1
|
Kristaponyte I, Beebe NL, Harish N, Schofield BR, Galazyuk AV. Expression of group II mGluRs in the inferior colliculus, medial geniculate body, and auditory cortex increases with age. Neuroscience 2024; 566:227-238. [PMID: 39694319 DOI: 10.1016/j.neuroscience.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are widely expressed throughout the central nervous system. They are linked to G-protein coupled receptors and are known to modulate synaptic transmission. The data regarding their expression in auditory structures are not systematic and mainly originate from physiological studies where expression was used to support physiological findings. MGluRs are classified into three groups based on their sequence homology, G protein-coupling, and ligand selectivity. Our recent physiological findings made us focus on the group II mGluRs. The objective of this study was to characterize group II mGluR expression, and whether it changes in aged brains, in three central auditory structures: inferior colliculus (IC), medial geniculate body (MG), and auditory cortex (AC). We performed immunostaining experiments followed by optical density quantification in young and old mice. We found group II mGluR staining in the IC, MG, and AC. However, the intensity of this staining was not uniform within these auditory structures. In the IC expression was more intense in the dorsal compared to ventral part. Contrarily, the staining was more pronounced in the ventral part of the MG. In the AC, the staining was more intense near the surface and diminished toward white matter. We also found that the overall expression level of mGluR2/3 was increased significantly in aged animals in all auditory structures tested. Collectively, our detailed immunostaining findings suggest that the group II mGluRs are widely expressed throughout the central auditory system and their contribution to auditory processing increases with age.
Collapse
Affiliation(s)
- Inga Kristaponyte
- Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA.
| | - Nichole L Beebe
- Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA.
| | - Nikhil Harish
- Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA.
| | - Brett R Schofield
- Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA.
| | - Alex V Galazyuk
- Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA.
| |
Collapse
|
2
|
Bhatt IS, Garay JAR, Bhagavan SG, Ingalls V, Dias R, Torkamani A. A genome-wide association study reveals a polygenic architecture of speech-in-noise deficits in individuals with self-reported normal hearing. Sci Rep 2024; 14:13089. [PMID: 38849415 PMCID: PMC11161523 DOI: 10.1038/s41598-024-63972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Speech-in-noise (SIN) perception is a primary complaint of individuals with audiometric hearing loss. SIN performance varies drastically, even among individuals with normal hearing. The present genome-wide association study (GWAS) investigated the genetic basis of SIN deficits in individuals with self-reported normal hearing in quiet situations. GWAS was performed on 279,911 individuals from the UB Biobank cohort, with 58,847 reporting SIN deficits despite reporting normal hearing in quiet. GWAS identified 996 single nucleotide polymorphisms (SNPs), achieving significance (p < 5*10-8) across four genomic loci. 720 SNPs across 21 loci achieved suggestive significance (p < 10-6). GWAS signals were enriched in brain tissues, such as the anterior cingulate cortex, dorsolateral prefrontal cortex, entorhinal cortex, frontal cortex, hippocampus, and inferior temporal cortex. Cochlear cell types revealed no significant association with SIN deficits. SIN deficits were associated with various health traits, including neuropsychiatric, sensory, cognitive, metabolic, cardiovascular, and inflammatory conditions. A replication analysis was conducted on 242 healthy young adults. Self-reported speech perception, hearing thresholds (0.25-16 kHz), and distortion product otoacoustic emissions (1-16 kHz) were utilized for the replication analysis. 73 SNPs were replicated with a self-reported speech perception measure. 211 SNPs were replicated with at least one and 66 with at least two audiological measures. 12 SNPs near or within MAPT, GRM3, and HLA-DQA1 were replicated for all audiological measures. The present study highlighted a polygenic architecture underlying SIN deficits in individuals with self-reported normal hearing.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
4
|
Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int J Mol Sci 2023; 24:ijms24021718. [PMID: 36675230 PMCID: PMC9865595 DOI: 10.3390/ijms24021718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.
