1
|
Graça SC, Bustelli IB, Santos ÉVD, Fernandes CG, Lanaro R, Stilhano RS, Linardi A, Caetano AL. Banisteriopsis caapi extract: Implications for neuroinflammatory pathways in Locus coeruleus lesion rodent model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118775. [PMID: 39244172 DOI: 10.1016/j.jep.2024.118775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ayahuasca is a beverage obtained from the decoctions of Banisteriopsis caapi (Spruce ex Griseb.) Morton and Psychotria viridis Ruiz & Pav., used throughout the Amazon as a medicinal beverage for healing and spiritual exploration. The Banisteriopsis caapi extract consists of harmine, harmaline, and tetrahydroharmine (THH); which inhibit the isoforms of monoamine oxidase A and B. In the central nervous system (CNS), it can increase the norepinephrine (NE) concentration, produced in the Locus coeruleus (LC), reducing inflammation that is associated with some neurological disease, such as Parkinson's disease and Alzheimer's disease. AIM OF THE STUDY evaluate the effects of treatment with B. caapi extract on the neuroinflammatory profile in animals with selective LC lesions. MATERIAL AND METHODS male Wistar rats with LC lesions induced by 6-hydroxydopamine were treated with B. caapi extract. Subsequently, behavioral tests were conducted, including the elevated plus maze, rotarod, and open field. Tyrosine hydroxylase positive (TH+) neurons and IBA-1 positive microglia were quantified from the LC inflammatory markers and free radical products were assessed. RESULTS Both 6-Hydroxydopamine hydrochloride and the Banisteriopsis caapi extract causes reduction of LC neurons, at the concentration and frequency used. The LC depletion and the treatment of B. caapi extract interfere with locomotion. B. caapi extract and the LC lesion increased the number and activation of inflammatory cells, such as microglia. B. caapi extract decreases IL-10 in the hippocampus and BDNF gene expression. CONCLUSION This study suggests that B. caapi extract (at the concentration and frequency used) promotes noradrenergic neuron depletion and creates a proinflammatory environment in the CNS.
Collapse
Affiliation(s)
- Santhiago C Graça
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Isabella B Bustelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil
| | - Érica V Dos Santos
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Carolina G Fernandes
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Rafael Lanaro
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), 13083-894, Campinas, SP, Brazil.
| | - Roberta S Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Ariadiny L Caetano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2024:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
3
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 PMCID: PMC11522829 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S. Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSao PauloBrazil
| | - Daniel K. Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Ana C. Takakura
- Department of Pharmacology, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSão PauloBrazil
| |
Collapse
|
4
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Naccarato MC, Oliveira LM, Ferreira CB, Moreira TS, Takakura AC. Nucleus of the solitary tract neuronal degeneration and impaired hypoxia response in a model of Parkinson's disease. Exp Neurol 2024; 380:114924. [PMID: 39147260 DOI: 10.1016/j.expneurol.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.
Collapse
Affiliation(s)
- Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline B Ferreira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil; Department of Neurobiology, University of Pittsburgh School of Medicine, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil.
| |
Collapse
|
6
|
Maletz SN, Reid BT, Baekey DM, Whitaker-Fornek JR, Bateman JT, Arakawa K, Bissonnette JM, Levitt ES. Effect of positive allosteric modulation and orthosteric agonism of dopamine D2-like receptors on respiration in mouse models of Rett syndrome. Respir Physiol Neurobiol 2024; 328:104314. [PMID: 39117159 DOI: 10.1016/j.resp.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.
Collapse
Affiliation(s)
- Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Jessica R Whitaker-Fornek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Keiko Arakawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - John M Bissonnette
- Oregon Health and Sciences University, Portland, OR 97239, United States
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
7
|
Kawamura LRDSM, Sarmet M, de Campos PS, Takehara S, Kumei Y, Zeredo JLL. Apnea behavior in early- and late-stage mouse models of Parkinson's disease: Cineradiographic analysis of spontaneous breathing, acute stress, and swallowing. Respir Physiol Neurobiol 2024; 323:104239. [PMID: 38395210 DOI: 10.1016/j.resp.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to evaluate the timing and frequency of spontaneous apneas during breathing and swallowing by using cineradiography on mouse models of early/initial or late/advanced Parkinson's disease (PD). C57BL/6 J mice received either 6-OHDA or vehicle injections into their right striatum, followed by respiratory movement recordings during spontaneous breathing and swallowing, and a stress challenge, two weeks later. Experimental group animals showed a significantly lower respiratory rate (158.66 ± 32.88 breaths/minute in late PD, 173.16 ± 25.19 in early PD versus 185.27 ± 25.36 in controls; p<0.001) and a significantly higher frequency of apneas (median 1 apnea/minute in both groups versus 0 in controls; p<0.001). Other changes included reduced food intake and the absence of swallow apneas in experimental mice. 6-OHDA-induced nigrostriatal degeneration in mice disrupted respiratory control, swallowing, stress responsiveness, and feeding behaviors, potentially hindering airway protection and elevating the risk of aspiration.
