1
|
Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. NEUROGLIA (BASEL, SWITZERLAND) 2022; 3:144-157. [PMID: 36685006 PMCID: PMC9850496 DOI: 10.3390/neuroglia3040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Astrocyte glycogen is a critical metabolic variable that impacts hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their effects on hypothalamic glycogen are not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)-brain type (GPbb), and GP-muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass.
Collapse
|
2
|
Alhamyani A, Napit PR, Bheemanapally K, Ibrahim MMH, Sylvester PW, Briski KP. Glycogen phosphorylase isoform regulation of glucose and energy sensor expression in male versus female rat hypothalamic astrocyte primary cultures. Mol Cell Endocrinol 2022; 553:111698. [PMID: 35718260 PMCID: PMC9332090 DOI: 10.1016/j.mce.2022.111698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022]
Abstract
Astrocyte glycogen constitutes the primary energy fuel reserve in the brain. Current research investigated the novel premise that glycogen turnover governs astrocyte responsiveness to critical metabolic and neurotransmitter (norepinephrine) regulatory signals in a sex-dimorphic manner. Here, rat hypothalamic astrocyte glycogen phosphorylase (GP) gene expression was silenced by short-interfering RNA (siRNA) to investigate how glycogen metabolism controlled by GP-brain type (GPbb) or GP-muscle type (GPmm) activity affects glucose [glucose transporter-2 (GLUT2)] and energy [5'-AMP-activated protein kinase (AMPK)] sensor and adrenergic receptor (AR) proteins in each sex. Results show that in the presence of glucose, glycogen turnover is regulated by GPbb in the male or by GPmm in the female, yet in the absence of glucose, glycogen breakdown is controlled by GPbb in each sex. GLUT2 expression is governed by GPmm-mediated glycogen breakdown in glucose-supplied astrocytes of each sex, but glycogenolysis controls glucoprivic GLUT2 up-regulation in male only. GPbb-mediated glycogen disassembly causes divergent changes in total AMPK versus phosphoAMPK profiles in male. During glucoprivation, glycogenolysis up-regulates AMPK content in male astrocytes by GPbb- and GPmm-dependent mechanisms, whereas GPbb-mediated glycogen breakdown inhibits phosphoAMPK expression in female. GPbb and GPmm activity governs alpha2-AR and beta1-AR protein levels in male, but has no effect on these profiles in the female. Outcomes provide novel evidence for sex-specific glycogen regulation of glucose- and energy-sensory protein expression in hypothalamic astrocytes, and identify GP isoforms that mediate such control in each sex. Results also show that glycogen regulation of hypothalamic astrocyte receptivity to norepinephrine is male-specific. Further studies are needed to characterize the molecular mechanisms that underlie sex differences in glycogen control of astrocyte protein expression.
Collapse
Affiliation(s)
- Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
3
|
Briski K, Napit PR, Md. Haider A, Alshamrani A, Alhamyani A, Bheemanapally K, Ibrahim MM. Hindbrain catecholamine regulation of ventromedial hypothalamic nucleus glycogen metabolism during acute versus recurring insulin-induced hypoglycemia in male versus female rat. ENDOCRINE AND METABOLIC SCIENCE 2021; 3. [PMID: 33997825 PMCID: PMC8114938 DOI: 10.1016/j.endmts.2021.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ventromedial hypothalamic nucleus (VMN) glycogen metabolism affects local glucoregulatory signaling. The hindbrain metabolic-sensitive catecholamine (CA) neurotransmitter norepinephrine controls VMN glycogen phosphorylase (GP)-muscle (GPmm) and -brain (GPbb) type expression in male rats. Present studies addressed the premise that CA regulation of hypoglycemic patterns of VMN glycogen metabolic enzyme protein expression is sex-dimorphic, and that this signal is responsible for sex differences in acclimation of these profiles to recurrent insulin-induced hypoglycemia (RIIH). VMN tissue was acquired by micropunch-dissection from male and female rats pretreated by caudal fourth ventricular administration of the CA neurotoxin 6-hydroxydopamine (6OHDA) before single or serial insulin injection. 