1
|
Perdikaris P, Prouska P, Dermon CR. Social withdrawal and anxiety-like behavior have an impact on zebrafish adult neurogenesis. Front Behav Neurosci 2023; 17:1244075. [PMID: 37908201 PMCID: PMC10614005 DOI: 10.3389/fnbeh.2023.1244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Accumulating evidence highlights the key role of adult neurogenesis events in environmental challenges, cognitive functions and mood regulation. Abnormal hippocampal neurogenesis has been implicated in anxiety-like behaviors and social impairments, but the possible mechanisms remain elusive. Methods The present study questioned the contribution of altered excitation/inhibition as well as excessive neuroinflammation in regulating the neurogenic processes within the Social Decision-Making (SDM) network, using an adult zebrafish model displaying NMDA receptor hypofunction after sub-chronic MK-801 administration. For this, the alterations in cell proliferation and newborn cell densities were evaluated using quantitative 5-Bromo-2'-Deoxyuridine (BrdU) methodology. Results In short-term survival experiments. MK-801-treated zebrafish displayed decreased cell proliferation pattern within distinct neurogenic zones of telencephalic and preoptic SDM nodes, in parallel to the social withdrawal and anxiety-like comorbidity. BrdU+ cells co-expressed the pro-inflammatory marker IL-1β solely in MK-801-treated zebrafish, indicating a role of inflammation. Following the cessation of drug treatment, significant increases in the BrdU+ cell densities were accompanied by the normalization of the social and anxiety-like phenotype. Importantly, most labeled cells in neurogenic zones showed a radial glial phenotype while a population of newborn cells expressed the early neuronal marker TOAD or mGLuR5, the latter suggesting the possible involvement of metabotropic glutamate receptor 5 in neurogenic events. Discussion Overall, our results indicate the role of radial glial cell proliferation in the overlapping pathologies of anxiety and social disorders, observed in many neuropsychiatric disorders and possibly represent potential novel targets for amelioration of these symptoms.
Collapse
Affiliation(s)
| | | | - Catherine R. Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
3
|
Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney. Cells 2023; 12:666. [PMID: 36831333 PMCID: PMC9955091 DOI: 10.3390/cells12040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Caron A, Trzuskot L, Lindsey BW. Uncovering the spectrum of adult zebrafish neural stem cell cycle regulators. Front Cell Dev Biol 2022; 10:941893. [PMID: 35846369 PMCID: PMC9277145 DOI: 10.3389/fcell.2022.941893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neural stem and progenitor cells (aNSPCs) persist lifelong in teleost models in diverse stem cell niches of the brain and spinal cord. Fish maintain developmental stem cell populations throughout life, including both neuro-epithelial cells (NECs) and radial-glial cells (RGCs). Within stem cell domains of the brain, RGCs persist in a cycling or quiescent state, whereas NECs continuously divide. Heterogeneous populations of RGCs also sit adjacent the central canal of the spinal cord, showing infrequent proliferative activity under homeostasis. With the rise of the zebrafish (Danio rerio) model to study adult neurogenesis and neuroregeneration in the central nervous system (CNS), it has become evident that aNSPC proliferation is regulated by a wealth of stimuli that may be coupled with biological function. Growing evidence suggests that aNSPCs are sensitive to environmental cues, social interactions, nutrient availability, and neurotrauma for example, and that distinct stem and progenitor cell populations alter their cell cycle activity accordingly. Such stimuli appear to act as triggers to either turn on normally dormant aNSPCs or modulate constitutive rates of niche-specific cell cycle behaviour. Defining the various forms of stimuli that influence RGC and NEC proliferation, and identifying the molecular regulators responsible, will strengthen our understanding of the connection between aNSPC activity and their biological significance. In this review, we aim to bring together the current state of knowledge on aNSPCs from studies investigating the zebrafish CNS, while highlighting emerging cell cycle regulators and outstanding questions that will help to advance this fascinating field of stem cell biology.
