and cannot be solely limited to its free radical scavenger activity. It regulates cellular signaling pathways through receptor– dependent and independent mechanisms. Most of these downstream molecules, such as PI3K/AKT pathway components, also contribute to the cytoprotective effects of melatonin. In this term, melatonin is a promising molecule for the treatment of neurodegenerative disorders, such as ischemic stroke, which melatonin reduces ischemic brain injury in animal models of ischemic stroke. It regulates also circadian rhythm proteins after ischemic stroke, playing roles in cellular survival. In this context, present article summarizes the possible role of melatonin in the pathophysiological events after ischemic stroke.
Collapse
Affiliation(s)
- Ertuğrul Kılıç
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Berrak Çağlayan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Department of Medical Biology, International School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
13
|
Melatonin Promotes Neuroprotection of H2O2-induced Neural Stem Cells via lncRNA MEG3/miRNA-27a-3p/MAP2K4 axis. Neuroscience 2020; 446:69-79. [DOI: 10.1016/j.neuroscience.2020.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022]
|
14
|
Cardioprotective effects of memantine in myocardial ischemia: Ex vivo and in vivo studies. Eur J Pharmacol 2020; 882:173277. [PMID: 32544502 DOI: 10.1016/j.ejphar.2020.173277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) refers to the loss of cardiomyocytes due to inadequate coronary blood flow and subsequently a reduced oxygen supply. Activation of N-methyl-D-aspartate (NMDA) receptors has been linked to myocardial infarction. The aim of the present study was to determine the cardioprotective effects of memantine, in myocardial infarction both in ex vivo and in vivo models. Effects of memantine on the electrocardiogram (ECG) pattern, cardiodynamic parameters, infarct size and lipid peroxidation were evaluated in the isolated perfused rat heart. Moreover, in in vivo studies in rats, the protective effects of memantine on isoproterenol-induced myocardial infarction model (administration of 100 mg/kg isoproterenol subcutaneously for 2 consecutive days) was evaluated by measuring ECG pattern, mean arterial pressure, malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, cardiac tumor necrosis factor-alpha (TNF-α) level and cardiac remodeling. The results from the ex vivo isolated perfused heart showed that memantine treatment increased heart rate, left ventricular systolic pressure and left ventricular maximal rate of pressure increase, and decreased cardiac arrhythmia, MDA level and infarct size in comparison to ischemia/reperfusion (IR) group. The isoproterenol-induced MI (Iso) as used in the in vivo model demonstrated that MDA levels and MPO activity were decreased in memantine groups. Memantine treatment reduced the expression of cardiac TNF-α in comparison to Iso group. Cardiac fibrosis and hypertrophy were lower in memantine groups. In conclusion, memantine exerts cardioprotective effects in models of myocardial infarction, which may be attributed to reduction of pro-inflammatory and oxidative stress factors and subsequently a decrease in cardiac remodeling.
Collapse
|
15
|
Ciftci E, Karacay R, Caglayan A, Altunay S, Ates N, Altintas MO, Doeppner TR, Yulug B, Kilic E. Neuroprotective effect of lithium in cold- induced traumatic brain injury in mice. Behav Brain Res 2020; 392:112719. [PMID: 32479849 DOI: 10.1016/j.bbr.2020.112719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022]
Abstract
Apart from its well-established therapeutic activity on bipolar disorder and depression, lithium exerts neuroprotective activity upon neurodegenerative disorders, such as traumatic brain injury (TBI). However, the cellular signaling mechanisms mediating lithium's neuroprotective activity and long-term dose- and time-dependent effects on close and remote proximity are largely unknown. Herein, we tested prophylactic and acute effects of lithium (2 mmol/kg) after cold- induced TBI. In both conditions, treatments with lithium resulted in reduced infarct volume and apoptosis. Its acute treatment resulted in the increase of Akt, ERK-1/2 and GSK-3 α/β phosphoylations. Interestingly, its prophylactic treatment instead resulted in decreased phosphorylations of Akt, ERK-1/2, p38, JNK-1 moderately and GSK-3 α/β significantly. Then, we tested subacute (35-day follow-up) role of low (0.2 mmol/kg) and high dose (2 mmol/kg) lithium and revealed that high dose lithium group was the most mobile so the least depressed in the tail suspension test. Anxiety level was assessed by light-dark test, all groups' anxiety levels were decreased with time, but lithium had no effect on anxiety like behavior. When subacute effects of injury and drug treatment were evaluated on the defined brain regions, infarct volume was decreased in the high dose lithium group significantly. In contrast to other brain regions, hippocampal atrophies were observed in both lithium treatment groups, which were significant in the low dose lithium group in both hemispheres, which was associated with the reduced cell proliferation and neurogenesis. Our data demonstrate that lithium treatment protects neurons from TBI. However, long term particularly low-dose lithium causes hippocampal atrophy and decreased neurogenesis.