Collapse
Affiliation(s)
| | - Max Sarmet
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | | | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luis Lopes Zeredo
- Graduate Program in Health Sciences, University of Brasilia, Brasilia, Brazil; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
9
|
Andrzejewski K, Orłowska ME, Zaremba M, Joniec-Maciejak I, Kaczyńska K. Impact of Serotonergic 5HT 1A and 5HT 2A Receptor Activation on the Respiratory Response to Hypercapnia in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4403. [PMID: 38673988 PMCID: PMC11050428 DOI: 10.3390/ijms25084403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.
Collapse
Affiliation(s)
- Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| | - Magdalena E. Orłowska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| | - Małgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland; (M.Z.), (I.J.-M.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland; (M.Z.), (I.J.-M.)
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| |
Collapse
|
10
|
Bustelli IB, Oliveira LM, Correa-Netto NF, Stilhano RS, Caetano AL. Behavioral effects of 6-hydroxydopamine-induced damage to nigro-striatal pathway and Locus coeruleus as a rodent model of Parkinson's disease. Behav Brain Res 2024; 462:114873. [PMID: 38266776 DOI: 10.1016/j.bbr.2024.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.
Collapse
Affiliation(s)
- Isabella B Bustelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Nelson F Correa-Netto
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Roberta S Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Ariadiny L Caetano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil.
| |
Collapse
|
11
|
Cabral LM, Oliveira LM, Miranda NC, Kawamoto EM, K P Costa S, Moreira TS, Takakura AC. TNFR1-mediated neuroinflammation is necessary for respiratory deficits observed in 6-hydroxydopamine mouse model of Parkinsońs Disease. Brain Res 2024; 1822:148586. [PMID: 37757967 DOI: 10.1016/j.brainres.2023.148586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
12
|
Yu Q, Hu X, Zheng T, Liu L, Kuang G, Liu H, Wang X, Li J, Huang J, Wang T, Lin Z, Xiong N. Obstructive sleep apnea in Parkinson's disease: A prevalent, clinically relevant and treatable feature. Parkinsonism Relat Disord 2023; 115:105790. [PMID: 37541789 DOI: 10.1016/j.parkreldis.2023.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by motor and non-motor symptoms, including obstructive sleep apnea (OSA), a common comorbid sleep disorder. The prevalence of OSA in PD is high, and its impact on quality of life, accident risk, and limited treatment options underscores the need for vigilant monitoring and effective interventions. OSA is observed in 20-70% of PD patients, whereas the general population exhibits a lower prevalence ranging from 2 to 14%. These discrepancies in prevalence may be attributed to differences in demographic characteristics, sample sizes with selection bias, and variations in scoring systems for apnea and hypopnea events used across different studies. This review highlights the potential pathogenesis of comorbid OSA in PD and provides an overview of ongoing clinical trials investigating interventions for this condition. Several mechanisms have been implicated in the development of OSA in PD, including intermittent hypoxemia, sleep fragmentation, alterations in the glymphatic system homeostasis, upper airway obstruction, and inflammation. Given the adverse effects of PD comorbid OSA, early intervention measures are crucial. It is imperative to conduct longitudinal studies and clinical trials to elucidate the pathogenesis and develop novel and effective interventions for OSA in PD patients. These efforts aim to delay the progression of PD, enhance patients' quality of life, and alleviate the burden on society and families.
Collapse
Affiliation(s)
- Qinwei Yu
- Department of Cardiology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei China; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Zheng
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei China
| | - Li Liu
- Department of Clinical Laboratory, People's Hospital of Maojian District, Shiyan City, Hubei China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital; Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
Oliveira LM, Severs L, Moreira TS, Ramirez JM, Takakura AC. Ampakine CX614 increases respiratory rate in a mouse model of Parkinson's disease. Brain Res 2023; 1815:148448. [PMID: 37301422 DOI: 10.1016/j.brainres.2023.148448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced. We hypothesize that the neuronal loss, and consequently loss of glutamatergic connections in the respiratory network previously investigated, are responsible for the breathing impairment in PD. Here, we tested whether ampakines (CX614), a subgroup of AMPA receptor positive allosteric modulators, could stimulate the respiratory activity in PD-induced animals. CX614 (50 µM) injected intraperitoneally or directly into the preBötC region reduced the irregularity pattern and increased the respiratory rate by 37% or 82%, respectively, in PD-induced animals. CX614 also increased the respiratory frequency in healthy animals. These data suggest that ampakine CX614 could become a tool to restore breathing in PD.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Liza Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
14
|
Jampolska M, Andrzejewski K, Boguszewski PM, Kaczyńska K. L-DOPA Improves Ventilation but Not the Ventilatory Response to Hypercapnia in a Reserpine Model of Parkinson's Disease. Brain Sci 2023; 13:brainsci13050775. [PMID: 37239247 DOI: 10.3390/brainsci13050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by progressive degeneration of the substantia nigra that affects mainly movement control. However, pathological changes associated with the development of PD may also alter respiration and can lead to chronic episodes of hypoxia and hypercapnia. The mechanism behind impaired ventilation in PD is unclear. Therefore, in this study, we explore the hypercapnic ventilatory response in a reproducible reserpine-induced (RES) model of PD and parkinsonism. We also investigated how dopamine supplementation with L-DOPA, a classic drug used to treat PD, would affect the breathing and respiratory response to hypercapnia. Reserpine treatment resulted in decreased normocapnic ventilation and behavioral changes manifested as low physical activity and exploratory behavior. The respiratory rate and the minute ventilation response to hypercapnia were significantly higher in sham rats compared to the RES group, while the tidal volume response was lower. All of this appears to be due to reduced baseline ventilation values produced by reserpine. L-DOPA reversed reduced ventilation, indicating a stimulatory effect of DA on breathing, and showed the potency of DA supplementation in restoring normal respiratory activity.