Collapse
Affiliation(s)
- Aurélien Caron
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lidia Trzuskot
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Benjamin W Lindsey
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
LaDage LD. Seasonal variation in gonadal hormones, spatial cognition, and hippocampal attributes: More questions than answers. Horm Behav 2022; 141:105151. [PMID: 35299119 DOI: 10.1016/j.yhbeh.2022.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/04/2022]
Abstract
A large body of research has been dedicated to understanding the factors that modulate spatial cognition and attributes of the hippocampus, a highly plastic brain region that underlies spatial processing abilities. Variation in gonadal hormones impacts spatial memory and hippocampal attributes in vertebrates, although the direction of the effect has not been entirely consistent. To add complexity, individuals in the field must optimize fitness by coordinating activities with the appropriate environmental cues, and many of these behaviors are correlated tightly with seasonal variation in gonadal hormone release. As such, it remains unclear if the relationship among systemic gonadal hormones, spatial cognition, and the hippocampus also exhibits seasonal variation. This review presents an overview of the relationship among gonadal hormones, the hippocampus, and spatial cognition, and how the seasonal release of gonadal hormones correlates with seasonal variation in spatial cognition and hippocampal attributes. Additionally, this review presents other neuroendocrine mechanisms that may be involved in modulating the relationship among seasonality, gonadal hormone release, and the hippocampus and spatial cognition, including seasonal rhythms of steroid hormone binding globulins, neurosteroids, sex steroid hormone receptor expression, and hormone interactions. Here, endocrinology, ecology, and behavioral neuroscience are brought together to present an overview of the research demonstrating the mechanistic effects of systemic gonadal hormones on spatial cognition and the hippocampus, while, at a functional level, superimposing seasonal effects to examine ecologically-relevant circannual changes in gonadal hormones and spatial behaviors.
Collapse
Affiliation(s)
- Lara D LaDage
- Penn State Altoona, Division of Mathematics & Natural Sciences, 3000 Ivyside Dr., Altoona, PA 16601, USA.
| |
Collapse
|
6
|
Kenney JW, Steadman PE, Young O, Shi MT, Polanco M, Dubaishi S, Covert K, Mueller T, Frankland PW. A 3D adult zebrafish brain atlas (AZBA) for the digital age. eLife 2021; 10:69988. [PMID: 34806976 PMCID: PMC8639146 DOI: 10.7554/elife.69988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023] Open
Abstract
Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, United States.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Patrick E Steadman
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Olivia Young
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Meng Ting Shi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Maris Polanco
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Saba Dubaishi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Kristopher Covert
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, United States
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Luzio A, Figueiredo M, Matos MM, Coimbra AM, Álvaro AR, Monteiro SM. Effects of short-term exposure to genistein and overfeeding diet on the neural and retinal progenitor competence of adult zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 88:107030. [PMID: 34506931 DOI: 10.1016/j.ntt.2021.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Neurogenesis is a process that occurs throughout the life of a vertebrate. Among the different factors that may affect the natural occurrence of neurogenesis, obesity seems to decrease the proliferation capacity of progenitor neuronal cells. Conversely, the phytoestrogen genistein is known to attenuate some obesity effects beyond its neuroprotective action. Aiming to improve the understanding of how obesity and genistein trigger an impact on the neural and retinal progenitor competence of adult zebrafish, fish were exposed to genistein (GEN - 2 μg L-1) alone or combined with two dietary groups (control and overfeed - OFD) for up to 9 weeks. Zebrafish were fed once per day with Artemia sp. in the control and GEN (2% of BW, control diet), and three times per day in the OFD and OFD + GEN groups (12% BW, overfeeding diet). To assess obesity induction, BMI, biometric parameters, and PPAR-γ protein were quantified. Afterwards, qRT-PCR and immunohistochemistry were performed to determine the cell proliferation and the presence of stem cells through PCNA and Sox-2. Our findings proved that overfeeding adult zebrafish increased the general growth and induced the development of fatty liver. However, for OFD + GEN, this effect was assuaged through the anti-adipogenic effect of GEN. This finding suggests that phytoestrogens could be beneficial to reduce the negative effects of obesity. Moreover, OF induced negative effects on retinal and brain homeostasis, decreasing the proliferation capacity of progenitor neuronal cells. With regard to retinal progenitor competence, genistein seems to mitigate the negative impacts of obesity, whereas the effects of obesity on the brain were exacerbated by this phytoestrogen which negatively influenced the homeostasis of zebrafish neural progenitor competence. This study highlighted the fact that the effects of phytoestrogens in adult neural progenitor competence are complex and could exhibit dissimilar effects depending on the tissue.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M Figueiredo
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M M Matos
- Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Lisbon, Portugal
| | - A M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504 Coimbra, Portugal.
