1
|
Li J, Aoi MC, Miller CT. Representing the dynamics of natural marmoset vocal behaviors in frontal cortex. Neuron 2024; 112:3542-3550.e3. [PMID: 39317185 PMCID: PMC11560606 DOI: 10.1016/j.neuron.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
Collapse
Affiliation(s)
- Jingwen Li
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Mikio C Aoi
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cory T Miller
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Li J, Aoi MC, Miller CT. Representing the dynamics of natural marmoset vocal behaviors in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585423. [PMID: 38559173 PMCID: PMC10979968 DOI: 10.1101/2024.03.17.585423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Here we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based GLM analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout frontal cortex as freely-moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and has implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
Collapse
|
3
|
Hockley A, Malmierca MS. Auditory processing control by the medial prefrontal cortex: A review of the rodent functional organisation. Hear Res 2024; 443:108954. [PMID: 38271895 DOI: 10.1016/j.heares.2024.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Afferent inputs from the cochlea transmit auditory information to the central nervous system, where information is processed and passed up the hierarchy, ending in the auditory cortex. Through these brain pathways, spectral and temporal features of sounds are processed and sent to the cortex for perception. There are also many mechanisms in place for modulation of these inputs, with a major source of modulation being based in the medial prefrontal cortex (mPFC). Neurons of the rodent mPFC receive input from the auditory cortex and other regions such as thalamus, hippocampus and basal forebrain, allowing them to encode high-order information about sounds such as context, predictability and valence. The mPFC then exerts control over auditory perception via top-down modulation of the central auditory pathway, altering perception of and responses to sounds. The result is a higher-order control of auditory processing that produces such characteristics as deviance detection, attention, avoidance and fear conditioning. This review summarises connections between mPFC and the primary auditory pathway, responses of mPFC neurons to auditory stimuli, how mPFC outputs shape the perception of sounds, and how changes to these systems during hearing loss and tinnitus may contribute to these conditions.
Collapse
Affiliation(s)
- A Hockley
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain.
| | - M S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Romanski LM, Sharma KK. Multisensory interactions of face and vocal information during perception and memory in ventrolateral prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220343. [PMID: 37545305 PMCID: PMC10404928 DOI: 10.1098/rstb.2022.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 08/08/2023] Open
Abstract
The ventral frontal lobe is a critical node in the circuit that underlies communication, a multisensory process where sensory features of faces and vocalizations come together. The neural basis of face and vocal integration is a topic of great importance since the integration of multiple sensory signals is essential for the decisions that govern our social interactions. Investigations have shown that the macaque ventrolateral prefrontal cortex (VLPFC), a proposed homologue of the human inferior frontal gyrus, is involved in the processing, integration and remembering of audiovisual signals. Single neurons in VLPFC encode and integrate species-specific faces and corresponding vocalizations. During working memory, VLPFC neurons maintain face and vocal information online and exhibit selective activity for face and vocal stimuli. Population analyses indicate that identity, a critical feature of social stimuli, is encoded by VLPFC neurons and dictates the structure of dynamic population activity in the VLPFC during the perception of vocalizations and their corresponding facial expressions. These studies suggest that VLPFC may play a primary role in integrating face and vocal stimuli with contextual information, in order to support decision making during social communication. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Lizabeth M. Romanski
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Keshov K. Sharma
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Lestang JH, Cai H, Averbeck BB, Cohen YE. Functional network properties of the auditory cortex. Hear Res 2023; 433:108768. [PMID: 37075536 PMCID: PMC10205700 DOI: 10.1016/j.heares.2023.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The auditory system transforms auditory stimuli from the external environment into perceptual auditory objects. Recent studies have focused on the contribution of the auditory cortex to this transformation. Other studies have yielded important insights into the contributions of neural activity in the auditory cortex to cognition and decision-making. However, despite this important work, the relationship between auditory-cortex activity and behavior/perception has not been fully elucidated. Two of the more important gaps in our understanding are (1) the specific and differential contributions of different fields of the auditory cortex to auditory perception and behavior and (2) the way networks of auditory neurons impact and facilitate auditory information processing. Here, we focus on recent work from non-human-primate models of hearing and review work related to these gaps and put forth challenges to further our understanding of how single-unit activity and network activity in different cortical fields contribution to behavior and perception.