6-OHDA averted acute hypoglycemic inhibition of VMN glycogen synthase (GS) and augmentation of GPmm and GPbb protein expression in males, and prevented GPmm and -bb down-regulation in females. Males recovered from antecedent hypoglycemia (AH) exhibited neurotoxin-preventable diminution of baseline GS profiles, whereas acclimated GPmm and -bb expression in females occurred irrespective of pretreatment. RIIH did not alter VMN GS, GPmm, and GPbb expression in vehicle- or 6-OHDA-pretreated animals of either sex. VMN glycogen content was correspondingly unchanged or increased in males versus females following AH; 6-OHDA augmented glycogen mass in AH-exposed animals of both sexes. RIIH did not alter VMN glycogen accumulation in vehicle-pretreated rats of either sex, but diminished glycogen in neurotoxin-pretreated animals. AH suppresses baseline GS (CA-dependent) or GPmm/GPbb (CA-independent) expression in male and female rats, respectively, which corresponds with unaltered or augmented VMN glycogen content in those sexes. AH-associated loss of sex-distinctive CA-mediated enzyme protein sensitivity to hypoglycemia (male: GS, GPmm, GPbb; female: GPmm, Gpbb) may reflect, in part, VMN target desensitization to noradrenergic input.
Collapse
|
4
|
Briski KP, Ali MH, Napit PR, Mahmood ASMH, Alhamyani AR, Alshamrani AA, Ibrahim MMH. Sex differences in ventromedial hypothalamic nucleus glucoregulatory transmitter biomarker protein during recurring insulin-induced hypoglycemia. Brain Struct Funct 2021; 226:1053-1065. [PMID: 33580322 DOI: 10.1007/s00429-021-02225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
Recurring insulin-induced hypoglycemia (RIIH) in males correlates with maladaptive glucose counter-regulatory collapse and acclimated expression of ventromedial hypothalamic nucleus (VMN) nitric oxide (NO) and γ-aminobutyric acid (GABA) metabolic transmitter biomarkers, e.g., neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD). Hindbrain noradrenergic neurons innervate the VMN, where norepinephrine regulates nNOS and GAD expression. Current research investigated the hypothesis that antecedent hypoglycemia (AH) exposure causes sex-dimorphic habituation of VMN glucoregulatory biomarker proteins between and/or during serial hypoglycemic bouts, and that hindbrain catecholaminergic (CA) signaling may control sex-specific adaptation of one or more of these proteins. Data show that upon recovery from AH, females exhibit CA-mediated reductions in baseline VMN nNOS, GAD, steroidogenic factor-1 (SF-1), and brain-derived neurotrophic factor (BNDF) expression compared to euglycemic profiles. In males, however, AH caused 6-OHDA-insensitive suppression of only basal SF-1 levels in the VMN. VMN transmitter protein acclimation to RIIH was sex-contingent, as differential nNOS, GAD, SF-1, and BDNF responses to a single vs final bout of hypoglycemia occur in males, whereas females show acclimated reactivity of GAD and SF-1 only to renewed hypoglycemia. CA-mediated and -independent habituation of distinctive VMN protein profiles occurred in each sex. Further research is necessary to evaluate, in each sex, effects of altered baseline VMN metabolic neurotransmitter signals on glucose homeostasis as well as non-metabolic functions under the control of those neurochemicals. It would also be insightful to learn if and how sex-contingent habituation of VMN transmitter responses to hypoglycemia contribute to sex-dimorphic patterns of glucose counter-regulation during RIIH.
