1
|
Rajan JN, Ireland K, Johnson R, Stepien KM. Review of Mechanisms, Pharmacological Management, Psychosocial Implications, and Holistic Treatment of Pain in Fabry Disease. J Clin Med 2021; 10:4168. [PMID: 34575277 PMCID: PMC8472766 DOI: 10.3390/jcm10184168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Fabry disease is a progressive X-linked lysosomal storage disease caused by a mutation in the GLA gene, encoding the lysosomal hydrolase α-galactosidase A. The consequent reduced enzyme activity results in the toxic accumulation of glycosphingolipids, particularly globortriaosylceramide (Gb3 or GL3), in blood vessels, renal epithelia, myocardium, peripheral nervous system, cornea and skin. Neuropathic pain is the most common manifestation of Fabry disease and can be extremely debilitating. This often develops during childhood and presents with episodes of burning and sharp pain in the hands and feet, especially during exercise and it is worse with increased heat or fever. It is thought to be due to ischaemic injury and metabolic failure, leading to the disruption of neuronal membranes and small fibre neuropathy, caused by a reduced density of myelinated Aδ and unmyelinated C-fibres and alterations in the function of ion channels, mediated by Gb3 and lyso Gb3. It is important to confirm small fibre neuropathy before any Fabry disease treatment modality is considered. There is a clinical need for novel techniques for assessing small fibre function to improve detection of small fibre neuropathy and expand the role of available therapies. The current Fabry disease guidelines are in favour of pharmacological management as the first-line treatment for pain associated with Fabry disease. Refractory cases would benefit from a rehabilitation approach with interdisciplinary input, including medical, physiotherapy and psychological disciplines and including a Pain Management Programme.
Collapse
Affiliation(s)
- Jonathan Niranjan Rajan
- Pain Medicine and Anaesthesia Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Katharine Ireland
- Pain Medicine and Anaesthesia Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Richard Johnson
- Manchester & Salford Pain Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
- Division of Diabetes, Endocrinology & Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Hyperlipidaemia is associated with the development of neuropathy. Indeed, a mechanistic link between altered lipid metabolism and peripheral nerve dysfunction has been demonstrated in a number of experimental and clinical studies. Furthermore, post hoc analyses of clinical trials of cholesterol and triglyceride-lowering pharmacotherapy have shown reduced rates of progression of diabetic neuropathy. Given, there are currently no FDA approved disease-modifying therapies for diabetic neuropathy, modulation of lipids may represent a key therapeutic target for the treatment of diabetic nerve damage. This review summarizes the current evidence base on the role of hyperlipidaemia and lipid lowering therapy on the development and progression of peripheral neuropathy. RECENT FINDINGS A body of literature supports a detrimental effect of dyslipidaemia on nerve fibres resulting in somatic and autonomic neuropathy. The case for an important modulating role of hypertriglyceridemia is stronger than for low-density lipoprotein cholesterol (LDL-C) in relation to peripheral neuropathy. This is reflected in the outcomes of clinical trials with the different therapeutic agents targeting hyperlipidaemia reporting beneficial or neutral effects with statins and fibrates. The potential concern with the association between proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor therapy and cognitive decline raised the possibility that extreme LDL-C lowering may result in neurodegeneration. However, studies in murine models and data from small observational studies indicate an association between increased circulating PCSK9 levels and small nerve fibre damage with a protective effect of PCSK9i therapy against small fibre neuropathy. Additionally, weight loss with bariatric surgery leads to an improvement in peripheral neuropathy and regeneration of small nerve fibres measured with corneal confocal microscopy in people with obesity with or without type 2 diabetes. These improvements correlate inversely with changes in triglyceride levels. SUMMARY Hyperlipidaemia, particularly hypertriglyceridemia, is associated with the development and progression of neuropathy. Lipid modifying agents may represent a potential therapeutic option for peripheral neuropathy. Post hoc analyses indicate that lipid-lowering therapies may halt the progression of neuropathy or even lead to regeneration of nerve fibres. Well designed randomized controlled trials are needed to establish if intensive targeted lipid lowering therapy as a part of holistic metabolic control leads to nerve fibre regeneration and improvement in neuropathy symptoms.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bilal Bashir