Collapse
Affiliation(s)
- Jean-Hugues Lestang
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaizhen Cai
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yale E Cohen
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Macias S, Bakshi K, Troyer T, Smotherman M. The prefrontal cortex of the Mexican free-tailed bat is more selective to communication calls than primary auditory cortex. J Neurophysiol 2022; 128:634-648. [PMID: 35975923 PMCID: PMC9448334 DOI: 10.1152/jn.00436.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the auditory responses of a prefrontal area, the frontal auditory field (FAF), of an echolocating bat (Tadarida brasiliensis) and presented a comparative analysis of the neuronal response properties between the FAF and the primary auditory cortex (A1). We compared single-unit responses from the A1 and the FAF elicited by pure tones, downward frequency-modulated sweeps (dFMs), and species-specific vocalizations. Unlike the A1, FAFs were not frequency tuned. However, progressive increases in dFM sweep rate elicited a systematic increase of response precision, a phenomenon that does not take place in the A1. Call selectivity was higher in the FAF versus A1. We calculated the neuronal spectrotemporal receptive fields (STRFs) and spike-triggered averages (STAs) to predict responses to the communication calls and provide an explanation for the differences in call selectivity between the FAF and A1. In the A1, we found a high correlation between predicted and evoked responses. However, we did not generate reasonable STRFs in the FAF, and the prediction based on the STAs showed lower correlation coefficient than that of the A1. This suggests nonlinear response properties in the FAF that are stronger than the linear response properties in the A1. Stimulating with a call sequence increased call selectivity in the A1, but it remained unchanged in the FAF. These data are consistent with a role for the FAF in assessing distinctive acoustic features downstream of A1, similar to the role proposed for primate ventrolateral prefrontal cortex.NEW & NOTEWORTHY In this study, we examined the neuronal responses of a frontal cortical area in an echolocating bat to behaviorally relevant acoustic stimuli and compared them with those in the primary auditory cortex (A1). In contrast to the A1, neurons in the bat frontal auditory field are not frequency tuned but showed a higher selectivity for social signals such as communication calls. The results presented here indicate that the frontal auditory field may represent an additional processing center for behaviorally relevant sounds.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Todd Troyer
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Jovanovic V, Fishbein AR, de la Mothe L, Lee KF, Miller CT. Behavioral context affects social signal representations within single primate prefrontal cortex neurons. Neuron 2022; 110:1318-1326.e4. [PMID: 35108498 PMCID: PMC10064486 DOI: 10.1016/j.neuron.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 11/15/2022]
Abstract
We tested whether social signal processing in more traditional, head-restrained contexts is representative of the putative natural analog-social communication-by comparing responses to vocalizations within individual neurons in marmoset prefrontal cortex (PFC) across a series of behavioral contexts ranging from traditional to naturalistic. Although vocalization-responsive neurons were evident in all contexts, cross-context consistency was notably limited. A response to these social signals when subjects were head-restrained was not predictive of a comparable neural response to the identical vocalizations during natural communication. This pattern was evident both within individual neurons and at a population level, as PFC activity could be reliably decoded for the behavioral context in which vocalizations were heard. These results suggest that neural representations of social signals in primate PFC are not static but highly flexible and likely reflect how nuances of the dynamic behavioral contexts affect the perception of these signals and what they communicate.
Collapse
Affiliation(s)
- Vladimir Jovanovic
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Ryan Fishbein
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa de la Mothe
- Department of Psychology, Tennessee State University, Nashville, TN 37209, USA
| | - Kuo-Fen Lee
- Laboratory for Peptide Biology, Salk Institute, La Jolla, CA 92093, USA
| | - Cory Thomas Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Valuation system connectivity is correlated with poly-drug use in young adults. Neurosci Res 2021; 173:114-120. [PMID: 34214618 DOI: 10.1016/j.neures.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022]
Abstract
Poly-drug consumption contributes to fatal overdose in more than half of all poly-drug users. Analyzing decision-making networks may give insight into the motivations behind poly-drug use. We correlated average functional connectivity of the valuation system (VS), executive control system (ECS) and valuation-control complex (VCC) in a large population sample (n = 992) with drug use behaviour. VS connectivity is correlated with sedative use, ECS connectivity is separately correlated with hallucinogens and opiates. Network connectivity is also correlated with drug use via two-way interactions with other substances including alcohol and tobacco. These preliminary findings can contribute to our understanding of the common combinations of substance co-use and associated neural patterns.