Collapse
Affiliation(s)
- Elvan Ciftci
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Reyda Karacay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Aysun Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Serdar Altunay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Nilay Ates
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Mehmet O Altintas
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Thorsten R Doeppner
- University of Göttingen Medical School, Dept. of Neurology, Göttingen, Germany
| | - Burak Yulug
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Dept. of Neurology, Antalya, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey.
| |
Collapse
|
16
|
Abrahamson EE, Poloyac SM, Dixon CE, Dekosky ST, Ikonomovic MD. Acute and chronic effects of single dose memantine after controlled cortical impact injury in adult rats. Restor Neurol Neurosci 2020; 37:245-263. [PMID: 31177251 DOI: 10.3233/rnn-190909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Steven T Dekosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
17
|
Mak S, Liu Z, Wu L, Guo B, Luo F, Liu Z, Hu S, Wang J, Cui G, Sun Y, Wang Y, Zhang G, Han Y, Zhang Z. Pharmacological Characterizations of anti-Dementia Memantine Nitrate via Neuroprotection and Vasodilation in Vitro and in Vivo. ACS Chem Neurosci 2020; 11:314-327. [PMID: 31922720 DOI: 10.1021/acschemneuro.9b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously designed and synthesized a series of novel memantine nitrates, and some of them have shown neuroprotective effects; however, the detailed mechanisms remain unknown. In this study, we demonstrated that MN-12, one of the memantine nitrates, concentration-dependently protected against glutamate-induced neurotoxicity in rat primary cultured cerebellar granule neurons (CGNs). Western blotting assays revealed that MN-12 might possess neuroprotective effects through the inhibition of ERK pathway and activation of PI3K/Akt pathway concurrently. Moreover, MN-12 concentration-dependently dilated precontracted rat middle cerebral artery through activation of NO-cGMP pathway ex vivo. In the 2-vessel occlusion (2VO) rat model, MN-12 alleviated the impairments of spatial memory and motor dysfunction possibly via neuroprotection and improvement of the cerebral blood flow. Furthermore, the results of preliminary pharmacokinetic studies showed that MN-12 might quickly distribute to the major organs including the brain, indicating that MN-12 could penetrate the blood-brain barrier. Taken together, MN-12 might provide multifunctional therapeutic benefits for dementia associated with Alzheimer's disease, vascular dementia, and ischemic stroke, via neuroprotection and vessel dilation to improve the cerebral blood flow.
Collapse
Affiliation(s)
- Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Stomatology Hospital, School of Stomatology and Medicine , Foshan University , Foshan 528000 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Baojian Guo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Ziyan Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Jiajun Wang
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Guozhen Cui
- Department of Bioengineering , Zunyi Medical University Zhuhai Campus , Zhuhai 519041 , China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) , Jinan University College of Pharmacy , 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
18
|
Beker MC, Caglayan B, Caglayan AB, Kelestemur T, Yalcin E, Caglayan A, Kilic U, Baykal AT, Reiter RJ, Kilic E. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9:19082. [PMID: 31836786 PMCID: PMC6910929 DOI: 10.1038/s41598-019-55663-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αβ, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.
Collapse
Affiliation(s)
- Mustafa C Beker
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Medical Biology, International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Aysun Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, School of Medicine, University of Health Sciences, 34668, Istanbul, Turkey
| | - Ahmet T Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 78229, Texas, USA
| | - Ertugrul Kilic
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey.