Collapse
|
5
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
6
|
Isler B, von Burg N, Kleinjung T, Meyer M, Stämpfli P, Zölch N, Neff P. Lower glutamate and GABA levels in auditory cortex of tinnitus patients: a 2D-JPRESS MR spectroscopy study. Sci Rep 2022; 12:4068. [PMID: 35260698 PMCID: PMC8904839 DOI: 10.1038/s41598-022-07835-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
We performed magnetic resonance spectroscopy (MRS) on healthy individuals with tinnitus and no hearing loss (n = 16) vs. a matched control group (n = 17) to further elucidate the role of excitatory and inhibitory neurotransmitters in tinnitus. Two-dimensional J-resolved spectroscopy (2D-JPRESS) was applied to disentangle Glutamate (Glu) from Glutamine and to estimate GABA levels in two bilateral voxels in the primary auditory cortex. Results indicated a lower Glu concentration (large effect) in right auditory cortex and lower GABA concentration (medium effect) in the left auditory cortex of the tinnitus group. Within the tinnitus group, Glu levels positively correlated with tinnitus loudness measures. While the GABA difference between groups is in line with former findings and theories about a dysfunctional auditory inhibition system in tinnitus, the novel finding of reduced Glu levels came as a surprise and is discussed in the context of a putative framework of inhibitory mechanisms related to Glu throughout the auditory pathway. Longitudinal or interventional studies could shed more light on interactions and causality of Glu and GABA in tinnitus neurochemistry.
Collapse
Affiliation(s)
- B Isler
- Department of Otorhinolaryngology, University Hospital Zurich, (USZ), University of Zurich (UZH), Zurich, Switzerland. .,Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - N von Burg
- Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - T Kleinjung
- Department of Otorhinolaryngology, University Hospital Zurich, (USZ), University of Zurich (UZH), Zurich, Switzerland.,Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - M Meyer
- Division of Neuropsychology, University of Zurich (UZH), Zurich, Switzerland.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich (UZH), Zurich, Switzerland
| | - P Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
| | - N Zölch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland.,Institute of Forensic Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - P Neff
- Department of Psychology, Center for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Mahdi P, Pourbakht A, Karimi Yazdi A, Rabbani Anari M, Pirhajati Mahabadi V, Kamali M. Metabotropic glutamate receptor: A new possible therapeutic target for cochlear synaptopathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:75-83. [PMID: 35656439 PMCID: PMC9118270 DOI: 10.22038/ijbms.2021.59970.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Objectives Cochlear synaptopathy is a common cause of auditory disorders in which glutamate over-activation occurs. Modulating glutamatergic pathways has been proposed to down-regulate post-synaptic excitation. Materials and Methods 12-guinea pigs as sham and test groups were exposed to a 4-kHz noise at 104 dB SPL, for 2 hr. Pre-exposure intra-tympanic injection with LY354740 and normal saline 9% was applied in the test and sham groups. The amplitude growth of ABR-wave-I and wave-III latency shift with noise were considered in pre- and post-exposure times. The synapses were observed by transmission electron-microscopy. Results ABR thresholds recovered 1-week post-exposure in both groups. The reduction of wave-I amplitude at 4, 6, and 8 kHz were statistically different between pre- and 1- day post-exposure and recovered mostly in the sham group. The amount of latency shift in masked ABR was different between pre- and all post-exposure, and the response could not be detected at higher than 50 dB SL noise. However, the response detectability increased to 60 dB SL noise, and the significance of differences between pre- and post-exposure persisted only at the high level of noise in the test group. In electron-microscopy of sham samples, the size of the ribbon was larger, spherical with an irregularity, and hollow. The post-synaptic density was thicker and missed its flat orientation. Conclusion The higher slope of the ABR-wave I amplitude, the more tolerance of noise in masked ABR, concomitant with the histological finding that revealed less synaptic damage, confirmed the therapeutic effect of LY354740 in cochlear synaptopathy.