Collapse
|
10
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
11
|
Kozma R, Hu S, Sokolov Y, Wanger T, Schulz AL, Woldeit ML, Gonçalves AI, Ruszinkó M, Ohl FW. State Transitions During Discrimination Learning in the Gerbil Auditory Cortex Analyzed by Network Causality Metrics. Front Syst Neurosci 2021; 15:641684. [PMID: 33967706 PMCID: PMC8100519 DOI: 10.3389/fnsys.2021.641684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
This work studies the evolution of cortical networks during the transition from escape strategy to avoidance strategy in auditory discrimination learning in Mongolian gerbils trained by the well-established two-way active avoidance learning paradigm. The animals were implanted with electrode arrays centered on the surface of the primary auditory cortex and electrocorticogram (ECoG) recordings were made during performance of an auditory Go/NoGo discrimination task. Our experiments confirm previous results on a sudden behavioral change from the initial naïve state to an avoidance strategy as learning progresses. We employed two causality metrics using Granger Causality (GC) and New Causality (NC) to quantify changes in the causality flow between ECoG channels as the animals switched to avoidance strategy. We found that the number of channel pairs with inverse causal interaction significantly increased after the animal acquired successful discrimination, which indicates structural changes in the cortical networks as a result of learning. A suitable graph-theoretical model is developed to interpret the findings in terms of cortical networks evolving during cognitive state transitions. Structural changes lead to changes in the dynamics of neural populations, which are described as phase transitions in the network graph model with small-world connections. Overall, our findings underscore the importance of functional reorganization in sensory cortical areas as a possible neural contributor to behavioral changes.
Collapse
Affiliation(s)
- Robert Kozma
- Center for Large-Scale Intelligent Optimization and Networks, Department of Mathematics, University of Memphis, Memphis, TN, United States
| | - Sanqing Hu
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, China
| | - Yury Sokolov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tim Wanger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | | | - Marie L Woldeit
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Ana I Gonçalves
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Miklós Ruszinkó
- Alfréd Rényi Institute of Mathematics, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Frank W Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Science (CBBS), Magdeburg, Germany
| |
Collapse
|
12
|
Associations between sounds and actions in primate prefrontal cortex. Brain Res 2020; 1738:146775. [PMID: 32194079 DOI: 10.1016/j.brainres.2020.146775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Behavioral flexibility allows animals to cope with changing situations, for example, to execute different actions to the same stimulus to achieve specific goals in different situations. The selection of the appropriate action in a given situation hinges on the previously learned associations between stimuli, actions, and outcomes. We showed in our recent study that early auditory cortex of nonhuman primates contributes to the selection of the actions to sounds by representing the associations between sounds and actions. That is, neurons in auditory cortex respond differently to a given sound when it signals different actions that are required to obtain a reward. Here, using the same monkey and the same tasks, we investigated whether the ventrolateral part of prefrontal cortex also represents such audiomotor associations as well as whether and how these representations differ from those in auditory cortex. Mirroring auditory cortex, neuronal responses to a given sound in prefrontal cortex changed with audiomotor associations, and the neuronal responses were largest when the sound signaled a no-go response. These findings suggest that prefrontal cortex also represents audiomotor associations and thus contributes to the selection of the actions to sounds during goal-directed behavior. The neuronal activity related to audiomotor associations started later in prefrontal cortex than in auditory cortex, suggesting that the representations in prefrontal cortex may originate in auditory cortex or in earlier stages of the auditory system.
Collapse
|
13
|
López-Jury L, Mannel A, García-Rosales F, Hechavarria JC. Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex. Eur J Neurosci 2019; 51:1011-1025. [PMID: 31630441 DOI: 10.1111/ejn.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
Frontal areas of the mammalian cortex are thought to be important for cognitive control and complex behaviour. These areas have been studied mostly in humans, non-human primates and rodents. In this article, we present a quantitative characterization of response properties of a frontal auditory area responsive to sound in the brain of Carollia perspicillata, the frontal auditory field (FAF). Bats are highly vocal animals, and they constitute an important experimental model for studying the auditory system. We combined electrophysiology experiments and computational simulations to compare the response properties of auditory neurons found in the bat FAF and auditory cortex (AC) to simple sounds (pure tones). Anatomical studies have shown that the latter provides feedforward inputs to the former. Our results show that bat FAF neurons are responsive to sounds, and however, when compared to AC neurons, they presented sparser, less precise spiking and longer-lasting responses. Based on the results of an integrate-and-fire neuronal model, we suggest that slow, subthreshold, synaptic dynamics can account for the activity pattern of neurons in the FAF. These properties reflect the general function of the frontal cortex and likely result from its connections with multiple brain regions, including cortico-cortical projections from the AC to the FAF.