Collapse
Affiliation(s)
- Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Ludwika Pasteura 3 St., 02-093 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
15
|
McMahon L, Blake C, Lennon O. A systematic review and meta-analysis of respiratory dysfunction in Parkinson's disease. Eur J Neurol 2023; 30:1481-1504. [PMID: 36779856 DOI: 10.1111/ene.15743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
INTRODUCTION Respiratory dysfunction in Parkinson's disease (PD) is common and associated with increased hospital admission and mortality rates. Central and peripheral mechanisms have been proposed in PD. To date no systematic review identifies the extent and type of respiratory impairments in PD compared with healthy controls. METHODS PubMed, EMBASE, CINAHL, Web of Science, Pedro, MEDLINE, Cochrane Library and OpenGrey were searched from inception to December 2021 to identify case-control studies reporting respiratory measures in PD and matched controls. RESULTS Thirty-nine studies met inclusion criteria, the majority with low risk of bias across Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) domains. Data permitted pooled analysis for 26 distinct respiratory measures. High-to-moderate certainty evidence of impairment in PD was identified for vital capacity (standardised mean difference [SMD] 0.75; 95% CI 0.45-1.05; p < 0.00001; I2 = 10%), total chest wall volume (SMD 0.38; 95% CI 0.09-0.68; p = 0.01; I2 = 0%), maximum inspiratory pressure (SMD 0.91; 95% CI 0.64-1.19; p < 0.00001; I2 = 43%) and sniff nasal inspiratory pressure (SMD 0.58; 95% CI 0.30-0.87; p < 0.00001; I2 = 0%). Sensitivity analysis provided high-moderate certainty evidence of impairment for forced vital capacity and forced expiratory volume in 1 s during medication ON phases and increased respiratory rate during OFF phases. Lower certainty evidence identified impairments in PD for maximum expiratory pressure, tidal volume, maximum voluntary ventilation and peak cough flow. CONCLUSIONS Strong evidence supports a restrictive pattern with inspiratory muscle weakness in PD compared with healthy controls. Limited data for central impairment were identified with inconclusive findings.
Collapse
Affiliation(s)
- Laura McMahon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Catherine Blake
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Olive Lennon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
17
|
de la Rosa T, Calvo VS, Gonçalves VC, Ferreira CB, Cabral LM, Souza FDC, Scerni DA, Scorza FA, Moreira TS, Takakura AC. Respiratory deficits in a female rat model of Parkinson's Disease. Exp Physiol 2022; 107:1349-1359. [PMID: 36030407 DOI: 10.1113/ep090378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does 6-OHDA-induced Parkinson's Disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? Our results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced NK1r density in preBotc and BotC, and there was an incremental effect of 6-OHDA and ovariectomy on RTN neurons. ABSTRACT Emerging evidence indicates that Parkinson's disease (PD) courses with autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor (NK1r) density in the rostral ventrolateral respiratory group, Botzinger and pre-Botzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-ovariectomized rats. Concerning respiratory parameters, in ovariectomized rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation (VE ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of RTN phox2b neurons and hypercapnia-induced respiratory changes in PD-ovariectomized animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil.,Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Viviam S Calvo
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Valeria C Gonçalves
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline B Ferreira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lais M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe da C Souza
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Débora A Scerni
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fúlvio A Scorza
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
L. F. Nascimento A, O. S. Medeiros P, F. A. T. Pedrão L, Queiroz VC, Oliveira LM, Novaes LS, Caetano AL, Munhoz CD, Takakura AC, Falquetto B. Oxidative stress inhibition via apocynin prevents contributes to medullary respiratory neurodegeneration and respiratory pattern dysfunction in 6-OHDA animal model of Parkinson's disease. Neuroscience 2022; 502:91-106. [DOI: 10.1016/j.neuroscience.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
19
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
20
|
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson's Disease: What Do We Know from Studies in Humans and Animal Models? Int J Mol Sci 2022; 23:ijms23073499. [PMID: 35408858 PMCID: PMC8998219 DOI: 10.3390/ijms23073499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease characterized by movement disorders due to the progressive loss of dopaminergic neurons in the ventrolateral region of the substantia nigra pars compacta (SNpc). Apart from the cardinal motor symptoms such as rigidity and bradykinesia, non-motor symptoms including those associated with respiratory dysfunction are of increasing interest. Not only can they impair the patients’ quality of life but they also can cause aspiration pneumonia, which is the leading cause of death among PD patients. This narrative review attempts to summarize the existing literature on respiratory impairments reported in human studies, as well as what is newly known from studies in animal models of the disease. Discussed are not only respiratory muscle dysfunction, apnea, and dyspnea, but also altered central respiratory control, responses to hypercapnia and hypoxia, and how they are affected by the pharmacological treatment of PD.
