1
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Kutschenko A, Staege S, Grütz K, Glaß H, Kalmbach N, Gschwendtberger T, Henkel LM, Heine J, Grünewald A, Hermann A, Seibler P, Wegner F. Functional and Molecular Properties of DYT-SGCE Myoclonus-Dystonia Patient-Derived Striatal Medium Spiny Neurons. Int J Mol Sci 2021; 22:3565. [PMID: 33808167 PMCID: PMC8037318 DOI: 10.3390/ijms22073565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Myoclonus-dystonia (DYT-SGCE, formerly DYT11) is characterized by alcohol-sensitive, myoclonic-like appearance of fast dystonic movements. It is caused by mutations in the SGCE gene encoding ε-sarcoglycan leading to a dysfunction of this transmembrane protein, alterations in the cerebello-thalamic pathway and impaired striatal plasticity. To elucidate underlying pathogenic mechanisms, we investigated induced pluripotent stem cell (iPSC)-derived striatal medium spiny neurons (MSNs) from two myoclonus-dystonia patients carrying a heterozygous mutation in the SGCE gene (c.298T>G and c.304C>T with protein changes W100G and R102X) in comparison to two matched healthy control lines. Calcium imaging showed significantly elevated basal intracellular Ca2+ content and lower frequency of spontaneous Ca2+ signals in SGCE MSNs. Blocking of voltage-gated Ca2+ channels by verapamil was less efficient in suppressing KCl-induced Ca2+ peaks of SGCE MSNs. Ca2+ amplitudes upon glycine and acetylcholine applications were increased in SGCE MSNs, but not after GABA or glutamate applications. Expression of voltage-gated Ca2+ channels and most ionotropic receptor subunits was not altered. SGCE MSNs showed significantly reduced GABAergic synaptic density. Whole-cell patch-clamp recordings displayed elevated amplitudes of miniature postsynaptic currents and action potentials in SGCE MSNs. Our data contribute to a better understanding of the pathophysiology and the development of novel therapeutic strategies for myoclonus-dystonia.
Collapse
Grants
- Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488) Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488)
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Selma Staege
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Lisa M. Henkel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Johanne Heine
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
- German Center for Neurodegenerative Diseases Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| |
Collapse
|
3
|
Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy? Cytokine 2020; 133:155134. [DOI: 10.1016/j.cyto.2020.155134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
4
|
Dystrobrevin is required postsynaptically for homeostatic potentiation at the Drosophila NMJ. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1579-1591. [PMID: 30904609 DOI: 10.1016/j.bbadis.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.
Collapse
|
5
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Pereira da Silva JD, Campos DV, Nogueira-Bechara FM, Stilhano RS, Han SW, Sinigaglia-Coimbra R, Lima-Landman MTR, Lapa AJ, Souccar C. Altered release and uptake of gamma-aminobutyric acid in the cerebellum of dystrophin-deficient mice. Neurochem Int 2018; 118:105-114. [PMID: 29864448 DOI: 10.1016/j.neuint.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Dystrophin deficiency caused by mutations of the related gene leads to muscle wasting in Duchenne muscular dystrophy (DMD). Some patients with DMD also present with intellectual disability and various degrees of neurological disorders, which have been related to a decreased number of postsynaptic gamma-aminobutyric acid type A receptors (GABAARs) in the hippocampus (HPC) and cerebellum (CBL). The aim of this study was to examine the relevance of dystrophin in the presynaptic GABAergic function in brain regions in which this protein is normally abundant. [3H]-GABA release, induced by nicotinic receptor (nAChR) activation or K+ depolarization, and [3H]-GABA uptake were determined using synaptosomes extracted from the cortex (CTX), HPC, and CBL of littermate control and mdx mice. Superfusion of the synaptosomes with nicotine or high K+ solutions led to a concentration-dependent and Ca2+-dependent [3H]-GABA release in control and mdx synaptosomes. [3H]-GABA release induced by 10 μM nicotine in mdx CBL synaptosomes was 47% less than that in control mice. K+-induced [3H]-GABA release did not differ between control and mdx synaptosomes. α7-containing and β2-containing nAChRs were involved in nicotine-induced [3H]-GABA release in control and mdx synaptosomes. Kinetic analysis of [3H]-GABA uptake in mdx CBL synaptosomes showed a reduced (50%) half-maximal uptake time (t1/2) and increased (44%) rate of [3H]-GABA uptake (Vmax) compared to controls. The apparent transporter affinity (Km) for GABA was not altered. Our findings show that dystrophin deficiency in mdx mice is associated with significant changes in the release and uptake of GABA in the CBL. These presynaptic alterations may be related to the reported decrease in postsynaptic GABAAR in the same brain region. The results indicate possible dysfunction of GABAergic synapses associated with dystrophin deficiency in the CBL, which may contribute to the cognitive and neurobehavioral disorders in mdx mice and patients with DMD.
Collapse
Affiliation(s)
| | - Diego Vannucci Campos
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | | | - Roberta Sessa Stilhano
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Rita Sinigaglia-Coimbra
- Electron Microscopy Center, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | | | - Antônio José Lapa
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil; Visiting Professor at Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Caden Souccar
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil.
| |
Collapse
|
7
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-15. [PMID: 27385793 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Schara U, Busse M, Timmann D, Gerwig M. Cerebellar-dependent associative learning is preserved in Duchenne muscular dystrophy: a study using delay eyeblink conditioning. PLoS One 2015; 10:e0126528. [PMID: 25973604 PMCID: PMC4431835 DOI: 10.1371/journal.pone.0126528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 02/03/2023] Open
Abstract
Objective Besides progressive muscle weakness cognitive deficits have been reported in patients with Duchenne muscular dystrophy (DMD). Cerebellar dysfunction has been proposed to explain cognitive deficits at least in part. In animal models of DMD disturbed Purkinje cell function has been shown following loss of dystrophin. Furthermore there is increasing evidence that the lateral cerebellum contributes to cognitive processing. In the present study cerebellar-dependent delay eyeblink conditioning, a form of associative learning, was used to assess cerebellar function in DMD children. Methods Delay eyeblink conditioning was examined in eight genetically defined male patients with DMD and in ten age-matched control subjects. Acquisition, timing and extinction of conditioned eyeblink responses (CR) were assessed during a single conditioning session. Results Both groups showed a significant increase of CRs during the course of learning (block effect p < 0.001). CR acquisition was not impaired in DMD patients (mean total CR incidence 37.4 ± 17.6%) as compared to control subjects (36.2 ± 17.3%; group effect p = 0.89; group by block effect p = 0.38; ANOVA with repeated measures). In addition, CR timing and extinction was not different from controls. Conclusions Delay eyeblink conditioning was preserved in the present DMD patients. Because eyeblink conditioning depends on the integrity of the intermediate cerebellum, this older part of the cerebellum may be relatively preserved in DMD. The present findings agree with animal model data showing that the newer, lateral cerebellum is primarily affected in DMD.
Collapse
Affiliation(s)
- Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics,University of Duisburg-Essen, Essen, Germany
| | - Melanie Busse
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics,University of Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
10
|
Hendriksen RG, Hoogland G, Schipper S, Hendriksen JG, Vles JS, Aalbers MW. A possible role of dystrophin in neuronal excitability: A review of the current literature. Neurosci Biobehav Rev 2015; 51:255-62. [DOI: 10.1016/j.neubiorev.2015.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/18/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
11
|
Whitmore C, Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int J Exp Pathol 2014; 95:365-77. [PMID: 25270874 PMCID: PMC4285463 DOI: 10.1111/iep.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022] Open
Abstract
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| |
Collapse
|
12
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|