Collapse
Affiliation(s)
- Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| | - Adrian Mannel
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| | | | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| |
Collapse
|
14
|
Multisite transcranial Random Noise Stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci 2019; 67:178-184. [DOI: 10.1016/j.jocn.2019.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
|
15
|
Teichert T, Gurnsey K. Formation and decay of auditory short-term memory in the macaque monkey. J Neurophysiol 2019; 121:2401-2415. [PMID: 31017849 DOI: 10.1152/jn.00821.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echoic memory (EM) is a short-lived, precategorical, and passive form of auditory short-term memory (STM). A key hallmark of EM is its rapid exponential decay with a time constant between 1 and 2 s. It is not clear whether auditory STM in the rhesus, an important model system, shares this rapid exponential decay. To resolve this shortcoming, two rhesus macaques were trained to perform a delayed frequency discrimination task. Discriminability of delayed tones was measured as a function of retention duration and the number of times the standard had been repeated before the target. Like in the human, our results show a rapid decline of discriminability with retention duration. In addition, the results suggest a gradual strengthening of discriminability with repetition number. Model-based analyses suggest the presence of two components of auditory STM: a short-lived component with a time constant on the order of 550 ms that most likely corresponds to EM and a more stable memory trace with time constants on the order of 10 s that strengthens with repetition and most likely corresponds to auditory recognition memory. NEW & NOTEWORTHY This is the first detailed quantification of the rapid temporal dynamics of auditory short-term memory in the rhesus. Much of the auditory information in short-term memory is lost within the first couple of seconds. Repeated presentations of a tone strengthen its encoding into short-term memory. Model-based analyses suggest two distinct components: an echoic memory homolog that mediates the rapid decay and a more stable but less detail-rich component that mediates strengthening of the trace with repetition.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Tseng YL, Liu HH, Liou M, Tsai AC, Chien VSC, Shyu ST, Yang ZS. Lingering Sound: Event-Related Phase-Amplitude Coupling and Phase-Locking in Fronto-Temporo-Parietal Functional Networks During Memory Retrieval of Music Melodies. Front Hum Neurosci 2019; 13:150. [PMID: 31178706 PMCID: PMC6538802 DOI: 10.3389/fnhum.2019.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Brain oscillations and connectivity have emerged as promising measures of evaluating memory processes, including encoding, maintenance, and retrieval, as well as the related executive function. Although many studies have addressed the neural mechanisms underlying working memory, most of these studies have focused on the visual modality. Neurodynamics and functional connectivity related to auditory working memory are yet to be established. In this study, we explored the dynamic of high density (128-channel) electroencephalography (EEG) in a musical delayed match-to-sample task (DMST), in which 36 participants were recruited and were instructed to recognize and distinguish the target melodies from similar distractors. Event-related spectral perturbations (ERSPs), event-related phase-amplitude couplings (ERPACs), and phase-locking values (PLVs) were used to determine the corresponding brain oscillations and connectivity. First, we observed that low-frequency oscillations in the frontal, temporal, and parietal regions were increased during the processing of both target and distracting melodies. Second, the cross-frequency coupling between low-frequency phases and high-frequency amplitudes was elevated in the frontal and parietal regions when the participants were distinguishing between the target from distractor, suggesting that the phase-amplitude coupling could be an indicator of neural mechanisms underlying memory retrieval. Finally, phase-locking, an index evaluating brain functional connectivity, revealed that there was fronto-temporal phase-locking in the theta band and fronto-parietal phase-locking in the alpha band during the recognition of the two stimuli. These findings suggest the existence of functional connectivity and the phase-amplitude coupling in the neocortex during musical memory retrieval, and provide a highly resolved timeline to evaluate brain dynamics. Furthermore, the inter-regional phase-locking and phase-amplitude coupling among the frontal, temporal and parietal regions occurred at the very beginning of musical memory retrieval, which might reflect the precise timing when cognitive resources were involved in the retrieval of targets and the rejection of similar distractors. To the best of our knowledge, this is the first EEG study employing a naturalistic task to study auditory memory processes and functional connectivity during memory retrieval, results of which can shed light on the use of natural stimuli in studies that are closer to the real-life applications of cognitive evaluations, mental treatments, and brain-computer interface.