Collapse
Affiliation(s)
- K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A R Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| |
Collapse
|
5
|
Alhamyani A, Mahmood AH, Alshamrani A, Ibrahim MMH, Briski KP. Central Type II Glucocorticoid Receptor Regulation of Ventromedial Hypothalamic Nucleus Glycogen Metabolic Enzyme and Glucoregulatory Neurotransmitter Marker Protein Expression in the Male Rat. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2021; 8:148. [PMID: 34258390 PMCID: PMC8274514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ventromedial hypothalamic nucleus (VMN) glucoregulatory neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) signal adjustments in glycogen mobilization. Glucocorticoids control astrocyte glycogen metabolism in vitro. The classical (type II) glucocorticoid receptor (GR) is expressed in key brain structures that govern glucostasis, including the VMN. Current research addressed the hypothesis that forebrain GR regulation of VMN glycogen synthase (GS) and phosphorylase (GP) protein expression correlates with control of glucoregulatory transmission. Groups of male rats were pretreated by intracerebroventricular (icv) delivery of the GR antagonist RU486 or vehicle prior to insulin-induced hypoglycemia (IIH), or were pretreated icv with dexamethasone (DEX) or vehicle before subcutaneous insulin diluent injection. DEX increased VMN GS and norepinephrine-sensitive GP-muscle type (GPmm), but did not alter metabolic deficit-sensitive GP-brain type (GPbb) expression. RU486 enhanced GS and GPbb profiles during IIH. VMN astrocyte (MCT1) and neuronal (MCT2) monocarboxylate transporter profiles were up-regulated in euglycemic and hypoglycemic animals by DEX or RU486, respectively. Glutamate decarboxylase65/67 and neuronal nitric oxide synthase (nNOS) proteins were both increased by DEX, yet RU486 augmented hypoglycemic nNOS expression patterns. Results show that GR exert divergent effects on VMN GS, MCT1/2, and nNOS proteins during eu- (stimulatory) versus hypoglycemia (inhibitory); these findings imply that up-regulated NO transmission may reflect, in part, augmented glucose incorporation into glycogen and/or increased tissue lactate requirements. Data also provide novel evidence for metabolic state-dependent GR regulation of VMN GPmm and GPbb profiles; thus, GABA signaling of metabolic stability may reflect, in part, stimulus-specific glycogen breakdown during eu- versus hypoglycemia.
Collapse
Affiliation(s)
- Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Ayed Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Mostafa M. H. Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| |
Collapse
|
6
|
Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Sex differences in glucoprivic regulation of glycogen metabolism in hypothalamic primary astrocyte cultures: Role of estrogen receptor signaling. Mol Cell Endocrinol 2020; 518:111000. [PMID: 32853745 PMCID: PMC7606756 DOI: 10.1016/j.mce.2020.111000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Hypoglycemia causes sex-reliant changes in hypothalamic astrocyte glycogen metabolism in vivo. The role of nuclear versus membrane astrocyte estrogen receptors (ER) in glucoprivic regulation of glycogen is unclear. Here, primary hypothalamic astrocyte cultures were treated with selective ER antagonists during glucoprivation to investigate the hypothesis that ER mediate sex-specific glycogen responses to glucoprivation. Results show that glucoprivic down-regulation of glycogen synthase expression is mediated by transmembrane G protein-coupled ER-1 (GPER) signaling in each sex and estrogen receptor (ER)-beta (ERβ) activity in females. Glucoprivic inhibition of glycogen phosphorylase involves GPER and ERβ in females, but ER-independent mechanisms in males. GPER, ERβ, and ER-alpha (ERα) inhibit or stimulate AMPK protein expression in male versus female astrocytes, respectively. Glucoprivic augmentation of phospho-AMPK profiles in male glia was opposed by GPER activation, whereas GPER and ERβ suppress this protein in females. Astrocyte ERα and GPER content was down-regulated in each sex during glucose deficiency, whereas ERβ levels was unaltered (males) or increased (females). Glucoprivation correspondingly elevated or diminished male versus female astrocyte glycogen content; ER antagonism reversed this response in males, but not females. Results identify distinctive ER variants involved in sex-similar versus sex-specific astrocyte protein responses to withdrawal of this substrate fuel. Notably, glucoprivation elicits a directional switch or gain-of-effect of GPER and ERβ on specific glial protein profiles. Outcomes infer that ERs are crucial for glucoprivic regulation of astrocyte glycogen accumulation in males. Alternatively, estradiol may act independently of ER signaling to disassemble this reserve in females.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