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal.
| |
Collapse
|
8
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
9
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
10
|
Álvarez-Quintero N, Velando A, Kim SY. Long-Lasting Negative Effects of Learning Tasks During Early Life in the Three-Spined Stickleback. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
11
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
12
|
Xu S, Zhang H, Pao PC, Lee A, Wang J, Suen Chan Y, Manno Iii FAM, Wan Chan S, Han Cheng S, Chen X. Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105469. [PMID: 32179334 DOI: 10.1016/j.aquatox.2020.105469] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are commonly used in plastic products in daily life. The endocrine-disrupting effects of phthalates have been widely reported. Accumulating evidence from human cohorts and lab animals indicate exposure to phthalates might impair neurodevelopment. However, the direct causal relationship and mechanism between phthalates with neurodevelopment and neurotoxicity have not been firmly established. We found that phthalates (i.e. DBP, DINP, BBP) disrupted the expression of estrogen receptors (esr1, esr2a, esr2b), and impaired neurogenesis in the brain of zebrafish during embryonic development. Moreover, the abnormal expression of estrogen receptors, especially esr2a, was partly rescued in zebrafish which exposed to phthalates, with the estrogen receptor antagonist tamoxifen. Hence, impaired neurogenesis of zebrafish exposed to phthalates was partly reversed by tamoxifen treatment. Moreover, our results show that induced pluripotent stem cells (iPSC)-derived human neurons exposed to phthalates triggered double-strand DNA breaks in vitro. Overall, this study demonstrates that exposure to phthalates affects neurodevelopment in zebrafish embryos and induces neurotoxicity in human neurons partly through disrupting the expression of estrogen receptors.
Collapse
Affiliation(s)
- Shisan Xu
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Huan Zhang
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Audrey Lee
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Yu Suen Chan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Francis A M Manno Iii
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Shun Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
13
|
Vaillant C, Gueguen MM, Feat J, Charlier TD, Coumailleau P, Kah O, Brion F, Pellegrini E. Neurodevelopmental effects of natural and synthetic ligands of estrogen and progesterone receptors in zebrafish eleutheroembryos. Gen Comp Endocrinol 2020; 288:113345. [PMID: 31812531 DOI: 10.1016/j.ygcen.2019.113345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.
Collapse
Affiliation(s)
- Colette Vaillant
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie-Madeleine Gueguen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Justyne Feat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Pascal Coumailleau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
14
|
Faykoo-Martinez M, Toor I, Holmes MM. Solving the Neurogenesis Puzzle: Looking for Pieces Outside the Traditional Box. Front Neurosci 2017; 11:505. [PMID: 28943837 PMCID: PMC5596094 DOI: 10.3389/fnins.2017.00505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
The vast majority of what is considered fact about adult neurogenesis comes from research on laboratory mice and rats: where it happens, how it works, what it does. However, this relative exclusive focus on two rodent species has resulted in a bias on how we think about adult neurogenesis. While it might not prevent us from making conclusions about the evolutionary significance of the process or even prevent us from generalizing to diverse mammals, it certainly does not help us achieve these outcomes. Here, we argue that there is every reason to expect striking species differences in adult neurogenesis: where it happens, how it works, what it does. Species-specific adaptations in brain and behavior are paramount to survival and reproduction in diverse ecological niches and it is naive to think adult neurogenesis escaped these evolutionary pressures. A neuroethological approach to the study of adult neurogenesis is essential for a comprehensive understanding of the phenomenon. Furthermore, most of us are guilty of making strong assertions about our data in order to have impact yet this ultimately creates bias in how work is performed, interpreted, and applied. By taking a step back and actually placing our results in a much larger, non-biomedical context, we can help to reduce dogmatic thinking and create a framework for discovery.