Collapse
|
21
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Batista LA, Cabral LM, Moreira TS, Takakura AC. Inhibition of anandamide hydrolysis does not rescue respiratory abnormalities observed in an animal model of Parkinson's disease. Exp Physiol 2021; 107:161-174. [PMID: 34907627 DOI: 10.1113/ep089249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory frequency to hypercapnia is attenuated in an animal model of Parkinson's disease (PD): what is the therapeutic potential of inhibition of anandamide hydrolysis for this respiratory deficit? What is the main finding and its importance? In an animal model of PD there is an increased variability in resting respiratory frequency and an impaired tachypnoeic response to hypercapnia, which is accompanied by diminished expression of Phox2b immunoreactivity in the retrotrapezoid nucleus (RTN). Inhibition of anandamide hydrolysis also impaired the response to hypercapnia and decreased the number of Phox2b immunoreactive cells in the RTN. This strategy does not reverse the respiratory deficits observed in an animal model of PD. ABSTRACT Parkinson's disease (PD) is characterized by severe classic motor symptoms along with various non-classic symptoms. Among the non-classic symptoms, respiratory dysfunctions are increasingly recognized as contributory factors to complications in PD. The endocannabinoid system has been proposed as a target to treat PD and other neurodegenerative disorders. Since symptom management of PD is mainly focused on the classic motor symptoms, in this work we aimed to test the hypothesis that increasing the actions of the endocannabinoid anandamide by inhibiting its hydrolysis with URB597 reverses the respiratory deficits observed in an animal model of PD. Results show that bilateral injection of 6-hydroxydopamine hydrochloride (6-OHDA) in the dorsal striatum leads to neurodegeneration of the substantia nigra, accompanied by reduced expression of Phox2b in the retrotrapezoid nucleus (RTN), an increase in resting respiratory frequency variability and an impaired tachypnoeic response to hypercapnia. URB597 treatment in control animals was associated with an impaired tachypnoeic response to hypercapnia and a reduced expression of Phox2b in the RTN, whereas treatment of 6-OHDA-lesioned animals with URB597 was not able to reverse the deficits observed. These results suggest that targeting anandamide may not be a suitable strategy to treat PD since this treatment mimics the respiratory deficits observed in the 6-OHDA model of PD.
Collapse
Affiliation(s)
- Luara A Batista
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| |
Collapse
|
23
|
de la Rosa T, Calvo VS, Gonçalves VC, Scerni DA, Scorza FA. 6-hydroxydopamine and ovariectomy has no effect on heart rate variability parameters of females. Clinics (Sao Paulo) 2021; 76:e3175. [PMID: 34644736 PMCID: PMC8478141 DOI: 10.6061/clinics/2021/e3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES In addition to the classic motor symptoms of Parkinson's disease (PD), patients also present with non-motor symptoms, such as autonomic dysfunction, which is present in almost 90% of patients with PD, affecting the quality of life and mortality. Regarding sex differences in prevalence and presentation, there is increasing concern about how sex affects autonomic dysfunction. However, there are no previous data on autonomic cardiac function in females after 6-hydroxydopamine (6-OHDA) striatal injection. METHODS Wistar female rats were ovariectomized. After 20 days, the animals received bilateral injections of 6-OHDA (total dose per animal: 48 µg) or a vehicle solution in the striatum. Thirty days after 6-OHDA injection, subcutaneous electrodes were implanted for electrocardiogram (ECG) recording. Ten days after electrode implantation, ECG signals were recorded. Analyses of heart rate variability (HRV) parameters were performed, and the 6-OHDA lesion was confirmed by analyzing the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc). RESULTS A high dose of 6-OHDA did not affect HRV of females, independent of ovariectomy. As expected, ovariectomy did not affect HRV or lesions in the SNpc after 6-OHDA injection. CONCLUSIONS We suggest that females with 6-OHDA present with cardioprotection, independent of ovarian hormones, which could be related to female vagal predominance.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Departamento de Neurologia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | | | | | | | | |
Collapse
|
24
|
Johnson RA, Kelm-Nelson CA, Ciucci MR. Changes to Ventilation, Vocalization, and Thermal Nociception in the Pink1-/- Rat Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:489-504. [PMID: 32065805 DOI: 10.3233/jpd-191853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals with Parkinson's disease (PD) experience significant vocal communication deficits. Findings in the Pink1-/- rat model of early-onset PD suggest that ultrasonic vocal communication is impaired early, progressively worsens prior to nigrostriatal dopamine depletion, and is associated with loss of locus coeruleus neurons, brainstem α-synuclein, and larynx pathology. Individuals with PD also demonstrate ventilatory deficits and altered sensory processing, which may contribute to vocal deficits. OBJECTIVE The central hypothesis is that ventilatory and sensory deficits are present in the early disease stages when limb and vocal motor deficits also present. METHODS Pink1-/- rats were compared to wildtype (WT) controls at longitudinal timepoints. Whole-body flow through plethysmography was used to measure ventilation in the following conditions: baseline, hypoxia, and maximal chemoreceptor stimulation. Plantar thermal nociception, and as a follow