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
19
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Al Dera H, Alassiri M, Eleawa SM, AlKhateeb MA, Hussein AM, Dallak M, Sakr HF, Alqahtani S, Khalil MA. Melatonin Improves Memory Deficits in Rats with Cerebral Hypoperfusion, Possibly, Through Decreasing the Expression of Small-Conductance Ca 2+-Activated K + Channels. Neurochem Res 2019; 44:1851-1868. [PMID: 31187398 DOI: 10.1007/s11064-019-02820-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
This study investigated the expression pattern, regulation of expression, and the role of hippocampal small-conductance Ca2+-activated K+ (SK) channels in memory deficits after cerebral hypoperfusion (CHP) with or without melatonin treatment, in rats. Adults male Wistar rats (n = 20/group) were divided into (1) a sham (2) a sham + melatonin (3) a two-vessel occlusion (2-VO) model, and (4) a 2-VO + melatonin. Melatonin was administered (i.p.) to all rats at a daily dose of 10 mg kg-1 for 7 days starting at the time of 2-VO-induction. In contrast to 2-VO rats, melatonin increased the latency of the passive avoidance learning test and decreased time to find the hidden platform in Water Morris Test in all tested rats. In addition, it concomitantly downregulated SK1, SK2, and SK3 channels, downregulated mRNA levels of TNFα and IL-1β, enhanced BDNF levels and activity of PKA levels, and restored the levels of cholinergic markers in the hippocampi of the treated-rats. Mechanistically, melatonin significantly prevented CHP-induced activation of ERK1/2, JNK, and P38 MAPK at least by inhibiting ROS generation and enhancing the total antioxidant potential. In cultured hypoxic hippocampal neurons, individual blockage of MAPK signaling by the MEK1/2 inhibitor (U0126), but not by the P38 inhibitor (SB203580) or JNK inhibitor (SP600125), completely prevented the upregulation of all three kinds of SK channels. These data clearly confirm that upregulation of SK channels plays a role in CHP-induced memory loss and indicate that melatonin reverses memory deficits after CHP in rats, at least by, downregulation of SK1, SK2, and SK3 channels in their hippocampi.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia. .,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, Dept., PAAET, Adailiyah, Kuwait
| | - Mahmoud A AlKhateeb
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad Dallak
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein F Sakr
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Mohammad A Khalil
- Department of Basic Medical Sciences, College of Medicine, King Fahid Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Caglayan AB, Beker MC, Caglayan B, Yalcin E, Caglayan A, Yulug B, Hanoglu L, Kutlu S, Doeppner TR, Hermann DM, Kilic E. Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity. Front Cell Neurosci 2019; 13:144. [PMID: 31031599 PMCID: PMC6474396 DOI: 10.3389/fncel.2019.00144] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained interest as a non-invasive treatment for stroke based on the data promoting its effects on functional recovery. However, the exact action mechanisms by which the rTMS exert beneficial effects in cellular and molecular aspect are largely unknown. To elucidate the effects of high- and low-frequency rTMS in the acute-ischemic brain, we examined how rTMS influences injury development, cerebral blood flow (CBF), DNA fragmentation, neuronal survival, pro- and anti-apoptotic protein activations after 30 and 90 min of focal cerebral ischemia. In addition, inflammation, angiogenesis, growth factors and axonal outgrowth related gene expressions, were analyzed. Furthermore, we have investigated the effects of rTMS on post-acute ischemic brain, particularly on spontaneous locomotor activity, perilesional tissue remodeling, axonal sprouting of corticobulbar tracts, glial scar formation and cell proliferation, in which rTMS was applied starting 3 days after the stroke onset for 28 days. In the high-frequency rTMS received animals reduced DNA fragmentation, infarct volume and improved CBF were observed, which were associated with increased Bcl-xL activity and reduced Bax, caspase-1, and caspase-3 activations. Moreover, increased angiogenesis, growth factors; and reduced inflammation and axonal sprouting related gene expressions were observed. These results correlated with reduced microglial activation, neuronal degeneration, glial scar formation and improved functional recovery, tissue remodeling, contralesional pyramidal tract plasticity and neurogenesis in the subacute rTMS treated animals. Overall, we propose that high-frequency rTMS in stroke patients can be used to promote functional recovery by inducing the endogenous repair and recovery mechanisms of the brain.