Collapse
Affiliation(s)
| | - Ilapreet Toor
- Department of Ecology and Evolutionary Biology, University of TorontoToronto, ON, Canada
| | - Melissa M Holmes
- Department of Cell and Systems Biology, University of TorontoToronto, ON, Canada.,Department of Ecology and Evolutionary Biology, University of TorontoToronto, ON, Canada.,Department of Psychology, University of Toronto MississaugaMississauga, ON, Canada
| |
Collapse
|
15
|
Anand SK, Mondal AC. Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 2017; 77:1188-1205. [PMID: 28589616 DOI: 10.1002/dneu.22508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter-species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188-1205, 2017.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| |
Collapse
|
16
|
Xing L, Venables MJ, Trudeau VL. Role of aromatase and radial glial cells in neurotoxin-induced dopamine neuron degeneration and regeneration. Gen Comp Endocrinol 2017; 241:69-79. [PMID: 26873632 DOI: 10.1016/j.ygcen.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
Radial glial cells (RGCs) in teleost brain are progenitor cells that express aromatase B and produce estrogens. Controversial data suggest that estrogens are critical for brain repair and neurogenesis in teleosts. Using a goldfish model for neurotoxin-induced Parkinson-like syndrome, we investigated the possible roles of RGCs, especially estrogen synthetic function, in the processes underlying dopamine neuron regeneration. The data indicate that dopamine neuron degeneration and aromatase activity inhibition could be respectively achieved in vivo with treatments with the neurotoxin 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) and fadrozole in female goldfish. The expression of genes in the telencephalon and hypothalamus related to RGC functions including gfap, gdnf and bdnf as well as genes related to mature dopamine neuron functions including th, slc6a3 and pitx3 are under modulation of estrogens. Together these results revealed that the activation of radial glial cells and dopamine neuron recovery after MPTP insult is aromatase-dependent. Findings in this study provide support for the hypothesis that endogenous estrogens are neuroprotective in goldfish. Future studies focus on the molecular pathways for enhancing protective functions of estrogens and understanding global effects of estrogens in the central nervous system.
Collapse
Affiliation(s)
- Lei Xing
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maddie J Venables
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
17
|
Circadian Kinetics of Cell Cycle Progression in Adult Neurogenic Niches of a Diurnal Vertebrate. J Neurosci 2017; 37:1900-1909. [PMID: 28087763 PMCID: PMC5320617 DOI: 10.1523/jneurosci.3222-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
The circadian system may regulate adult neurogenesis via intracellular molecular clock mechanisms or by modifying the environment of neurogenic niches, with daily variation in growth factors or nutrients depending on the animal's diurnal or nocturnal lifestyle. In a diurnal vertebrate, zebrafish, we studied circadian distribution of immunohistochemical markers of the cell division cycle (CDC) in 5 of the 16 neurogenic niches of adult brain, the dorsal telencephalon, habenula, preoptic area, hypothalamus, and cerebellum. We find that common to all niches is the morning initiation of G1/S transition and daytime S-phase progression, overnight increase in G2/M, and cycle completion by late night. This is supported by the timing of gene expression for critical cell cycle regulators cyclins D, A2, and B2 and cyclin-dependent kinase inhibitor p20 in brain tissue. The early-night peak in p20, limiting G1/S transition, and its phase angle with the expression of core clock genes, Clock1 and Per1, are preserved in constant darkness, suggesting intrinsic circadian patterns