up to previous work, limb gait and vocalization were analyzed. Serotonin density (5-HT) in the dorsal raphe was quantified post-mortem. RESULTS Baseline breathing frequencies were consistently higher in Pink1-/- rats at all time points. In hypoxic conditions, there were no significant changes between genotypes. With hypercapnia, Pink1-/- rats had decreased breathing frequencies with age. Thermal withdrawal latencies were significantly faster in Pink1-/- compared with WT rats across time. No differences in 5-HT were found between genotypes. Vocal peak frequency was negatively correlated to tidal volume and minute ventilation in Pink1-/- rats. CONCLUSION This work suggests that abnormal nociceptive responses in Pink1-/- rats and ventilatory abnormalities may be associated with abnormal sensorimotor processing to chemosensory stimuli during disease manifestation.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cynthia A Kelm-Nelson
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Ciucci
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
25
|
Oliveira LM, Baertsch NA, Moreira TS, Ramirez JM, Takakura AC. Unraveling the Mechanisms Underlying Irregularities in Inspiratory Rhythm Generation in a Mouse Model of Parkinson's Disease. J Neurosci 2021; 41:4732-4747. [PMID: 33863785 PMCID: PMC8260248 DOI: 10.1523/jneurosci.2114-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| |
Collapse
|
26
|
Docu Axelerad A, Stroe AZ, Arghir OC, Docu Axelerad D, Gogu AE. Respiratory Dysfunctions in Parkinson's Disease Patients. Brain Sci 2021; 11:brainsci11050595. [PMID: 34064360 PMCID: PMC8147845 DOI: 10.3390/brainsci11050595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory dysfunctions have been associated with Parkinson's disease since the first observations of the disease in 1817. Patients with Parkinson's disease frequently present respiratory disorders with obstructive ventilatory patterns and restrictive modifications, as well as limitations in respiratory volumes. In addition, respiratory impairments are observed due to the rigidity and kyphosis that Parkinson's disease patients experience. Subsidiary pulmonary complications can also appear as side effects of medication. Silent aspiration can be the cause of pneumonia in Parkinson's disease. Pulmonary dysfunction is one of the main factors that leads to the morbidity and mortality of patients with Parkinson's disease. Here, we performed a narrative review of the literature and reviewed studies on dyspnea, lung volumes, respiratory muscle function, sleep breathing disorders, and subsidiary speech and swallow impairments related to pulmonary dysfunction in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Any Docu Axelerad
- Department of Neurology, General Medicine Faculty, Ovidius University, 900470 Constanta, Romania;
| | - Alina Zorina Stroe
- Department of Neurology, General Medicine Faculty, Ovidius University, 900470 Constanta, Romania;
- Correspondence:
| | - Oana Cristina Arghir
- Department of Pneumology, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania;
| | | | - Anca Elena Gogu
- Department of Neurology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
27
|
D'Arrigo A, Floro S, Bartesaghi F, Casellato C, Sferrazza Papa GF, Centanni S, Priori A, Bocci T. Respiratory dysfunction in Parkinson's disease: a narrative review. ERJ Open Res 2020; 6:00165-2020. [PMID: 33043046 PMCID: PMC7533305 DOI: 10.1183/23120541.00165-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The presence of respiratory symptoms in Parkinson's disease (PD) has been known since the first description of the disease, even though the prevalence and incidence of these disturbances are not well defined. Several causes have been reported, comprising obstructive and restrictive pulmonary disease and changes in the central ventilatory control, and different pathogenetic mechanisms have been postulated accordingly. In our review, we encompass the current knowledge about respiratory abnormalities in PD, as well as the impact of anti-Parkinsonian drugs as either risk or protective factors. A description of putative pathogenetic mechanisms is also provided, and possible treatments are discussed, focusing on the importance of recognising and treating respiratory symptoms as a key manifestation of the disease itself. A brief description of respiratory dysfunctions in atypical Parkinsonism, especially α-synucleinopathies, is also provided. This review addresses current knowledge about respiratory dysfunctions in Parkinson's disease, from the aetiopathology to pharmacological and invasive treatments, describing the different clinical phenotypeshttps://bit.ly/2X7OLtN
Collapse
Affiliation(s)
- Andrea D'Arrigo
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Stefano Floro
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Francesca Bartesaghi
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Chiara Casellato
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Giuseppe Francesco Sferrazza Papa
- Respiratory Unit, Dept of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy.,Casa di Cura del Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, Dept of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Dept of Health Sciences, University of Milan, Milan, Italy.,III Neurology Clinic, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
28
|
Falquetto B, Thieme K, Malta MB, e Rocha KC, Tuppy M, Potje SR, Antoniali C, Rodrigues AC, Munhoz CD, Moreira TS, Takakura AC. Oxidative stress in the medullary respiratory neurons contributes to respiratory dysfunction in the 6‐OHDA model of Parkinson's disease. J Physiol 2020; 598:5271-5293. [DOI: 10.1113/jp279791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bárbara Falquetto