Collapse
Affiliation(s)
- Ahmet B Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mustafa C Beker
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Esra Yalcin
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Thorsten R Doeppner
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Neurology, Faculty of Medicine, University of Goettingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| |
Collapse
|
22
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
23
|
Seyedsaadat SM, F. Kallmes D. Memantine for the treatment of ischemic stroke: experimental benefits and clinical lack of studies. Rev Neurosci 2019; 30:203-220. [DOI: 10.1515/revneuro-2018-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023]
Abstract
AbstractStroke is an important cause of mortality and disability worldwide. Immediately after stroke onset, the ischemic cascade initiates and deleteriously affects neural cells. Time to reperfusion therapy is a critical determinant of functional recovery in stroke patients. Although recent trials have shown the significant efficacy of endovascular thrombectomy, either alone or with intravenous tissue plasminogen activator, in improving the functional outcomes of stroke patients with large vessel occlusion, hours can pass before patients receive reperfusion therapy. Moreover, many patients do not meet the eligibility criteria to receive reperfusion treatments. Therefore, an adjunct and alternative agent that can protect ischemic neuronal tissue during the hyperacute phase until reperfusion therapy can be administered may prevent further brain damage and enhance functional recovery. Memantine is a US Food and Drug Administration approved drug for the treatment of Alzheimer’s disease. Memantine blocks overstimulated N-methyl-d-aspartate receptors and prevents neurotoxicity caused by massive glutamate release. Preclinical studies show that memantine decreases infarction volume and improves neurologic outcomes. However, few clinical studies have evaluated the safety and efficacy of memantine in stroke patients. This review article summarizes the current evidence for the role of memantine in the treatment of ischemic stroke and highlights areas for future research.
Collapse
|
24
|
Li H, Zhang Y, Liu S, Li F, Wang B, Wang J, Cao L, Xia T, Yao Q, Chen H, Zhang Y, Zhu X, Li Y, Li G, Wang J, Li X, Ni S. Melatonin Enhances Proliferation and Modulates Differentiation of Neural Stem Cells Via Autophagy in Hyperglycemia. Stem Cells 2019; 37:504-515. [PMID: 30644149 DOI: 10.1002/stem.2968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of neural stem cells (NSCs) has been linked to fetal neuropathy, one of the most devastating complications of gestational diabetes. Several studies have demonstrated that melatonin (Mel) exerted neuroprotective actions in various stresses. However, the role of autophagy and the involvement of Mel in NSCs in hyperglycemia (HG) have not yet been fully established. Here, we found that HG increased autophagy and autophagic flux of NSCs as evidenced by increasing LC3B II/I ratio, Beclin-1 expression, and autophagosomes. Moreover, Mel enhanced NSCs proliferation and self-renewal in HG with decreasing autophagy and activated mTOR signaling. Consistently, inhibition of autophagy by 3-Methyladenine (3-Ma) could assist Mel effects above, and induction of autophagy by Rapamycin (Rapa) could diminish Mel effects. Remarkably, HG induced premature differentiation of NSCs into neurons (Map2 positive cells) and astrocytes (GFAP positive cells). Furthermore, Mel diminished HG-induced premature differentiation and assisted NSCs in HG differentiation as that in normal condition. Coincidentally, inhibiting of NSCs autophagy by 3-Ma assisted Mel to modulate differentiation. However, increasing NSCs autophagy by Rapa disturbed the Mel effects and retarded NSCs differentiation. These findings suggested that Mel supplementation could contribute to mimicking normal NSCs proliferation and differentiation in fetal central nervous system by inhibiting autophagy in the context of gestational diabetes. Stem Cells 2019;37:504-515.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yanmin Zhang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Fengpeng Li
- Department of Neurosurgery, Yinan County People's Hospital, Linyi, People's Republic of China
| | - Benlin Wang
- Department of Neurosurgery, PLA No. 970 Hospital, Yantai, Shandong, People's Republic of China