7
|
Briski KP, Mandal SK. Hindbrain metabolic deficiency regulates ventromedial hypothalamic nucleus glycogen metabolism and glucose-regulatory signaling. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Napit PR, Ali MH, Shakya M, Mandal SK, Bheemanapally K, Mahmood ASMH, Ibrahim MMH, Briski KP. Hindbrain Estrogen Receptor Regulation of Ventromedial Hypothalamic Glycogen Metabolism and Glucoregulatory Transmitter Expression in the Hypoglycemic Female Rat. Neuroscience 2019; 411:211-221. [PMID: 31085279 DOI: 10.1016/j.neuroscience.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Neural substrates for estrogen regulation of glucose homeostasis remain unclear. Female rat dorsal vagal complex (DVC) A2 noradrenergic neurons are estrogen- and metabolic-sensitive. The ventromedial hypothalamic nucleus (VMN) is a key component of the brain network that governs counter-regulatory responses to insulin-induced hypoglycemia (IIH). Here, the selective estrogen receptor-alpha (ERα) or -beta (ERβ) antagonists MPP and PHTPP were administered separately to the caudal fourth ventricle to address the premise that these hindbrain ER variants exert distinctive control of VMN reactivity to IIH in the female sex. Data show that ERα governs hypoglycemic patterns of VMN astrocyte glycogen metabolic enzyme, e.g. glycogen synthase and phosphorylase protein expression, whereas ERβ mediates local glycogen breakdown. DVC ERs also regulate VMN neurotransmitter signaling of energy sufficiency [γ-aminobutyric acid] or deficiency [nitric oxide, steroidogenic factor-1] during IIH. Neither hindbrain ER mediates IIH-associated diminution of VMN norepinephrine (NE) content. Both ERs oppose hypoglycemic hyperglucagonemia, while ERβ contributes to reduced corticosterone output. Outcomes reveal that input from the female hindbrain to the VMN is critical for energy reserve mobilization, metabolic transmitter signaling, and counter-regulatory hormone secretion during hypoglycemia, and that ERs control those cues. Evidence that VMN NE content is not controlled by hindbrain ERα or -β implies that these receptors may regulate VMN function via NE-independent mechanisms, or alternatively, that other neurotransmitter signals to the VMN may control local substrate receptivity to NE.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Manita Shakya
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
9
|
Hasan Mahmood ASM, Mandal SK, Bheemanapally K, Ibrahim MMH, Briski KP. Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function. Mol Cell Neurosci 2019; 95:51-58. [PMID: 30660767 PMCID: PMC6472905 DOI: 10.1016/j.mcn.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
The ventromedial hypothalamic nucleus (VMN) is a critical component of the neural circuitry that regulates glucostasis. Astrocyte glycogen is a vital reserve of glucose and its oxidizable metabolite L-lactate. In hypoglycemic female rats, estradiol-dependent augmentation of VMN glycogen phosphorylase (GP) protein requires hindbrain catecholamine input. Research here investigated the premise that norepinephrine (NE) regulation of VMN astrocyte metabolism shapes local glucoregulatory neurotransmitter signaling in this sex. Estradiol-implanted ovariectomized rats were pretreated by intra-VMN administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxy-cinnamic acid (4CIN) or vehicle before NE delivery to that site. NE caused 4CIN-reversible reduction or augmentation of VMN glycogen synthase and phosphorylase expression. 