Collapse
Affiliation(s)
- Parvane Mahdi
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran
| | - Akram Pourbakht
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran,Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran,Corresponding author: Akram Pourbakht. Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Tel: +98-21-22250541;
| | - Alireza Karimi Yazdi
- Department of Otorhinolaryngology-Head and Neck Surgery, Imam Khomeini Educational Hospital Complex, Tehran University of Medical Sciences. Tehran, Iran
| | - Mahtab Rabbani Anari
- Otorhinolaryngology Research Center, Amir-Alam Educational Complex, Tehran University of Medical Sciences. Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Department of Neurosciences, School of Medicine. Iran University of Medical Sciences. Tehran, Iran
| | - Mohammad Kamali
- Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
8
|
Klotz L, Enz R. MGluR7 is a presynaptic metabotropic glutamate receptor at ribbon synapses of inner hair cells. FASEB J 2021; 35:e21855. [PMID: 34644430 DOI: 10.1096/fj.202100672r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023]
Abstract
Glutamate is the most pivotal excitatory neurotransmitter in the central nervous system. Metabotropic glutamate receptors (mGluRs) dimerize and can couple to inhibitory intracellular signal cascades, thereby protecting glutamatergic neurons from excessive excitation and cell death. MGluR7 is correlated with age-related hearing deficits and noise-induced hearing loss; however its exact localization in the cochlea is unknown. Here, we analyzed the expression and localization of mGluR7a and mGluR7b in mouse cochlear wholemounts in detail, using confocal microscopy and 3D reconstructions. We observed a presynaptic localization of mGluR7a at inner hair cells (IHCs), close to the synaptic ribbon. To detect mGluR7b, newly generated antibodies were characterized and showed co-localization with mGluR7a at IHC ribbon synapses. Compared to the number of synaptic ribbons, the numbers of mGluR7a and mGluR7b puncta were reduced at higher frequencies (48 to 64 kHz) and in older animals (6 and 12 months). Previously, we reported a presynaptic localization of mGluR4 and mGluR8b at this synapse type. This enables the possibility for the formation of homo- and/or heterodimeric receptors composed of mGluR4, mGluR7a, mGluR7b and mGluR8b at IHC ribbon synapses. These receptor complexes might represent new molecular targets suited for pharmacological concepts to protect the cochlea against noxious stimuli and excitotoxicity.
Collapse
Affiliation(s)
- Lisa Klotz
- Institute for Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Enz
- Institute for Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and cognitive decline: MRI and cellular evidence. Ann N Y Acad Sci 2021; 1500:17-33. [PMID: 34114212 DOI: 10.1111/nyas.14617] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Extensive evidence supports the association between age-related hearing loss (ARHL) and cognitive decline. It is, however, unknown whether a causal relationship exists between these two, or whether they both result from shared mechanisms. This paper intends to study this relationship through a comprehensive review of MRI findings as well as evidence of cellular alterations. Our review of structural MRI studies demonstrates that ARHL is independently linked to accelerated atrophy of total and regional brain volumes and reduced white matter integrity. Resting-state and task-based fMRI studies on ARHL also show changes in spontaneous neural activity and brain functional connectivity; and alterations in brain areas supporting auditory, language, cognitive, and affective processing independent of age, respectively. Although MRI findings support a causal relationship between ARHL and cognitive decline, the contribution of potential shared mechanisms should also be considered. In this regard, the review of cellular evidence indicates their role as possible common mechanisms underlying both age-related changes in hearing and cognition. Considering existing evidence, no single hypothesis can explain the link between ARHL and cognitive decline, and the contribution of both causal (i.e., the sensory hypothesis) and shared (i.e., the common cause hypothesis) mechanisms is expected.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
10
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Group II Metabotropic Glutamate Receptors Modulate Sound Evoked and Spontaneous Activity in the Mouse Inferior Colliculus. eNeuro 2021; 8:ENEURO.0328-20.2020. [PMID: 33334826 PMCID: PMC7814476 DOI: 10.1523/eneuro.0328-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC in vivo. We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification. Extracellular single neuron recordings were obtained before and after pharmacological mGluR2/3 activation. We observed increased sound-evoked firing, as assessed by the rate-level functions (RLFs), in a subset of both GABAergic and non-GABAergic IC neurons following mGluR2/3 pharmacological activation. These neurons also displayed elevated spontaneous excitability and were distributed throughout the IC area tested, suggesting a widespread mGluR2/3 distribution in the mouse IC.