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina Thieme
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marília B. Malta
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina C. e Rocha
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marina Tuppy
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Simone R. Potje
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Cristina Antoniali
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Alice C. Rodrigues
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Carolina D. Munhoz
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Thiago S. Moreira
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Ana C. Takakura
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| |
Collapse
|
29
|
Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020; 10:brainsci10090583. [PMID: 32846874 PMCID: PMC7563345 DOI: 10.3390/brainsci10090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αβγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Nephtali Marina
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-496-4960; Fax: +1-301-496-1339
| |
Collapse
|
30
|
Fernandes-Junior SA, Oliveira LM, Czeisler CM, Mo X, Roy S, Somogyi A, Zhang L, Moreira TS, Otero JJ, Takakura AC. Stimulation of retrotrapezoid nucleus Phox2b-expressing neurons rescues breathing dysfunction in an experimental Parkinson's disease rat model. Brain Pathol 2020; 30:926-944. [PMID: 32497400 DOI: 10.1111/bpa.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence from multiple studies indicates that Parkinson's disease (PD) patients suffer from a spectrum of autonomic and respiratory motor deficiencies in addition to the classical motor symptoms attributed to substantia nigra degeneration of dopaminergic neurons. Animal models of PD show a decrease in the resting respiratory rate as well as a decrease in the number of Phox2b-expressing retrotrapezoid nucleus (RTN) neurons. The aim of this study was to determine the extent to which substantia nigra pars compact (SNc) degeneration induced RTN biomolecular changes and to identify the extent to which RTN pharmacological or optogenetic stimulations rescue respiratory function following PD-induction. SNc degeneration was achieved in adult male Wistar rats by bilateral striatal 6-hydroxydopamine injection. For proteomic analysis, laser capture microdissection and pressure catapulting were used to isolate the RTN for subsequent comparative proteomic analysis and Ingenuity Pathway Analysis (IPA). The respiratory parameters were evaluated by whole-body plethysmography and electromyographic analysis of respiratory muscles. The results confirmed reduction in the number of dopaminergic neurons of SNc and respiratory rate in the PD-animals. Our proteomic data suggested extensive RTN remodeling, and that pharmacological or optogenetic stimulations of the diseased RTN neurons promoted rescued the respiratory deficiency. Our data indicate that despite neuroanatomical and biomolecular RTN pathologies, that RTN-directed interventions can rescue respiratory control dysfunction.
Collapse
Affiliation(s)
- Silvio A Fernandes-Junior
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil.,Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Catherine M Czeisler
- Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Xiaokui Mo
- Department of Biostatistics and Bioinformatics, The Ohio State University (OSU), Columbus, OH
| | - Sashwati Roy
- Departments of Surgery and Molecular and Cellular Biochemistry, The Ohio State University (OSU), Columbus, OH
| | - Arpad Somogyi
- Mass Spectrometry and Proteomics Facility, The Ohio State University (OSU), Columbus, OH
| | - Liewn Zhang
- Mass Spectrometry and Proteomics Facility, The Ohio State University (OSU), Columbus, OH
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - José J Otero
- Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
31
|
Johnson ME, Bergkvist L, Mercado G, Stetzik L, Meyerdirk L, Wolfrum E, Madaj Z, Brundin P, Wesson DW. Deficits in olfactory sensitivity in a mouse model of Parkinson's disease revealed by plethysmography of odor-evoked sniffing. Sci Rep 2020; 10:9242. [PMID: 32514004 PMCID: PMC7280205 DOI: 10.1038/s41598-020-66201-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Hyposmia is evident in over 90% of Parkinson’s disease (PD) patients. A characteristic of PD is intraneuronal deposits composed in part of α-synuclein fibrils. Based on the analysis of post-mortem PD patients, Braak and colleagues suggested that early in the disease α-synuclein pathology is present in the dorsal motor nucleus of the vagus, as well as the olfactory bulb and anterior olfactory nucleus, and then later affects other interconnected brain regions. Here, we bilaterally injected α-synuclein preformed fibrils into the olfactory bulbs of wild type male and female mice. Six months after injection, the anterior olfactory nucleus and piriform cortex displayed a high α-synuclein pathology load. We evaluated olfactory perceptual function by monitoring odor-evoked sniffing behavior in a plethysmograph at one-, three- and six-months after injection. No overt impairments in the ability to engage in sniffing were evident in any group, suggesting preservation of the ability to coordinate respiration. At all-time points, females injected with fibrils exhibited reduced odor detection sensitivity, which was observed with the semi-automated plethysmography apparatus, but not a buried pellet test. In future studies, this sensitive methodology for assessing olfactory detection deficits could be used to define how α-synuclein pathology affects other aspects of olfactory perception and to clarify the neuropathological underpinnings of these deficits.