| | - Jianjie Wang
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Lanfang Cao
- Department of Infection Management, The Second People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Tongliang Xia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qingyu Yao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Haijun Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Yang Li
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Jian Wang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,KG Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
25
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
26
|
Liu W, Wu W, Lin G, Cheng J, Zeng Y, Shi Y. Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Mol Med Rep 2018; 18:1455-1464. [PMID: 29901080 PMCID: PMC6072171 DOI: 10.3892/mmr.2018.9147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/14/2018] [Indexed: 01/25/2023] Open
Abstract
Physical exercise is beneficial for the functional recovery of neurons after stroke. It has been suggested that exercise regulates proliferation and differentiation of endogenous neural stem cells (NSCs); however, the underlying molecular mechanisms are still largely unknown. In the present study, the aim was to investigate whether physical exercise activates the extracellular signal-regulated kinase (ERK) signaling pathway to promote proliferation and differentiation of NSCs in rats with cerebral infarction, thereby improving neurological function. Following middle cerebral artery occlusion, rats underwent physical exercise and neurological behavior was analyzed at various time points. Immunofluorescence staining was performed to detect proliferation and differentiation of NSCs, and western blotting was used to analyze cyclin-dependent kinase 4 (CDK4), Cyclin D1, retinoblastoma protein (p-Rb), P-16, phosphorylated (p)-ERK1/2 and c-Fos expression. The results indicated that physical exercise promoted proliferation and differentiation of NSCs, and led to improved neural function. In addition, the expression levels of CDK4, Cyclin D1, p-Rb, p-ERK1/2 and c-Fos were upregulated, whereas the expression of P-16 was downregulated following exercise. U0126, an inhibitor of ERK signaling, reversed the beneficial effects of exercise. Therefore, it may be hypothesized that physical exercise enhances proliferation and differentiation of endogenous NSCs in the hippocampus of rats with cerebral infarction via the ERK signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Guangyong Lin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jian Cheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanyan Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yu Shi
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
27
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Melatonin promotes neuroprotection of induced pluripotent stem cells-derived neural stem cells subjected to H 2O 2-induced injury in vitro. Eur J Pharmacol 2018; 825:143-150. [PMID: 29462594 DOI: 10.1016/j.ejphar.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/31/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Melatonin is a neurohormone mainly extracted from the pineal gland with neuroprotective effects. It has antioxidant, anti-inflammatory, and antiapoptotic functions. However, the mechanism of melatonin against reactive oxygen species is unclear. Here, we explore the potential proliferative and neuroprotective mechanism of melatonin on induced pluripotent stem cells (iPSC)-derived neural stem cells (NSCs) exposed to hydrogen peroxide (H2O2). NSCs were induced from iPSCs, then pretreated with 500 μM H2O2, 1 μM melatonin, 1 μM melatonin receptor antagonist (Luzindole), or 10 μM Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). The results showed that melatonin stimulated proliferation of iPSC-derived NSCs on H2O2 exposure. Melatonin also markedly improved stabilization of the mitochondrial membrane potential and reduced the rate of apoptosis. Treatment with Luzindole or LY294002 inhibited the increasing proliferative and neuroprotective effects of melatonin on iPSC-derived NSCs with H2O2 treatment. Our results further demonstrated that these promotional effects of melatonin were related with the activity of phosphorylation of AKT. Therefore, these outcomes propose that melatonin protects iPSC-derived NSCs from H2O2-induced injury through the mediation of melatonin receptor and PI3K/AKT signaling pathway.