Collapse
|
12
|
Goel N, Peng K, Lu Y. Neuromodulation by mGluRs in Sound Localization Circuits in the Auditory Brainstem. Front Neural Circuits 2020; 14:599600. [PMID: 33224028 PMCID: PMC7674593 DOI: 10.3389/fncir.2020.599600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
The ability of humans and animals to localize the source of a sound in a complex acoustic environment facilitates communication and survival. Two cues are used for sound localization at horizontal planes, interaural time and level differences (ITD and ILD), which are analyzed by distinct neural circuits in the brainstem. Here, we review the studies on metabotropic glutamate receptor (mGluR)-mediated neuromodulation of both intrinsic and synaptic properties of brainstem neurons in these circuits. Both mammalian and avian animal models have been used, with each having their advantages that are not present in the other. For the mammalian model, we discuss mGluR neuromodulation in the ILD circuit, with an emphasis on the recent discovery of differential modulation of synaptic transmission of different transmitter release modes. For the avian model, we focus on reviewing mGluR neuromodulation in the ITD pathway, with an emphasis on tonotopic distribution and synaptic plasticity of mGluR modulation in coincidence detector neurons. Future works are proposed to further investigate the functions and mechanisms of mGluRs in the sound localization circuits.
Collapse
Affiliation(s)
- Nupur Goel
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Kang Peng
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Yong Lu
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
13
|
Dyhrfjeld-Johnsen J, Cederroth CR. Current Clinical Trials for Tinnitus. Otolaryngol Clin North Am 2020; 53:651-666. [DOI: 10.1016/j.otc.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
15
|
Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB J 2019; 33:13734-13746. [PMID: 31585509 DOI: 10.1096/fj.201901543r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the CNS binding to a variety of glutamate receptors. Metabotropic glutamate receptors (mGluR1 to mGluR8) can act excitatory or inhibitory, depending on associated signal cascades. Expression and localization of inhibitory acting mGluRs at inner hair cells (IHCs) in the cochlea are largely unknown. Here, we analyzed expression of mGluR2, mGluR3, mGluR4, mGluR6, mGluR7, and mGluR8 and investigated their localization with respect to the presynaptic ribbon of IHC synapses. We detected transcripts for mGluR2, mGluR3, and mGluR4 as well as for mGluR7a, mGluR7b, mGluR8a, and mGluR8b splice variants. Using receptor-specific antibodies in cochlear wholemounts, we found expression of mGluR2, mGluR4, and mGluR8b close to presynaptic ribbons. Super resolution and confocal microscopy in combination with 3-dimensional reconstructions indicated a postsynaptic localization of mGluR2 that overlaps with postsynaptic density protein 95 on dendrites of afferent type I spiral ganglion neurons. In contrast, mGluR4 and mGluR8b were expressed at the presynapse close to IHC ribbons. In summary, we localized in detail 3 mGluR types at IHC ribbon synapses, providing a fundament for new therapeutical strategies that could protect the cochlea against noxious stimuli and excitotoxicity.-Klotz, L., Wendler, O., Frischknecht, R., Shigemoto, R., Schulze, H., Enz, R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses.
Collapse
Affiliation(s)
- Lisa Klotz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Wendler
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Holger Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Enz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Galazyuk A, Longenecker R, Voytenko S, Kristaponyte I, Nelson G. Residual inhibition: From the putative mechanisms to potential tinnitus treatment. Hear Res 2019; 375:1-13. [DOI: 10.1016/j.heares.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
|
17
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Juiz JM, Varela-Nieto I. Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1 -/- Mouse. Front Cell Neurosci 2019; 13:67. [PMID: 30881288 PMCID: PMC6405628 DOI: 10.3389/fncel.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Rodríguez-de la Rosa
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Isabel Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
18
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Tschiffely AE, McCarron RM, Hof PR, Gandy S, Ahlers ST, Elder GA. Blast-induced "PTSD": Evidence from an animal model. Neuropharmacology 2018; 145:220-229. [PMID: 30227150 DOI: 10.1016/j.neuropharm.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
A striking observation among veterans returning from the recent conflicts in Iraq and Afghanistan has been the co-occurrence of blast-related mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). PTSD and mTBI might coexist due to additive effects of independent psychological and physical traumas experienced in a war zone. Alternatively blast injury might induce PTSD-related traits or damage brain structures that mediate responses to psychological stressors, increasing the likelihood that PTSD will develop following a subsequent psychological stressor. Rats exposed to repetitive low-level blasts consisting of three 74.5 kPa exposures delivered once daily for three consecutive days develop a variety of anxiety and PTSD-related behavioral traits that are present for at least 9 months after blast exposure. A single predator scent challenge delivered 8 months after