of cell cycle progression. The statistical modeling of CDC kinetics reveals the significant circadian variation in cell proliferation rates across all of the examined niches, but interniche differences in the magnitude of circadian variation in CDC, S-phase length, phase angle of entrainment to light or clock, and its dispersion. We conclude that, in neurogenic niches of an adult diurnal vertebrate, the circadian modulation of cell cycle progression involves both systemic and niche-specific factors. SIGNIFICANCE STATEMENT This study establishes that in neurogenic niches of an adult diurnal vertebrate, the cell cycle progression displays a robust circadian pattern. Common to neurogenic niches located in diverse brain regions is daytime progression of DNA replication and nighttime mitosis, suggesting systemic regulation. Differences between neurogenic niches in the phase and degree of S-phase entrainment to the clock suggest additional roles for niche-specific regulatory mechanisms. Understanding the circadian regulation of adult neurogenesis can help optimize the timing of therapeutic approaches in patients with brain traumas or neurodegenerative disorders and preserve neural stem cells during cytostatic cancer therapies.
Collapse
|
18
|
Fokos S, Pavlidis M, Yiotis T, Tsalafouta A, Papandroulakis N, Dermon CR. Early life low intensity stress experience modifies acute stress effects on juvenile brain cell proliferation of European sea bass (D. Labrax). Behav Brain Res 2016; 317:109-121. [PMID: 27638037 DOI: 10.1016/j.bbr.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 02/06/2023]
Abstract
Early life adversity may be critical for the brain structural plasticity that in turn would influence juvenile behaviour. To address this, we questioned whether early life environment has an impact on stress responses latter in life, using European sea bass, Dicentrarchus labrax, as a model organism. Unpredictable chronic low intensity stress (UCLIS), using a variety of moderate intensity stressors, was applied during two early ontogenetic stages, flexion or formation all fins. At juvenile stage, fish were exposed to acute stress and plasma cortisol, brain mRNA expression of corticosteroid receptors' genes (gr1, gr2, mr) and brain cell proliferation (using BrdU immunohistochemistry) were determined in experimental and matched controls. UCLIS treatment specifically decreased brain gr1 expression in juveniles, but had no effect on the juvenile brain cell proliferation pattern within the major neurogenic zones studied of dorsal (Dm, Dld) and ventral (Vv) telencephalic, preoptic (NPO) areas, periventricular tectum gray zone (PGZ) and valvula cerebellum (VCe). In contrast, exposure to acute stress induced significant plasma cortisol rise, decreases of cerebral cell proliferation in juveniles, not previously exposed to UCLIS, but no effect detected on the expression levels of gr1, gr2 and mr in all groups of different early life history. Interestingly, juveniles with UCLIS history showed modified responses to acute stress, attenuating acute stress-induced cell proliferation decreases, indicating a long-lasting effect of early life treatment. Taken together, early life mild stress experience influences an acute stress plasticity end-point, cerebral cell proliferation, independently of the stress-axis activation, possibly leading to more effective coping styles.
Collapse
Affiliation(s)
- S Fokos
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - M Pavlidis
- Dept. of Biology, University of Crete, Greece
| | - T Yiotis
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - A Tsalafouta
- Dept. of Biology, University of Crete, Greece; Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - N Papandroulakis
- Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - C R Dermon
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1).