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
3
|
Sugimoto J, Satoyoshi H, Takahata K, Muraoka S. Fabry disease-associated globotriaosylceramide induces mechanical allodynia via activation of signaling through proNGF-p75 NTR but not mature NGF-TrkA. Eur J Pharmacol 2021; 895:173882. [PMID: 33482180 DOI: 10.1016/j.ejphar.2021.173882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
Fabry disease (FD) is an X-linked metabolic storage disorder arising from the deficiency of lysosomal α-galactosidase A, which leads to the gradual accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), throughout the body. Pain in the extremities is an early symptom of FD; however, the underlying pathophysiological mechanisms remain unknown. α-Galactosidase A knockout animals exhibit nociceptive behaviors, with enhanced expression levels of several ion channels. These characteristics are observed in animals treated with nerve growth factor (NGF). Here, we aimed to elucidate the potential of NGF signaling as a cause of FD-associated pain, using intraplantar Gb3-treated mice displaying mechanical allodynia. Treatment with a neutralizing antibody against a precursor of NGF (proNGF) or its receptor, p75 neurotrophin receptor (p75NTR), resulted in the recovery from Gb3-induced pain. Conversely, anti-NGF and anti-tropomyosin receptor kinase A antibodies failed to exert analgesic effects. Gb3 injection had no effects on the expression levels of proNGF and p75NTR in the plantar skin and dorsal root ganglia, suggesting that Gb3 activates the pain pathway, possibly mediated through functional up-regulation of proNGF-p75NTR signaling. Furthermore, by pharmacological approaches using a protein kinase A (PKA) inhibitor and a cholesterol-removing agent, we found that p75NTR-phosphorylating PKA and lipid rafts for phosphorylated p75NTR translocation were required for Gb3-induced pain. These results suggest that acute exposure to Gb3 induces mechanical allodynia via activation of the proNGF-p75NTR pathway, which involves lipid rafts and PKA. Our findings provide new pathological insights into FD-associated pain, and suggest the need to develop therapeutic interventions targeting proNGF-p75NTR signaling.
Collapse
Affiliation(s)
- Junya Sugimoto
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan.
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| |
Collapse
|
4
|
Kuhn KD, Edamura K, Bhatia N, Cheng I, Clark SA, Haynes CV, Heffner DL, Kabir F, Velasquez J, Spano AJ, Deppmann CD, Keeler AB. Molecular dissection of TNFR-TNFα bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol Cell Neurosci 2020; 103:103467. [PMID: 32004684 PMCID: PMC7682658 DOI: 10.1016/j.mcn.2020.103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
During neural development, complex organisms rely on progressive and regressive events whereby axons, synapses, and neurons are overproduced followed by selective elimination of a portion of these components. Tumor necrosis factor α (TNFα) together with its cognate receptor (Tumor necrosis factor receptor 1; TNFR1) have been shown to play both regressive (i.e. forward signaling from the receptor) and progressive (i.e. reverse signaling from the ligand) roles in sympathetic neuron development. In contrast, a paralog of TNFR1, p75 neurotrophic factor receptor (p75NTR) promotes mainly regressive developmental events in sympathetic neurons. Here we examine the interplay between these paralogous receptors in the regulation of axon branch elimination and arborization. We confirm previous reports that these TNFR1 family members are individually capable of promoting ligand-dependent suppression of axon growth and branching. Remarkably, p75NTR and TNFR1 physically interact and p75NTR requires TNFR1 for ligand-dependent axon suppression of axon branching but not vice versa. We also find that p75NTR forward signaling and TNFα reverse signaling are functionally antagonistic. Finally, we find that TNFα reverse signaling is necessary for nerve growth factor (NGF) dependent axon growth. Taken together these findings demonstrate several levels of synergistic and antagonistic interactions using very few signaling pathways and that the balance of these synergizing and opposing signals act to ensure proper axon growth and patterning.