the last blast exposure induces additional anxiety-related changes that are still present 45 days later. Because the blast injuries occur under general anesthesia, it appears that blast exposure in the absence of a psychological stressor can induce chronic PTSD-related traits. The reaction to a predator scent challenge delivered many months after blast exposure suggests that blast exposure in addition sensitizes the brain to react abnormally to subsequent psychological stressors. The development of PTSD-related behavioral traits in the absence of a psychological stressor suggests the existence of blast-induced "PTSD". Findings that PTSD-related behavioral traits can be reversed by BCI-838, a group II metabotropic glutamate receptor antagonist offers insight into pathogenesis and possible treatment options for blast-related brain injury. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Anna E Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20914, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
19
|
Lu Y, Liu Y, Curry RJ. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit. J Physiol 2018; 596:1981-1997. [PMID: 29572827 DOI: 10.1113/jp275735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Binaural excitatory inputs to coincidence detection neurons in nucleus laminaris (NL) play essential roles in interaural time difference coding for sound localization. Here, we show that the two excitatory inputs are physiologically nearly completely segregated. Synaptic integration shows linear summation of EPSPs, ensuring high efficiency of coincidence detection of the bilateral excitatory inputs. We further show that the two excitatory inputs to single NL neurons are symmetrical in synaptic strength, kinetics and short-term plasticity. Modulation of the EPSCs by metabotropic glutamate receptors (mGluRs) is identical between the two excitatory inputs, maintaining balanced bilateral excitation under neuromodulatory conditions. Unilateral hearing deprivation reduces synaptic excitation and paradoxically strengthens mGluR modulation of EPSCs, suggesting activity-dependent anti-homeostatic regulation, a novel synaptic plasticity in response to sensory manipulations. ABSTRACT Neurons in the avian nucleus laminaris (NL) receive bilateral excitatory inputs from the cochlear nucleus magnocellularis, via morphologically symmetrical dorsal (ipsilateral) and ventral (contralateral) dendrites. Using in vitro whole-cell patch recordings in chicken brainstem slices, we investigated synaptic integration and modulation of the bilateral inputs to NL under normal and hearing deprivation conditions. We found that the two excitatory inputs onto single NL neurons were nearly completely segregated, and integration of the two inputs was linear for EPSPs. The two inputs had similar synaptic strength, kinetics and short-term plasticity. EPSCs in low but not middle and high frequency neurons were suppressed by activation of group I and II metabotropic glutamate receptors (mGluR I and II), with similar modulatory strength between the ipsilateral and contralateral inputs. Unilateral hearing deprivation by cochlea removal reduced the excitatory transmission on the deprived dendritic domain of NL. Interestingly, EPSCs evoked at the deprived domain were modulated more strongly by mGluR II than at the counterpart domain that received intact input in low frequency neurons, suggesting anti-homeostatic regulation. This was supported by a stronger expression of mGluR II protein on the deprived neuropils of NL. Under mGluR II modulation, EPSCs on the deprived input show transient synaptic facilitation, forming a striking contrast with normal hearing conditions under which pure synaptic depression is observed. These results demonstrate physiological symmetry and thus balanced bilateral excitatory inputs to NL neurons. The activity-dependent anti-homeostatic plasticity of mGluR modulation constitutes a novel mechanism regulating synaptic transmission in response to sensory input manipulations.
Collapse
Affiliation(s)
- Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Yuwei Liu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
20
|
Tang ZQ, Lu Y. Anatomy and Physiology of Metabotropic Glutamate Receptors in Mammalian and Avian Auditory System. ACTA ACUST UNITED AC 2018; 1. [PMID: 30854519 DOI: 10.24966/tap-7752/100001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Glutamate, as the major excitatory neurotransmitter used in the vertebrate brain, activates ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), which mediate fast and slow neuronal actions, respectively. mGluRs play important modulatory roles in many brain areas, forming potential targets for drugs developed to treat brain disorders. Here, we review studies on mGluRs in the mammalian and avian auditory system. Although anatomical expression of mGluRs in the cochlear nucleus has been well characterized, data for other auditory nuclei await more systematic investigations especially at the electron microscopy level. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the auditory circuitry in the brainstem. These in vitro physiological studies have demonstrated that mGluRs participate in synaptic transmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between Excitation and Inhibition (E/I) in a variety of auditory structures. However, the modulatory roles of mGluRs in auditory processing remain largely unclear at the system and behavioral levels, and the functions of mGluRs in auditory disorders remain entirely unknown.