| |
Collapse
|
19
|
Pellegrini E, Diotel N, Vaillant-Capitaine C, Pérez Maria R, Gueguen MM, Nasri A, Cano Nicolau J, Kah O. Steroid modulation of neurogenesis: Focus on radial glial cells in zebrafish. J Steroid Biochem Mol Biol 2016; 160:27-36. [PMID: 26151741 DOI: 10.1016/j.jsbmb.2015.06.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Estrogens are known as steroid hormones affecting the brain in many different ways and a wealth of data now document effects on neurogenesis. Estrogens are provided by the periphery but can also be locally produced within the brain itself due to local aromatization of circulating androgens. Adult neurogenesis is described in all vertebrate species examined so far, but comparative investigations have brought to light differences between vertebrate groups. In teleost fishes, the neurogenic activity is spectacular and adult stem cells maintain their mitogenic activity in many proliferative areas within the brain. Fish are also quite unique because brain aromatase expression is limited to radial glia cells, the progenitor cells of adult fish brain. The zebrafish has emerged as an interesting vertebrate model to elucidate the cellular and molecular mechanisms of adult neurogenesis, and notably its modulation by steroids. The main objective of this review is to summarize data related to the functional link between estrogens production in the brain and neurogenesis in fish. First, we will demonstrate that the brain of zebrafish is an endogenous source of steroids and is directly targeted by local and/or peripheral steroids. Then, we will present data demonstrating the progenitor nature of radial glial cells in the brain of adult fish. Next, we will emphasize the role of estrogens in constitutive neurogenesis and its potential contribution to the regenerative neurogenesis. Finally, the negative impacts on neurogenesis of synthetic hormones used in contraceptive pills production and released in the aquatic environment will be discussed.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France.
| | - Nicolas Diotel
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Inserm UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde F-97490, France
| | - Colette Vaillant-Capitaine
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Rita Pérez Maria
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI. CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Marie-Madeleine Gueguen
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Ahmed Nasri
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratoire de Biosurveillance de l'Environnement, Unité d'Ecologie côtière et d'Ecotoxicologie, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia
| | - Joel Cano Nicolau
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Olivier Kah
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| |
Collapse
|
20
|
Xing L, Esau C, Trudeau VL. Direct Regulation of Aromatase B Expression by 17β-Estradiol and Dopamine D1 Receptor Agonist in Adult Radial Glial Cells. Front Neurosci 2016; 9:504. [PMID: 26793050 PMCID: PMC4709857 DOI: 10.3389/fnins.2015.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022] Open
Abstract
Aromatase cytochrome P450arom (cyp19) is the only enzyme that has the ability to convert androgens into estrogens. Estrogens, which are produced locally in the vertebrate brain play many fundamental roles in neuroendocrine functions, reproductive functions, socio-sexual behaviors, and neurogenesis. Radial glial cells (RGCs) are neuronal progenitor cells that are abundant in fish brains and are the exclusive site of aromatase B expression and neuroestrogen synthesis. Using a novel in vitro RGC culture preparation we studied the regulation of aromatase B by 17β-estradiol (E2) and dopamine (DA). We have established that activation of the dopamine D1 receptor (D1R) by SKF 38393 up-regulates aromatase B gene expression most likely through the phosphorylation of cyclic AMP response element binding protein (CREB). This up-regulation can be enhanced by low concentration of E2 (100 nM) through increasing the expression of D1R and the level of p-CREB protein. However, a high concentration of E2 (1 μM) and D1R agonist together failed to up-regulate aromatase B, potentially due to attenuation of esr2b expression and p-CREB levels. Furthermore, we found the up-regulation of aromatase B by E2 and DA both requires the involvement of esr1 and esr2a. The combined effect of E2 and DA agonist indicates that aromatase B in the adult teleost brain is under tight control by both steroids and neurotransmitters to precisely regulate neuroestrogen levels.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Crystal Esau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
21
|
Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation. Gene Expr Patterns 2016; 20:42-54. [DOI: 10.1016/j.gep.2015.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
22
|
Xing L, McDonald H, Da Fonte DF, Gutierrez-Villagomez JM, Trudeau VL. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells. Front Neurosci 2015; 9:310. [PMID: 26388722 PMCID: PMC4557113 DOI: 10.3389/fnins.2015.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Heather McDonald
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Dillon F Da Fonte
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Juan M Gutierrez-Villagomez
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
23
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|