Collapse
Affiliation(s)
- Yi-Li Tseng
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hong-Hsiang Liu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Michelle Liou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Arthur C Tsai
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Vincent S C Chien
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Shuoh-Tyng Shyu
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Zhi-Shun Yang
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
17
|
Tseng YL, Lu CF, Wu SM, Shimada S, Huang T, Lu GY. A Functional Near-Infrared Spectroscopy Study of State Anxiety and Auditory Working Memory Load. Front Hum Neurosci 2018; 12:313. [PMID: 30131684 PMCID: PMC6090525 DOI: 10.3389/fnhum.2018.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Cognitive studies have suggested that anxiety is correlated with cognitive performance. Previous research has focused on the relationship between anxiety level and the perceptual load within the frontal region, such as the dorsolateral prefrontal and anterior cingulate cortices. High-anxious individuals are predicted to have worse performance on cognitively-demanding tasks requiring efficient cognitive processing. A few functional magnetic resonance imaging studies have specifically discussed the performance and brain activity involving working memory for high-anxious individuals. This topic has been further explored with electroencephalography, although these studies have mostly provided results involving visual face-related stimuli. In this study, we used auditory stimulation to manipulate the working memory load and attempted to interpret the deficiency of cognitive function in high-anxious participants or patients using functional near infrared spectroscopy (fNIRS). The fNIRS signals of 30 participants were measured while they were performing an auditory working memory task. For the auditory n-back task, there were three experimental conditions, including two n-back task conditions of stimuli memorization with different memory load and a condition of passive listening to the stimuli. Hemodynamic responses from frontal brain regions were recorded using a wireless fNIRS device. Brain activation from the ventrolateral and orbital prefrontal cortex were measured with signals filtered and artifacts removed. The fNIRS signals were then standardized with statistical testing and group analysis was performed. The results revealed that there were significantly stronger hemodynamic responses in the right ventrolateral and orbital prefrontal cortex when subjects were attending to the auditory working memory task with higher load. Furthermore, the right lateralization of the prefrontal cortex was negatively correlated with the level of state anxiety. This study revealed the possibility of incorporating fNIRS signals as an index to evaluate cognitive performance and mood states given its flexibility regarding portable applications compared to other neuroimaging techniques.
Collapse
Affiliation(s)
- Yi-Li Tseng
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Min Wu
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Tokyo, Japan
| | - Ting Huang
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Guan-Yi Lu
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
18
|
Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends Neurosci 2017; 40:328-346. [PMID: 28515011 DOI: 10.1016/j.tins.2017.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Working memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim. A variety of studies report that neurons in prefrontal, parietal, and inferotemporal association cortices show robust sustained activity encoding the location and features of memoranda during WM tasks. However, reports of WM-related sustained activity in early sensory areas are rare, and typically lack stimulus specificity. We propose that robust sustained activity that can support WM coding arises as a property of association cortices downstream from the early stages of sensory processing.
Collapse
Affiliation(s)
- Matthew L Leavitt
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Brain and Mind Institute, Department of Psychiatry, and Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
19
|
Nieder A. Magnitude Codes for Cross-Modal Working Memory in the Primate Frontal Association Cortex. Front Neurosci 2017; 11:202. [PMID: 28439225 PMCID: PMC5383665 DOI: 10.3389/fnins.2017.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Quantitative features of stimuli may be ordered along a magnitude continuum, or line. Magnitude refers to parameters of different types of stimulus properties. For instance, the frequency of a sound relates to sensory and continuous stimulus properties, whereas the number of items in a set is an abstract and discrete property. In addition, within a stimulus property, magnitudes need to be processed not only in one modality, but across multiple modalities. In the sensory domain, for example, magnitude applies to both to the frequency of auditory sounds and tactile vibrations. Similarly, both the number of visual items and acoustic events constitute numerical quantity, or numerosity. To support goal-directed behavior and executive functions across time, magnitudes need to be held in working memory, the ability to briefly retain and manipulate information in mind. How different types of magnitudes across multiple modalities are represented in working memory by single neurons has only recently been explored in primates. These studies show that neurons in the frontal lobe can encode the same magnitude type across sensory modalities. However, while multimodal sensory magnitude in relative comparison tasks is represented by monotonically increasing or decreasing response functions ("summation code"), multimodal numerical quantity in absolute matching tasks is encoded by neurons tuned to preferred numerosities ("labeled-line code"). These findings indicate that most likely there is not a single type of cross-modal working-memory code for magnitudes, but rather a flexible code that depends on the stimulus dimension as well as on the task requirements.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of TübingenTübingen, Germany
| |
Collapse
|
20
|
Plakke B, Romanski LM. Neural circuits in auditory and audiovisual memory. Brain Res 2016; 1640:278-88. [PMID: 26656069 PMCID: PMC4868791 DOI: 10.1016/j.brainres.2015.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023]
Abstract
Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- B Plakke
- University of Rochester School of Medicine & Dentistry, Department Neurobiology & Anatomy, United States.