Collapse
Affiliation(s)
- Zheng-Quan Tang
- Oregon Hearing Research Center, Vollum Institute, Oregon Health and Science University, Oregon, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Ohio, USA
| |
Collapse
|
21
|
PTSD-Related Behavioral Traits in a Rat Model of Blast-Induced mTBI Are Reversed by the mGluR2/3 Receptor Antagonist BCI-838. eNeuro 2018; 5:eN-NWR-0357-17. [PMID: 29387781 PMCID: PMC5790754 DOI: 10.1523/eneuro.0357-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
Battlefield blast exposure related to improvised explosive devices (IEDs) has become the most common cause of traumatic brain injury (TBI) in the recent conflicts in Iraq and Afghanistan. Mental health problems are common after TBI. A striking feature in the most recent veterans has been the frequency with which mild TBI (mTBI) and posttraumatic stress disorder (PTSD) have appeared together, in contrast to the classical situations in which the presence of mTBI has excluded the diagnosis of PTSD. However, treatment of PTSD-related symptoms that follow blast injury has become a significant problem. BCI-838 (MGS0210) is a Group II metabotropic glutamate receptor (mGluR2/3) antagonist prodrug, and its active metabolite BCI-632 (MGS0039) has proneurogenic, procognitive, and antidepressant activities in animal models. In humans, BCI-838 is currently in clinical trials for refractory depression and suicidality. The aim of the current study was to determine whether BCI-838 could modify the anxiety response and reverse PTSD-related behaviors in rats exposed to a series of low-level blast exposures designed to mimic a human mTBI or subclinical blast exposure. BCI-838 treatment reversed PTSD-related behavioral traits improving anxiety and fear-related behaviors as well as long-term recognition memory. Treatment with BCI-838 also increased neurogenesis in the dentate gyrus (DG) of blast-exposed rats. The safety profile of BCI-838 together with the therapeutic activities reported here, make BCI-838 a promising drug for the treatment of former battlefield Warfighters suffering from PTSD-related symptoms following blast-induced mTBI.
Collapse
|
22
|
Haider HF, Flook M, Aparicio M, Ribeiro D, Antunes M, Szczepek AJ, Hoare DJ, Fialho G, Paço JC, Caria H. Biomarkers of Presbycusis and Tinnitus in a Portuguese Older Population. Front Aging Neurosci 2017; 9:346. [PMID: 29163129 PMCID: PMC5672025 DOI: 10.3389/fnagi.2017.00346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Introduction: Presbycusis or age-related hearing loss (ARHL) is a ubiquitous health problem. It is estimated that it will affect up to 1.5 billion people by 2025. In addition, tinnitus occurs in a large majority of cases with presbycusis. Glutamate metabotropic receptor 7 (GRM7) and N-acetyltransferase 2 (NAT2) are some of the genetic markers for presbycusis. Objectives: To explore patterns of hearing loss and the role of GRM7 and NAT2 as possible markers of presbycusis and tinnitus in a Portuguese population sample. Materials and Methods: Tonal and speech audiometry, tinnitus assessment, clinical interview, and DNA samples were obtained from patients aged from 55 to 75 with or without tinnitus. GRM7 analysis was performed by qPCR. Genotyping of single nucleotide polymorphisms (SNPs) in NAT2 was performed by PCR amplification followed by Sanger sequencing or by qPCR. Results: We screened samples from 78 individuals (33 men and 45 women). T allele at GRM7 gene was the most observed (60.3% T/T and 33.3% A/T). Individuals with a T/T genotype have a higher risk for ARHL and 33% lower risk for tinnitus, compared to individuals with A/A and A/T genotype, respectively. Being a slow acetylator (53%) was the most common NAT2 phenotype, more common in men (55.8%). Intermediate acetylator was the second most common phenotype (35.9%) also more frequent in men (82.6%). Noise exposed individuals and individuals with ‘high frequency’ hearing loss seem to have a higher risk for tinnitus. Our data suggests that allele AT of GRM7 can have a statistically significant influence toward the severity of tinnitus. Conclusion: For each increasing year of age the chance of HL increases by 9%. The risk for ARHL was not significantly associated with GRM7 neither NAT2. However, we cannot conclude from our data whether the presence of T allele at GRM7 increases the odds for ARHL or whether the A allele has a protective effect. Genotype A/T at GRM7 could potentially be considered a biomarker of tinnitus severity. This is the first study evaluating the effect of GRM7 and NAT2 gene in tinnitus.