Collapse
Affiliation(s)
- K D Kuhn
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - K Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - N Bhatia
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - I Cheng
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - S A Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - C V Haynes
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - D L Heffner
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - F Kabir
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - J Velasquez
- Blue Ridge Virtual Governor's School, Palmyra, VA 22963, USA
| | - A J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | - A B Keeler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
5
|
Fast-diffusing p75 NTR monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc Natl Acad Sci U S A 2019; 116:21563-21572. [PMID: 31515449 PMCID: PMC6815156 DOI: 10.1073/pnas.1902790116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins (NTs) are homodimeric growth factors displaying fundamental roles in the nervous system. Their activity stems from binding and activation of 3 different receptor types in nervous cell membranes. The p75 NT receptor (p75NTR) was the first to be discovered in 1986; nevertheless, for the numerous structural and functional facets so far reported, its activation mechanisms have remained elusive. Here, we demonstrate that its pleiotropic functions are regulated by different redistributions of the receptors, which crucially depend on the available NT and on the involved subcellular compartment but are unrelated to its oligomerization state. Single-particle studies proved receptors to be monomers with a fast-diffusive behavior in the membrane with, at most, transient self-interactions on the millisecond time scale. The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.
Collapse
|
6
|
Roselló-Busquets C, de la Oliva N, Martínez-Mármol R, Hernaiz-Llorens M, Pascual M, Muhaisen A, Navarro X, Del Valle J, Soriano E. Cholesterol Depletion Regulates Axonal Growth and Enhances Central and Peripheral Nerve Regeneration. Front Cell Neurosci 2019; 13:40. [PMID: 30809129 PMCID: PMC6379282 DOI: 10.3389/fncel.2019.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia de la Oliva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| |
Collapse
|
7
|
Huang SS, Liu IH, Chen CL, Chang JM, Johnson FE, Huang JS. 7-Dehydrocholesterol (7-DHC), But Not Cholesterol, Causes Suppression of Canonical TGF-β Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD). J Cell Biochem 2017; 118:1387-1400. [PMID: 27862220 PMCID: PMC6123222 DOI: 10.1002/jcb.25797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/14/2016] [Indexed: 02/02/2023]
Abstract
For several decades, cholesterol has been thought to cause ASCVD. Limiting dietary cholesterol intake has been recommended to reduce the risk of the disease. However, several recent epidemiological studies do not support a relationship between dietary cholesterol and/or blood cholesterol and ASCVD. Consequently, the role of cholesterol in atherogenesis is now uncertain. Much evidence indicates that TGF-β, an anti-inflammatory cytokine, protects against ASCVD and that suppression of canonical TGF-β signaling (Smad2-dependent) is involved in atherogenesis. We had hypothesized that cholesterol causes ASCVD by suppressing canonical TGF-β signaling in vascular endothelium. To test this hypothesis, we determine the effects of cholesterol, 7-dehydrocholesterol (7-DHC; the biosynthetic precursor of cholesterol), and other sterols on canonical TGF-β signaling. We use Mv1Lu cells (a model cell system for studying TGF-β activity) stably expressing the Smad2-dependent luciferase reporter gene. We demonstrate that 7-DHC (but not cholesterol or other sterols) effectively suppresses the TGF-β-stimulated luciferase activity. We also demonstrate that 7-DHC suppresses TGF-β-stimulated luciferase activity by promoting lipid raft/caveolae formation and subsequently recruiting cell-surface TGF-β receptors from non-lipid raft microdomains to lipid rafts/caveolae where TGF-β receptors become inactive in transducing canonical signaling and undergo rapid degradation upon TGF-β binding. We determine this by cell-surface 125 I-TGF-β-cross-linking and sucrose density gradient ultracentrifugation. We further demonstrate that methyl-β-cyclodextrin (MβCD), a sterol-chelating agent, reverses 7-DHC-induced suppression of TGF-β-stimulated luciferase activity by extrusion of 7-DHC from resident lipid rafts/caveolae. These results suggest that 7-DHC, but not cholesterol, promotes lipid raft/caveolae formation, leading to suppression of canonical TGF-β signaling and atherogenesis. J. Cell. Biochem. 118: 1387-1400, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - I-Hua Liu