| | - L M Romanski
- University of Rochester School of Medicine & Dentistry, Department Neurobiology & Anatomy, United States.
| |
Collapse
|
21
|
Scott BH, Mishkin M. Auditory short-term memory in the primate auditory cortex. Brain Res 2016; 1640:264-77. [PMID: 26541581 PMCID: PMC4853305 DOI: 10.1016/j.brainres.2015.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
Abstract
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Fritz JB, Malloy M, Mishkin M, Saunders RC. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices. Brain Res 2016; 1640:289-98. [PMID: 26707975 PMCID: PMC5890928 DOI: 10.1016/j.brainres.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 01/19/2023]
Abstract
While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Jonathan B Fritz
- Neural Systems Laboratory, Center for Acoustic and Auditory Research, Institute for Systems Research, University of Maryland, College Park, MD 20742, United States.
| | - Megan Malloy
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
23
|
Audiovisual integration facilitates monkeys' short-term memory. Anim Cogn 2016; 19:799-811. [PMID: 27010716 DOI: 10.1007/s10071-016-0979-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/12/2016] [Accepted: 03/18/2016] [Indexed: 12/25/2022]
Abstract
Many human behaviors are known to benefit from audiovisual integration, including language and communication, recognizing individuals, social decision making, and memory. Exceptionally little is known about the contributions of audiovisual integration to behavior in other primates. The current experiment investigated whether short-term memory in nonhuman primates is facilitated by the audiovisual presentation format. Three macaque monkeys that had previously learned an auditory delayed matching-to-sample (DMS) task were trained to perform a similar visual task, after which they were tested with a concurrent audiovisual DMS task with equal proportions of auditory, visual, and audiovisual trials. Parallel to outcomes in human studies, accuracy was higher and response times were faster on audiovisual trials than either unisensory trial type. Unexpectedly, two subjects exhibited superior unimodal performance on auditory trials, a finding that contrasts with previous studies, but likely reflects their training history. Our results provide the first demonstration of a bimodal memory advantage in nonhuman primates, lending further validation to their use as a model for understanding audiovisual integration and memory processing in humans.
Collapse
|
24
|
Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks. Brain Res 2016; 1640:314-27. [PMID: 26874071 DOI: 10.1016/j.brainres.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
|
25
|
Onos KD, Francoeur MJ, Wormwood BA, Miller RLA, Gibson BM, Mair RG. Prefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task. PLoS One 2016; 11:e0149019. [PMID: 26848579 PMCID: PMC4743997 DOI: 10.1371/journal.pone.0149019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/25/2016] [Indexed: 01/16/2023] Open
Abstract
To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found neurons with responses related to preparation, movement, lever press responses, reinforcement, and memory delays. Combined event-related and video tracking analyses revealed variability in spatial tuning of neurons with similar event-related activity. While all correlated neurons exhibited spatial tuning broadly consistent with relevant task events, for instance reinforcement-related activity concentrated in locations where reinforcement was delivered, some had elevated activity in more specific locations, for instance reinforcement-related activity in one of several locations where reinforcement was delivered. Timing analyses revealed a limited set of distinct response types with activity time-locked to critical behavioral events that represent the temporal organization of dDNMTP trials. Our results suggest that reinforcement-guided decision-making emerges from discrete populations of medial prefrontal neurons that encode information related to planned or ongoing movements and actions and anticipated or actual action-outcomes in conjunction with information about spatial context.
Collapse
Affiliation(s)
- Kristen D. Onos
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, United States of America
| | - Miranda J. Francoeur
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Benjamin A. Wormwood
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Rikki L. A. Miller
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Brett M. Gibson
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Robert G. Mair
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
- * E-mail:
| |
Collapse
|
26
|
Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex. Proc Natl Acad Sci U S A 2016; 113:1919-24. [PMID: 26831102 DOI: 10.1073/pnas.1520432113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.
Collapse
|
27
|
Bigelow J, Ng CW, Poremba A. Local field potential correlates of auditory working memory in primate dorsal temporal pole. Brain Res 2015; 1640:299-313. [PMID: 26718730 DOI: 10.1016/j.brainres.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| | - Chi-Wing Ng
- Center for Neuroscience University of California, Davis, CA 95616, United States.
| | - Amy Poremba
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| |
Collapse
|
28
|
Plakke B, Hwang J, Romanski LM. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory. J Neurosci 2015; 35:9666-75. [PMID: 26134649 PMCID: PMC4571503 DOI: 10.1523/jneurosci.1218-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022] Open
Abstract
The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. SIGNIFICANCE STATEMENT The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain.