4CIN prevented NE stimulation of gluco-inhibitory (glutamate decarboxylase65/67) and suppression of gluco-stimulatory (neuronal nitric oxide synthase) neuron marker proteins. These outcomes imply that effects of noradrenergic stimulation of VMN astrocyte glycogen depletion on glucoregulatory transmitter signaling may be mediated, in part, by glycogen-derived substrate fuel provision. NE control of astrocyte glycogen metabolism may involve down-regulated adrenoreceptor (AR), e.g. alpha1 and alpha2, alongside amplified beta1 AR and estrogen receptor-beta signaling. Noradrenergic hypoglycemia was refractory to 4CIN, implying that additional NE-sensitive VMN glucoregulatory neurochemicals may be insensitive to monocarboxylate uptake. Augmentation of circulating free fatty acids by combinatory NE and 4CIN, but not NE alone implies that acute hypoglycemia induced here is an insufficient stimulus for mobilization of these fuels, but is adequate when paired with diminished brain monocarboxylate fuel availability.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
10
|
Ibrahim MMH, Alhamami HN, Briski KP. Norepinephrine regulation of ventromedial hypothalamic nucleus metabolic transmitter biomarker and astrocyte enzyme and receptor expression: Impact of 5' AMP-activated protein kinase. Brain Res 2019; 1711:48-57. [PMID: 30629946 DOI: 10.1016/j.brainres.2019.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022]
Abstract
The ventromedial hypothalamic energy sensor AMP-activated protein kinase (AMPK) maintains glucostasis via neurotransmitter signals that diminish [γ-aminobutyric acid] or enhance [nitric oxide] counter-regulation. Ventromedial hypothalamic nucleus (VMN) 'fuel-inhibited' neurons are sensitive to astrocyte-generated metabolic substrate stream. Norepinephrine (NE) regulates astrocyte glycogen metabolism in vitro, and hypoglycemia intensifies VMN NE activity in vivo. Current research investigated the premise that NE elicits AMPK-dependent adjustments in VMN astrocyte glycogen metabolic enzyme [glycogen synthase (GS); glycogen phosphorylase (GP)] and gluco-regulatory neuron biomarker [glutamate decarboxylase65/67 (GAD); neuronal nitric oxide synthase (nNOS); SF-1] protein expression in male rats. We also examined whether VMN astrocytes are directly receptive to NE and if noradrenergic input regulates cellular sensitivity to the neuro-protective steroid estradiol. Intra-VMN NE correspondingly augmented or reduced VMN tissue GAD and nNOS protein despite no change in circulating glucose, data that imply that short-term exposure to NE promotes persistent improvement in VMN nerve cell energy stability. The AMPK inhibitor Compound C (Cc) normalized VMN nNOS, GS, and GP expression in NE-treated animals. NE caused AMPK-independent down-regulation of alpha2-, alongside Cc-reversible augmentation of beta1-adrenergic receptor protein profiles in laser-microdissected astrocytes. NE elicited divergent adjustments in astrocyte estrogen receptor-beta (AMPK-unrelated reduction) and GPR-30 (Cc-revocable increase) proteins. Outcomes implicate AMPK in noradrenergic diminution of VMN nitrergic metabolic-deficit signaling and astrocyte glycogen shunt activity. Differentiating NE effects on VMN astrocyte adrenergic and estrogen receptor variant expression suggest that noradrenergic regulation of glycogen metabolism may be mediated, in part, by one or more receptors characterized here by sensitivity to this catecholamine.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
11
|
Hasan Mahmood ASM, Uddin MM, Ibrahim MMH, Mandal SK, Alhamami HN, Briski KP. Sex differences in forebrain estrogen receptor regulation of hypoglycemic patterns of counter-regulatory hormone secretion and ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and astrocyte glycogen metabolic enzyme expression. Neuropeptides 2018; 72:65-74. [PMID: 30396594 PMCID: PMC6293983 DOI: 10.1016/j.npep.