Collapse
Affiliation(s)
- Michaela E Johnson
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Liza Bergkvist
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Gabriela Mercado
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Lucas Stetzik
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US.
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Maia OAC, Malheiros-Lima MR, Oliveira MA, Castro CL, Moriya HT, Tavares-de-Lima W, Takakura AC, Moreira TS. Pilocarpine-induced status epilepticus reduces chemosensory control of breathing. Brain Res Bull 2020; 161:98-105. [PMID: 32433938 DOI: 10.1016/j.brainresbull.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
One of the possible causes of death in epilepsy is breathing disorders, especially apneas, which lead to an increase in CO2 levels (hypercapnia) and/or a decrease in O2 levels in arterial blood (hypoxemia). The respiratory neurons located in the ventral brainstem respiratory column are the main groups responsible for controlling breathing. Recent data from our group demonstrated respiratory changes in two experimental models of epilepsy, i.e. audiogenic epilepsy, and amygdala rapid kindling. Here, we aimed to evaluate respiratory changes in the classic model of temporal lobe epilepsy induced by intra-hippocampal injection of pilocarpine. Adult Wistar rats with stainless-steel cannulas implanted in the hippocampus region were used. The animals were submitted to pilocarpine injection (2.4 mg/μL, N = 12-15) or saline (N = 9) into the hippocampus. The respiratory parameters analyzed by whole-body plethysmography were respiratory rate (fR), tidal volume (VT) and ventilation (VE). Respiratory mechanics such as Newtonian airway resistance (Rn), viscance of the pulmonary parenchyma (G) and the elastance of the pulmonary parenchyma (H) were also investigated. No changes in baseline breathing were detected 15 or 30 days after pilocarpine-induced status epilepticus (SE). However, 30 days after pilocarpine-induced SE, a significant reduction in VE was observed during hypercapnic (7% CO2) stimulation, without affecting the hypoxia (8% O2) ventilatory response. We also did not observe changes in respiratory mechanics. The present results suggest that the impairment of the hypercapnia ventilatory response in pilocarpine-induced SE could be related to a presumable degeneration of brainstem respiratory neurons but not to peripheral mechanisms.
Collapse
Affiliation(s)
- Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudio L Castro
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Department of Engineering of Control and Telecommunication, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
33
|
Pokusa M, Hajduchova D, Budaj T, Kralova Trancikova A. Respiratory Function and Dysfunction in Parkinson-Type Neurodegeneration. Physiol Res 2020; 69:S69-S79. [DOI: 10.33549/physiolres.934405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is most commonly manifested by the presence of motor symptoms. However, non-motor symptoms occur several years before the onset of motor symptoms themselves. Hallmarks of dysfunction of the respiratory system are still outside the main focus of interest, whether by clinicians or scientists, despite their indisputable contribution to the morbidity and mortality of patients suffering from PD. In addition, many of the respiratory symptoms are already present in the early stages of the disease and efforts to utilize these parameters in the early diagnosis of PD are now intensifying. Mechanisms that lead to the development and progression of respiratory symptoms are only partially understood. This review focuses mainly on the comparison of respiratory problems observed in clinical studies with available findings obtained from experimental animal models. It also explains pathological changes observed in non-neuronal tissues in subjects with PD.
Collapse
Affiliation(s)
| | | | | | - A. Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovak Republic.