Collapse
Affiliation(s)
- Bethany Plakke
- University of Rochester School of Medicine and Dentistry, Department of Neurobiology and Anatomy, Rochester, New York 14642
| | - Jaewon Hwang
- University of Rochester School of Medicine and Dentistry, Department of Neurobiology and Anatomy, Rochester, New York 14642
| | - Lizabeth M Romanski
- University of Rochester School of Medicine and Dentistry, Department of Neurobiology and Anatomy, Rochester, New York 14642
| |
Collapse
|
29
|
Miller CT, Thomas AW, Nummela SU, de la Mothe LA. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol 2015; 114:1158-71. [PMID: 26084912 DOI: 10.1152/jn.01003.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California;
| | - A Wren Thomas
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Helen Wills Neuroscience Graduate Program, University of California, Berkeley, Berkeley, California; and
| | - Samuel U Nummela
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California
| | - Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee
| |
Collapse
|
30
|
Abstract
During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing.
Collapse
|
31
|
Christison-Lagay KL, Gifford AM, Cohen YE. Neural correlates of auditory scene analysis and perception. Int J Psychophysiol 2015; 95:238-245. [PMID: 24681354 PMCID: PMC4176604 DOI: 10.1016/j.ijpsycho.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 03/14/2014] [Indexed: 11/16/2022]
Abstract
The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex-specifically, the ventral auditory pathway-is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations.
Collapse
Affiliation(s)
- Kate L. Christison-Lagay
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Adam M. Gifford
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Yale E. Cohen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, 19104
- Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
- Department of Bioengineering University of Pennsylvania, Philadelphia, 19104
| |
Collapse
|
32
|
Scott BH, Mishkin M, Yin P. Neural correlates of auditory short-term memory in rostral superior temporal cortex. Curr Biol 2014; 24:2767-75. [PMID: 25456448 DOI: 10.1016/j.cub.2014.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/26/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. RESULTS We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. CONCLUSIONS Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pingbo Yin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neural Systems Laboratory, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
33
|
Ohl FW. Role of cortical neurodynamics for understanding the neural basis of motivated behavior - lessons from auditory category learning. Curr Opin Neurobiol 2014; 31:88-94. [PMID: 25241212 DOI: 10.1016/j.conb.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
Abstract
Rhythmic activity appears in the auditory cortex in both microscopic and macroscopic observables and is modulated by both bottom-up and top-down processes. How this activity serves both types of processes is largely unknown. Here we review studies that have recently improved our understanding of potential functional roles of large-scale global dynamic activity patterns in auditory cortex. The experimental paradigm of auditory category learning allowed critical testing of the hypothesis that global auditory cortical activity states are associated with endogenous cognitive states mediating the meaning associated with an acoustic stimulus rather than with activity states that merely represent the stimulus for further processing.
Collapse
Affiliation(s)
- Frank W Ohl
- Leibniz Institute for Neurobiology, Department of Systems Physiology of Learning, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
34
|
Bigelow J, Rossi B, Poremba A. Neural correlates of short-term memory in primate auditory cortex. Front Neurosci 2014; 8:250. [PMID: 25177266 PMCID: PMC4132374 DOI: 10.3389/fnins.2014.00250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM). Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single- and multi-unit activity was recorded from the primary auditory cortex (A1) of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials) or withheld button presses if they were different (non-match trials). A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to non-match trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP) and prefrontal cortex (PFC) of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top–down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during auditory STM.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Breein Rossi
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Amy Poremba
- Department of Psychology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
35
|
Plakke B, Romanski LM. Auditory connections and functions of prefrontal cortex. Front Neurosci 2014; 8:199. [PMID: 25100931 PMCID: PMC4107948 DOI: 10.3389/fnins.2014.00199] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
Abstract
The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.
Collapse
Affiliation(s)
- Bethany Plakke
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry Rochester, NY, USA
| | - Lizabeth M Romanski
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry Rochester, NY, USA
| |
Collapse
|
36
|
Tsunada J, Cohen YE. Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits. Front Neurosci 2014; 8:161. [PMID: 24987324 PMCID: PMC4060728 DOI: 10.3389/fnins.2014.00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.