Collapse
Affiliation(s)
- Haúla F Haider
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Marisa Flook
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
| | | | - Diogo Ribeiro
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Marilia Antunes
- Centro de Estatística e Aplicações, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Derek J Hoare
- NIHR Nottingham Biomedical Research Centre, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graça Fialho
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
| | - João C Paço
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Helena Caria
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal.,ESS/IPS- Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Setubal, Portugal
| |
Collapse
|
23
|
Shi W, Lu Y. Metabotropic glutamate and GABA receptors modulate cellular excitability and glutamatergic transmission in chicken cochlear nucleus angularis neurons. Hear Res 2017; 346:14-24. [PMID: 28104407 DOI: 10.1016/j.heares.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/25/2022]
Abstract
Neurons in the avian cochlear nucleus angularis (NA) receive glutamatergic input from the auditory nerve, and GABAergic input from the superior olivary nucleus. Physiologically heterogeneous, NA neurons perform multiple functions including encoding sound intensity information. Using in vitro whole-cell patch recordings from acute brain slices and immunohistochemistry staining, we investigated neuromodulation mediated by metabotropic glutamate and GABA receptors (mGluRs and GABABRs) in NA neurons. Based on their intrinsic firing patterns in response to somatic current injections, NA neurons were classified into onset, damped, and tonic cells. Pharmacological activation of group II mGluRs, group III mGluRs, and GABABRs, by their respective agonists, suppressed the cellular excitability of non-onset firing NA neurons. Each of these agonists inhibited the glutamatergic transmission in NA neurons, in a cell type-independent manner. The frequency but not the amplitude of spontaneous release of glutamate was reduced by each of these agonists, suggesting that the modulation of the glutamatergic transmission was via presynaptic actions. Interestingly, activation of group I mGluRs increased cellular excitability and suppressed glutamatergic transmission in non-onset neurons. These results elaborate that auditory processing in NA neurons is subject to neuromodulation mediated by metabotropic receptors activated by native neurotransmitters released at NA.
Collapse
Affiliation(s)
- Wei Shi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA; School of Life Science, Tsinghua University, Beijing, 100084, PR China.
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA.
| |
Collapse
|
24
|
Carroll BJ, Hyson RL. A role for inhibition in deafness-induced plasticity of the avian auditory brainstem. Neuroscience 2016; 327:10-9. [PMID: 27095711 DOI: 10.1016/j.neuroscience.2016.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/05/2023]
Abstract
To better understand the effects of deafness on the brain, these experiments examine how disrupted balance between excitatory and inhibitory neurotransmission following the loss of excitatory input from the auditory nerve alters the central auditory system. In the avian cochlear nucleus, nucleus magnocellularis (NM), deprivation of excitatory input induced by deafness triggers neuronal death. While this neuronal death was previously accredited to the loss of excitatory drive, the present experiments examine an alternative hypothesis: that inhibitory input to NM, which may also be affected by deafness, contributes to neuronal death in NM. Using an in vitro slice preparation in which excitatory input from the auditory nerve is absent, we pharmacologically altered GABA receptor activation in NM, and assayed an early marker of neuronal health, antigenicity for the ribosomal antibody Y10B (Y10B-ir). We found that GABA decreases Y10B-ir, and that GABAA activation is necessary for the GABA-induced effect. We further found that endogenous GABAA activation similarly decreases Y10B-ir and this decrease requires extracellular Ca(2+). Our results suggest that, in the absence of excitatory input, endogenous activation of ionotropic GABAA receptors is detrimental to NM neurons.
Collapse
Affiliation(s)
- Briana J Carroll
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Richard L Hyson
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
25
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
26
|
Intrinsic plasticity induced by group II metabotropic glutamate receptors via enhancement of high-threshold KV currents in sound localizing neurons. Neuroscience 2016; 324:177-90. [PMID: 26964678 DOI: 10.1016/j.neuroscience.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023]
Abstract
Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high-threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high-threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low-frequency neurons compared to middle- and high-frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high-frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs.
Collapse
|
27
|
Call CL, Hyson RL. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus. Neuroscience 2016; 316:201-8. [PMID: 26739326 DOI: 10.1016/j.neuroscience.2015.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation.