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The female ventromedial hypothalamic nucleus (VMN) is a focal substrate for estradiol (E) regulation of energy balance, feeding, and body weight, but how E shapes VMN gluco-regulatory signaling in each sex is unclear. This study investigated the hypothesis that estrogen receptor-alpha (ERα) and/or -beta (ERβ) control VMN signals that inhibit [γ-aminobutyric acid] or stimulate [nitric oxide, steroidogenic factor-1 (SF-1)] counter-regulation in a sex-dependent manner. VMN nitrergic neurons monitor astrocyte fuel provision; here, we examined how these ER regulate astrocyte glycogen metabolic enzyme, monocarboxylate transporter, and adrenoreceptor protein responses to insulin-induced hypoglycemia (IIH) in each sex. Testes-intact male and E-replaced ovariectomized female rats were pretreated by intracerebroventricular ERα antagonist (MPP) or ERβ antagonist (PHTPP) administration before IIH. Data implicate both ER in hypoglycemic inhibition of neuronal nitric oxide synthase protein in each sex and up-regulation of glutamate decarboxylase65/67 and SF-1 expression in females. ERα and -β enhance astrocyte AMPK and glycogen synthase expression and inhibit glycogen phosphorylase in hypoglycemic females, while ERβ suppresses the same proteins in males. Differential VMN astrocyte protein responses to IIH may partially reflect ERα and -β augmentation of ERβ and down-regulation of alpha1, alpha2, and beta1 adrenoreceptor proteins in females, versus ERβ repression of GPER and alpha2 adrenoreceptor profiles in males. MPP or PHTPP pretreatment blunted counter-regulatory hormone secretion in hypoglycemic males only, suggesting that in males one or more VMN neurotransmitters exhibiting sensitivity to forebrain ER may passively regulate this endocrine outflow, whereas female forebrain ERα and -β are apparently uninvolved in these contra-regulatory responses.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - M M Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - M M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - S K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - H N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
12
|
Alhamami HN, Uddin MM, Mahmood ASMH, Briski KP. Lateral but not Medial Hypothalamic AMPK Activation Occurs at the Hypoglycemic Nadir in Insulin-injected Male Rats: Impact of Caudal Dorsomedial Hindbrain Catecholamine Signaling. Neuroscience 2018. [PMID: 29534973 DOI: 10.1016/j.neuroscience.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hypothalamic energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulator of counter-regulatory responses to hypoglycemia, responds to pharmacological manipulation of hindbrain AMPK activity. Dorsomedial hindbrain A2 noradrenergic neurons express hypoglycemia-sensitive metabolo-sensory biomarkers, including AMPK. Here, adult male rats were pretreated by intra-caudal fourth ventricular administration of the selective neurotoxin 6-hydroxydopamine (6-OHDA) to determine if catecholamine signaling from the aforesaid site governs hypothalamic AMPK activation during insulin-induced hypoglycemia (IIH). Micropunched arcuate (ARH), ventromedial (VMH), paraventricular (PVH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissues were obtained at the neutral protamine Hagedorn insulin-induced hypoglycemic nadir, coincident with A2 AMPK activation, for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant metabolic neuropeptides. ARH, VMH, LHA, and DMH norepinephrine levels were altered according to insulin dose; 6-OHDA-mediated reversal of these responses was site-specific. IIH elevated LHA and reduced VMH pAMPK protein, profiles that were respectively unchanged or increased by 6-OHDA. PVH and ARH pAMPK was resistant to IIH, but augmented in ARH of neurotoxin- plus insulin-treated rats. ARH neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) proteins were correspondingly increased or refractory to IIH; 6-OHDA pretreatment normalized NPY and elevated POMC expression after insulin injection. Results demonstrate site-specific bi-directional adjustments in hypothalamic AMPK reactivity to hypoglycemia. Intensification of ARH/VMH pAMPK by 6-OHDA implies dorsomedial hindbrain improvement of energy balance in those sites during IIH. Neurotoxin-mediated augmentation versus suppression of basal catabolic (ARH POMC/VMH steroidogenic factor-1) or IIH-associated anabolic (ARH NPY) neuropeptide profiles, respectively, may involve local AMPK-dependent against independent mechanisms.
Collapse
Affiliation(s)
- Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Main Uddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
13
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
14
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|