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - Chun-Lin Chen
- Department of Biological Science, National Sun Yat-Sen University and Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Jia-Ming Chang
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - Frank E. Johnson
- Department of Surgery, Saint Louis University Medical Center, 3635 Vista Ave., St. Louis, Missouri 63110
| | - Jung San Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 S. Grand Blvd., St. Louis, Missouri 63104
| |
Collapse
|
8
|
Do TD, Comi TJ, Dunham SJB, Rubakhin SS, Sweedler JV. Single Cell Profiling Using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation. Anal Chem 2017; 89:3078-3086. [PMID: 28194949 DOI: 10.1021/acs.analchem.6b04819] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A high-throughput single cell profiling method has been developed for matrix-enhanced-secondary ion mass spectrometry (ME-SIMS) to investigate the lipid profiles of neuronal cells. Populations of cells are dispersed onto the substrate, their locations determined using optical microscopy, and the cell locations used to guide the acquisition of SIMS spectra from the cells. Up to 2,000 cells can be assayed in one experiment at a rate of 6 s per cell. Multiple saturated and unsaturated phosphatidylcholines (PCs) and their fragments are detected and verified with tandem mass spectrometry from individual cells when ionic liquids are employed as a matrix. Optically guided single cell profiling with ME-SIMS is suitable for a range of cell sizes, from Aplysia californica neurons larger than 75 μm to 7-μm rat cerebellar neurons. ME-SIMS analysis followed by t-distributed stochastic neighbor embedding of peaks in the lipid molecular mass range (m/z 700-850) distinguishes several cell types from the rat central nervous system, largely based on the relative proportions of four dominant lipids, PC(32:0), PC(34:1), PC(36:1), and PC(38:5). Furthermore, subpopulations within each cell type are tentatively classified consistent with their endogenous lipid ratios. The results illustrate the efficacy of a new approach to classify single cell populations and subpopulations using SIMS profiling of lipid and metabolite contents. These methods are broadly applicable for high throughput single cell chemical analyses.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sage J B Dunham
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Barabas ME, Mattson EC, Aboualizadeh E, Hirschmugl CJ, Stucky CL. Chemical structure and morphology of dorsal root ganglion neurons from naive and inflamed mice. J Biol Chem 2014; 289:34241-9. [PMID: 25271163 DOI: 10.1074/jbc.m114.570101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fourier transform infrared spectromicroscopy provides label-free imaging to detect the spatial distribution of the characteristic functional groups in proteins, lipids, phosphates, and carbohydrates simultaneously in individual DRG neurons. We have identified ring-shaped distributions of lipid and/or carbohydrate enrichment in subpopulations of neurons which has never before been reported. These distributions are ring-shaped within the cytoplasm and are likely representative of the endoplasmic reticulum. The prevalence of chemical ring subtypes differs between large- and small-diameter neurons. Peripheral inflammation increased the relative lipid content specifically in small-diameter neurons, many of which are nociceptive. Because many small-diameter neurons express an ion channel involved in inflammatory pain, transient receptor potential ankyrin 1 (TRPA1), we asked whether this increase in lipid content occurs in TRPA1-deficient (knock-out) neurons. No statistically significant change in lipid content occurred in TRPA1-deficient neurons, indicating that the inflammation-mediated increase in lipid content is largely dependent on TRPA1. Because TRPA1 is known to mediate mechanical and cold sensitization that accompanies peripheral inflammation, our findings may have important implications for a potential role of lipids in inflammatory pain.
Collapse
Affiliation(s)
- Marie E Barabas
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| | - Eric C Mattson
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Ebrahim Aboualizadeh
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Carol J Hirschmugl
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Cheryl L Stucky
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| |
Collapse
|