Collapse
Affiliation(s)
- C L Call
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - R L Hyson
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
28
|
Valero ML, Caminos E, Juiz JM, Martinez-Galan JR. TRPC1 and metabotropic glutamate receptor expression in rat auditory midbrain neurons. J Neurosci Res 2015; 93:964-72. [PMID: 25627107 DOI: 10.1002/jnr.23557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023]
Abstract
Canonical transient receptor potential (TRPC) channels are plasma membrane cation channels included in the TRP superfamily. TRPC1 is expressed widely in the central nervous system and is linked to group I metabotropic glutamate receptors (mGluRs). In the auditory brainstem, TRPC1 expression has never been described, although group I mGluRs are present. In the central nucleus of the inferior colliculus (CIC), activation of group I mGluRs induces an extracellular Ca(2+) influx after store depletion. Therefore, this study examines whether TRPC1 is expressed in this region to establish a correlation with mGluRs. By quantitative reverse transcription-polymerase chain reaction and Western blotting, this study assesses the presence of TRPC1 along with both group I mGluR subtypes mGluR1 and mGluR5 in the rat inferior colliculus (IC). All these molecules present a robust expression in the IC. By confocal double immunofluorescence, this study also demonstrates that TRPC1 colocalizes with parvalbumin, a CIC neuronal marker, in many cells. Conversely, TRPC1 was lacking in glial fibrillary acidic protein-positive glial cells. All the glutamate acid decarboxylase 67 (GAD67)-immunoreactive neurons and many GAD67-negative neurons were positive to TRPC1, which indicates the presence of TRPC1 in γ-aminobutyric acid (GABA)-ergic and non-GABAeregic neurons. With regard to subcellular distribution, TRPC1 was absent in synaptophysin-immunoreactive axonic terminals but colocalized with postsynaptic marker microtubule-associated protein 2 in cell bodies and dendrites. TRPC1 totally overlapped group I mGluRs, which supports the involvement of TRPC1 in the mGluR pathway and, likely, in auditory signal processing at the midbrain level. .
Collapse
Affiliation(s)
- Maria Ll Valero
- Instituto de Investigación en Discapacidades Neurológicas/Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
29
|
Carzoli KL, Hyson RL. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons. PLoS One 2014; 9:e111243. [PMID: 25334004 PMCID: PMC4205043 DOI: 10.1371/journal.pone.0111243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022] Open
Abstract
The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.
Collapse
Affiliation(s)
- Kathryn L Carzoli
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States of America
| | - Richard L Hyson
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
30
|
Venkatadri PS, Lee CC. Differential expression of mGluR2 in the developing cerebral cortex of the mouse. ACTA ACUST UNITED AC 2014; 7:1030-1037. [PMID: 25414764 DOI: 10.4236/jbise.2014.713100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glutamatergic synaptic transmission is an essential component of neural circuits in the central nervous system. Glutamate exerts its effects by binding to various types of glutamate receptors, which are found distributed on neurons throughout the central nervous system. These receptors are broadly classified into two main groups, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). Unlike iGluRs, the mGluRs are G-protein coupled receptors that exert their effects on postsynaptic membrane conductance indirectly through the downstream modification of ion channels. A subtype of mGluRs, the Group II mGluRs, are particularly interesting since their activation by glutamate results in a hyperpolarizing response. Thus, glutamate can act potentially as an inhibitory neurotransmitter, by binding to postsynaptic Group II mGluRs. Given the potential importance of these receptors in synaptic processing, the development of the central nervous system, and neurological disorders, we sought to characterize the expression of mGluR2 in the developing neocortex of the mouse. Therefore, we examined the distribution of mGluR2 in the developing cerebral cortex. We found a general caudal to rostral gradient in the expression of these receptors, with ventral cortical regions labeled caudally and dorsal regions labeled rostrally. Limbic regions highly expressed mGluR2 throughout the brain, as did sensory and motor cortical areas. Finally, other non-cortical structures, such as the thalamic reticular nucleus, amygdala, and mammillary bodies were found to have significant expression of the receptor. These results suggest that mGluR2 may play important roles in mediating glutamatergic inhibition in these structures and also could have a role in shaping the development of mature neural networks in the forebrain.
Collapse
Affiliation(s)
- Pooja S Venkatadri
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|