Collapse
|
29
|
Zhang N, Song C, Zhao B, Xing M, Luo L, Gordon ML, Cheng Y. Neovascularization and Synaptic Function Regulation with Memantine and Rosuvastatin in a Rat Model of Chronic Cerebral Hypoperfusion. J Mol Neurosci 2017; 63:223-232. [PMID: 28920182 DOI: 10.1007/s12031-017-0974-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022]
Abstract
Cerebral hypoperfusion is an important factor in the pathogenesis of cerebrovascular diseases and neurodegenerative disorders. We investigated the effects of memantine and rosuvastatin on both neovascularization and synaptic function in a rat model of chronic cerebral hypoperfusion, which was established by the bilateral common carotid occlusion (2VO) method. We tested learning and memory ability, synaptic function, circulating endothelial progenitor cell (EPC) number, expression of neurotrophic factors, and markers of neovasculogenesis and cell proliferation after memantine and/or rosuvastatin treatment. Rats treated with memantine and/or rosuvastatin showed significant improvement in Morris water maze task and long-term potentiation (LTP) in the hippocampus, compared with untreated 2VO model rats. Circulating EPCs, expression of brain-derived neurotrophic factor, and vascular endothelial growth factor, markers of microvessel density were increased by each of the three interventions. Rosuvastatin also increased cell proliferation in the hippocampus. Combined treatment with memantine and rosuvastatin showed greater effect on enhancement of LTP and expression of neurotrophic factors than either single medication treatment alone. Both memantine and rosuvastatin improved learning and memory, enhanced neovascularization and synaptic function, and upregulated neurotrophic factors in a rat model of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China.
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Chenchen Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, No.254 Hospital of the PLA, Tianjin, China
| | - Baomin Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Mengya Xing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Lanlan Luo
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| |
Collapse
|
30
|
Mokhtari M, Nayeb-Aghaei H, Kouchek M, Miri MM, Goharani R, Amoozandeh A, Akhavan Salamat S, Sistanizad M. Effect of Memantine on Serum Levels of Neuron-Specific Enolase and on the Glasgow Coma Scale in Patients With Moderate Traumatic Brain Injury. J Clin Pharmacol 2017; 58:42-47. [PMID: 28724200 DOI: 10.1002/jcph.980] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of disability and death globally. Despite significant progress in neuromonitoring and neuroprotection, pharmacological interventions have failed to generate favorable results. We examined the effect of memantine on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage, and the Glasgow Coma Scale (GCS) in patients with moderate TBI. Patients were randomly assigned to the control group (who received standard TBI management) and the treatment group (who, alongside their standard management, received enteral memantine 30 mg twice daily for 7 days). Patients' clinical data, GCS, findings of head computed tomography, and serum NSE levels were collected during the study. Forty-one patients were randomized into the control and treatment groups, 19 and 22 patients respectively. Baseline characteristics and serum NSE levels were not significantly different between the 2 groups. The mean serum NSE levels for the memantine and the control groups on day 3 were 7.95 ± 2.86 and 12.33 ± 7.09 ng/mL, respectively (P = .05), and on day 7 were 5.03 ± 3.25 and 10.04 ± 5.72 ng/mL, respectively (P = .003). The mean GCS on day 3 was 12.3 ± 2.0 and 10.9 ± 1.9 in the memantine and control groups, respectively (P = .03). Serum NSE levels and GCS changes were negatively correlated (r = -0.368, P = .02). Patients with moderate TBI who received memantine had significantly reduced serum NSE levels by day 7 and marked improvement in their GCS scores on day 3 of the study.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Critical Care and Anesthesiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Nayeb-Aghaei
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Kouchek
- Department of Critical Care and Anesthesiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Mohammad Miri
- Department of Critical Care and Anesthesiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Goharani
- Department of Critical Care and Anesthesiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Amoozandeh
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Akhavan Salamat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Critical Care and Anesthesiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Kilic U, Caglayan AB, Beker MC, Gunal MY, Caglayan B, Yalcin E, Kelestemur T, Gundogdu RZ, Yulug B, Yılmaz B, Kerman BE, Kilic E. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. Redox Biol 2017; 12:657-665. [PMID: 28395173 PMCID: PMC5388917 DOI: 10.1016/j.redox.2017.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 04/01/2017] [Indexed: 12/15/2022] Open
Abstract
Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice. However, it is not clear (i) whether increased PI3K/Akt phosphorylation is a concomitant event or it directly contributes to melatonin's neuroprotective effect, and (ii) how melatonin regulates PI3K/Akt signaling pathway after FCI. In this study, we showed that Akt was intensively phosphorylated at the Thr308 activation loop as compared with Ser473 by melatonin after FCI. Melatonin treatment reduced infarct volume, which was reversed by PI3K/Akt inhibition. However, PI3K/Akt inhibition did not inhibit melatonin's positive effect on brain swelling and IgG extravasation. Additionally, phosphorylation of mTOR, PTEN, AMPKα, PDK1 and RSK1 were increased, while phosphorylation of 4E-BP1, GSK-3α/β, S6 ribosomal protein were decreased in melatonin treated animals. In addition, melatonin decreased apoptosis through reduced p53 phosphorylation by the PI3K/Akt pathway. In conclusion, we demonstrated the activation profiles of PI3K/Akt signaling pathway components in the pathophysiological aspect of ischemic stroke and melatonin's neuroprotective activity. Our data suggest that Akt phosphorylation, preferably at the Thr308 site of the activation loop via PDK1 and PTEN, mediates melatonin's neuroprotective activity and increased Akt phosphorylation leads to reduced apoptosis.