Collapse
Affiliation(s)
- Joji Tsunada
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Yale E. Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Neuroscience, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Bioengineering, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
37
|
Christison-Lagay KL, Bennur S, Blackwell J, Lee JH, Schroeder T, Cohen YE. Natural variability in species-specific vocalizations constrains behavior and neural activity. Hear Res 2014; 312:128-42. [PMID: 24721001 PMCID: PMC4057037 DOI: 10.1016/j.heares.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022]
Abstract
A listener's capacity to discriminate between sounds is related to the amount of acoustic variability that exists between these sounds. However, a full understanding of how this natural variability impacts neural activity and behavior is lacking. Here, we tested monkeys' ability to discriminate between different utterances of vocalizations from the same acoustic class (i.e., coos and grunts), while neural activity was simultaneously recorded in the anterolateral belt region (AL) of the auditory cortex, a brain region that is a part of a pathway that mediates auditory perception. Monkeys could discriminate between coos better than they could discriminate between grunts. We also found AL activity was more informative about different coos than different grunts. This difference could be attributed, in part, to our finding that coos had more acoustic variability than grunts. Thus, intrinsic acoustic variability constrained the discriminability of AL spike trains and the ability of rhesus monkeys to discriminate between vocalizations.
Collapse
Affiliation(s)
| | - Sharath Bennur
- Dept. Otorhinolaryngology, U. Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Blackwell
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jung H Lee
- Dept. Otorhinolaryngology, U. Pennsylvania, Philadelphia, PA 19104, USA
| | - Tim Schroeder
- Dept. Otorhinolaryngology, U. Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Cohen
- Dept. Otorhinolaryngology, U. Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience, U. Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering, U. Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Medalla M, Barbas H. Specialized prefrontal "auditory fields": organization of primate prefrontal-temporal pathways. Front Neurosci 2014; 8:77. [PMID: 24795553 PMCID: PMC3997038 DOI: 10.3389/fnins.2014.00077] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/27/2014] [Indexed: 12/14/2022] Open
Abstract
No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal “auditory field” as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Boston, MA, USA ; Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | - Helen Barbas
- Department of Anatomy and Neurobiology, Boston University Boston, MA, USA ; Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA ; Department of Health Sciences, Boston University Boston, MA, USA
| |
Collapse
|
39
|
Orienting movements in area 9 identified by long-train ICMS. Brain Struct Funct 2013; 220:763-79. [PMID: 24337260 DOI: 10.1007/s00429-013-0682-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The effect of intracortical microstimulation has been studied in several cortical areas from motor to sensory areas. The frontal pole has received particular attention, and several microstimulation studies have been conducted in the frontal eye field, supplementary eye field, and the premotor ear-eye field, but no microstimulation studies concerning area 9 are currently available in the literature. In the present study, to fill up this gap, electrical microstimulation was applied to area 9 in two macaque monkeys using long-train pulses of 500-700-800 and 1,000 ms, during two different experimental conditions: a spontaneous condition, while the animals were not actively fixating on a visual target, and during a visual fixation task. In these experiments, we identified backward ear movements, goal-directed eye movements, and the development of head forces. Kinematic parameters for ear and eye movements overlapped in the spontaneous condition, but they were different during the visual fixation task. In this condition, ear and eye kinematics have an opposite behavior: movement amplitude, duration, and maximal and mean velocities increase during a visual fixation task for the ear, while they decrease for the eye. Therefore, a top-down visual attention engagement could modify the kinematic parameters for these two effectors. Stimulation with the longest train durations, i.e., 800/1,000 ms, evokes not only the highest eye amplitude, but also a significant development of head forces. In this research article, we propose a new vision of the frontal oculomotor fields, speculating a role for area 9 in the control of goal-directed orienting behaviors and gaze shift control.
Collapse
|
40
|
Ng CW, Plakke B, Poremba A. Neural correlates of auditory recognition memory in the primate dorsal temporal pole. J Neurophysiol 2013; 111:455-69. [PMID: 24198324 DOI: 10.1152/jn.00401.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.
Collapse
Affiliation(s)
- Chi-Wing Ng
- Center for Neuroscience, University of California, Davis, California
| | | | | |
Collapse
|
41
|
Poremba A, Bigelow J, Rossi B. Processing of communication sounds: contributions of learning, memory, and experience. Hear Res 2013; 305:31-44. [PMID: 23792078 DOI: 10.1016/j.heares.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, non-human primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Amy Poremba
- University of Iowa, Dept. of Psychology, Div. Behavioral & Cognitive Neuroscience, E11 SSH, Iowa City, IA 52242, USA; University of Iowa, Neuroscience Program, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|