Collapse
Affiliation(s)
- Ulkan Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Medical Biology, Istanbul Medipol University, Turkey
| | - Ahmet Burak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Mustafa Caglar Beker
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Mehmet Yalcin Gunal
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Reyhan Zeynep Gundogdu
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Burak Yulug
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Neurology, Istanbul Medipol University, Turkey
| | - Bayram Yılmaz
- Dept. of Physiology, Yeditepe University, Istanbul, Turkey
| | - Bilal Ersen Kerman
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Histology and Embryology, Istanbul Medipol University, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey.
| |
Collapse
|
32
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
33
|
Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 2017; 351:163-172. [PMID: 28069373 DOI: 10.1016/j.yexcr.2016.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca2+), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients.
Collapse
Affiliation(s)
- Bin Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiwei Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Weilin Liu
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ruhui Lin
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lidian Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yun Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
35
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
36
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1087] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
37
|
Kartal Ö, Aydınöz S, Kartal AT, Kelestemur T, Caglayan AB, Beker MC, Karademir F, Süleymanoğlu S, Kul M, Yulug B, Kilic E. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3. Metab Brain Dis 2016; 31:827-35. [PMID: 26943480 DOI: 10.1007/s11011-016-9816-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/29/2016] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.
Collapse
Affiliation(s)
- Ömer Kartal
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
- Department of Pediatrics, Gulhane Military Medical Academy, Haydarpasa Teaching Hospital, Istanbul, Turkey
| | - Seçil Aydınöz
- Department of Pediatrics, Gulhane Military Medical Academy, Haydarpasa Teaching Hospital, Istanbul, Turkey
| | - Ayşe Tuğba Kartal
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
- Department of Pediatrics, Marmaris State Hospital, Mugla, Turkey
| | - Taha Kelestemur
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
| | - Ferhan Karademir
- Department of Pediatrics, Gulhane Military Medical Academy, Haydarpasa Teaching Hospital, Istanbul, Turkey
| | - Selami Süleymanoğlu
- Department of Pediatrics, Gulhane Military Medical Academy, Haydarpasa Teaching Hospital, Istanbul, Turkey
| | - Mustafa Kul
- Department of Pediatrics, Gulhane Military Medical Academy, Haydarpasa Teaching Hospital, Istanbul, Turkey
| | - Burak Yulug
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler cad. 19, TR-34810, Istanbul, Turkey.
| |
Collapse
|
38
|
Kelestemur T, Yulug B, Caglayan AB, Beker MC, Kilic U, Caglayan B, Yalcin E, Gundogdu RZ, Kilic E. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine. Neurosci Lett 2015; 612:92-97. [PMID: 26639427 DOI: 10.1016/j.neulet.2015.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity.
Collapse
Affiliation(s)
- Taha Kelestemur
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Burak Yulug
- Department of Neurology, University of Istanbul Medipol, Turkey
| | - Ahmet Burak Caglayan
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, University of Istanbul Medipol, Turkey
| | - Berrak Caglayan
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Esra Yalcin
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Reyhan Zeynep Gundogdu
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey.
| |
Collapse
|
39
|
Tan DX, Manchester LC, Reiter RJ. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med Hypotheses 2015; 86:3-9. [PMID: 26804589 DOI: 10.1016/j.mehy.2015.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA.
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA.
| |
Collapse
|
40
|
Liu S, Guo Y, Yuan Q, Pan Y, Wang L, Liu Q, Wang F, Wang J, Hao A. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res 2015; 59:508-17. [PMID: 26475080 DOI: 10.1111/jpi.12282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023]
Abstract
Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yuji Guo
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Pan
- Institute of Biomedical Engineering, Shandong University School of Medicine, Jinan, Shandong, China
| | - Liyan Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qian Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jingjing Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
41
|
Cytoprotective effect of melatonin against hypoxia/serum deprivation-induced cell death of bone marrow mesenchymal stem cells in vitro. Eur J Pharmacol 2015; 748:157-65. [DOI: 10.1016/j.ejphar.2014.09.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
|
42
|
Seker F, Kilic U, Caglayan B, Ethemoglu M, Caglayan A, Ekimci N, Demirci S, Dogan A, Oztezcan S, Sahin F, Yilmaz B, Kilic E. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS. Neuroscience 2015; 284:349-359. [DOI: 10.1016/j.neuroscience.2014.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
|
43
|
Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 2015; 58:61-70. [PMID: 25401748 DOI: 10.1111/jpi.12193] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 2014; 347:251-6. [DOI: 10.1016/j.jns.2014.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/28/2023]
|
45
|
Wang F, Liang W, Lei C, Kinden R, Sang H, Xie Y, Huang Y, Qu Y, Xiong L. Combination of HBO and Memantine in Focal Cerebral Ischemia: Is There a Synergistic Effect? Mol Neurobiol 2014; 52:1458-1466. [DOI: 10.1007/s12035-014-8949-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022]
|
46
|
Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment: epidemiology, mechanisms and management. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:80. [PMID: 25333055 PMCID: PMC4200648 DOI: 10.3978/j.issn.2305-5839.2014.08.05] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 01/26/2023]
Abstract
Post-stroke cognitive impairment occurs frequently in the patients with stroke. The prevalence of post-stroke cognitive impairment ranges from 20% to 80%, which varies for the difference between the countries, the races, and the diagnostic criteria. The risk of post-stroke cognitive impairment is related to both the demographic factors like age, education and occupation and vascular factors. The underlying mechanisms of post-stroke cognitive impairment are not known in detail. However, the neuroanatomical lesions caused by the stroke on strategic areas such as the hippocampus and the white matter lesions (WMLs), the cerebral microbleeds (CMBs) due to the small cerebrovascular diseases and the mixed AD with stroke, alone or in combination, contribute to the pathogenesis of post-stroke cognitive impairment. The treatment of post-stroke cognitive impairment may benefit not only from the anti-dementia drugs, but also the manage measures on cerebrovascular diseases. In this review, we will describe the epidemiological features and the mechanisms of post-stroke cognitive impairment, and discuss the promising management strategies for these patients.
Collapse
|
47
|
Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 2014; 275:314-21. [PMID: 24956284 DOI: 10.1016/j.neuroscience.2014.06.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication.
Collapse
Affiliation(s)
- C Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y Puriboriboon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - T Junmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - K Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - P Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Akkaya H, Kilic E, Eyuboglu Dinc S, Yilmaz B. Postacute Effects of Kisspeptin-10 on Neuronal Injury Induced byl-Methionine in Rats. J Biochem Mol Toxicol 2014; 28:373-7. [DOI: 10.1002/jbt.21573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Hatice Akkaya
- Experimental Research Center (YUDETAM); Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Ertugrul Kilic
- Department of Physiology; Faculty of Medicine; Istanbul Medipol University; Istanbul Turkey
| | - Signem Eyuboglu Dinc
- Department of Physiology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Bayram Yilmaz
- Department of Physiology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| |
Collapse
|
49
|
Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces. Brain Struct Funct 2014; 219:1873-87. [DOI: 10.1007/s00429-014-0719-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
|
50
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|