| |
Collapse
|
34
|
Andrzejewski K, Jampolska M, Zaremba M, Joniec-Maciejak I, Boguszewski PM, Kaczyńska K. Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson's disease. J Physiol Sci 2020; 70:16. [PMID: 32160868 PMCID: PMC7066294 DOI: 10.1186/s12576-020-00743-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/02/2020] [Indexed: 12/03/2022]
Abstract
Respiratory disturbances present in Parkinson's disease (PD) are not well understood. Thus, studies in animal models aimed to link brain dopamine (DA) deficits with respiratory impairment are needed. Adult Wistar rats were lesioned with injection of 6-hydroxydopamine (6-OHDA) into the third cerebral ventricle. Two weeks after hypoxic test was performed in whole-body plethysmography chamber, phrenic (PHR) and hypoglossal (HG) nerve activities were recorded in normoxic and hypoxic conditions in anesthetized, vagotomized, paralyzed and mechanically ventilated rats. The effects of activation and blockade of dopaminergic carotid body receptors were investigated during normoxia in anesthetized spontaneously breathing rats. 6-OHDA injection affected resting respiratory pattern in awake animals: an increase in tidal volume and a decrease in respiratory rate had no effect on minute ventilation. Hypoxia magnified the amplitude and minute activity of the PHR and HG nerve of 6-OHDA rats. The ratio of pre-inspiratory to inspiratory HG burst amplitude was reduced in normoxic breathing. Yet, the ratio of pre-inspiratory time to total time of the respiratory cycle was increased during normoxia. 6-OHDA lesion had no impact on DA and domperidone effects on the respiratory pattern, which indicate that peripheral DA receptors are not affected in this model. Analysis of monoamines confirmed substantial striatal depletion of dopamine, serotonin and noradrenaline (NA) and reduction of NA content in the brainstem. In bilateral 6-OHDA model changes in activity of both nerves: HG (linked with increased apnea episodes) and PHR are present. Demonstrated respiratory effects could be related to specific depletion of DA and NA.
Collapse
Affiliation(s)
- Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Małgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
35
|
Vijayan S, Singh B, Ghosh S, Stell R, Mastaglia FL. Brainstem Ventilatory Dysfunction: A Plausible Mechanism for Dyspnea in Parkinson's Disease? Mov Disord 2020; 35:379-388. [DOI: 10.1002/mds.27932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Srimathy Vijayan
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Bhajan Singh
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital Nedlands Perth, Western Australia Australia
- School of Human Sciences, University of Western Australia Crawley Western Australia Australia
| | - Soumya Ghosh
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Rick Stell
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| |
Collapse
|
36
|
Depletion of hypothalamic hypocretin/orexin neurons correlates with impaired memory in a Parkinson's disease animal model. Exp Neurol 2020; 323:113110. [DOI: 10.1016/j.expneurol.2019.113110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
37
|
Meng L, Benedetti A, Lafontaine AL, Mery V, Robinson AR, Kimoff J, Gros P, Kaminska M. Obstructive sleep apnea, CPAP therapy and Parkinson's disease motor function: A longitudinal study. Parkinsonism Relat Disord 2019; 70:45-50. [PMID: 31855690 DOI: 10.1016/j.parkreldis.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION We aimed to assess, in patients with Parkinson's disease (PD), the association between obstructive sleep apnea (OSA), progression of motor dysfunction and the effect of OSA treatment. METHODS Data were analysed from a prospective cohort study of idiopathic PD patients from a movement disorders clinic. Patients found to have OSA on polysomnography (apnea-hypopnea index [AHI] ≥15 events/h, OSA+) were offered treatment using continuous positive airway pressure (CPAP). CPAP+ was defined as an average ≥ 2 h/night use at each follow-up. Motor symptoms were assessed using the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (mUPDRS) and the Timed-Up-And-Go (TUG). Follow-up times were 3, 6 and 12 months. Mixed models were constructed, adjusting for age, sex, body mass index, levodopa equivalent dose and comorbidities. RESULTS We studied 67 individuals (61.2% male) of mean age 64.7 years (SD = 10.1). Baseline mUPDRS was higher in OSA+ compared to OSA- (24.5 [13.6] vs. 16.2 [7.2], p < 0.001). Motor dysfunction increased at comparable rates in OSA- and OSA+CPAP-. However, in OSA+CPAP+, mUPDRS change was significantly lower compared to OSA- (β = -0.01 vs. 0.61, p = 0.03; p = 0.12 vs. OSA+CPAP- [β = 0.39]) and TUG change was lower compared to OSA+CPAP- (β = -0.01 vs. 0.13, p = 0.002; p = 0.05 vs. OSA- [β = 0.02]). CONCLUSIONS In this PD cohort, OSA was associated with higher baseline mUPDRS. In those with OSA, CPAP use was associated with stabilization of motor function (mUPDRS and TUG) over 12 months. These observations support further research to clarify the role of OSA in PD pathophysiology and motor dysfunction.
Collapse
Affiliation(s)
- Lingrui Meng
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, 942 Pine Ave W, Montreal, Quebec, H3A 1A2, Canada.
| | - Andrea Benedetti
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, 942 Pine Ave W, Montreal, Quebec, H3A 1A2, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve W, Montreal, Quebec, H4A 3S5, Canada
| | | | - Victoria Mery
- Clinica Alemana de Santiago, Facultad de Medicina, Universidad Del Desarrollo, Región del Bío, Chile
| | - Ann Ross Robinson
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A 3J1, Canada
| | - John Kimoff
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve W, Montreal, Quebec, H4A 3S5, Canada; Respiratory Division & Sleep Laboratory, McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A 3J1, Canada
| | - Priti Gros
- Division of Neurology, University of Toronto, 6 Queen's Park Crescent West, Toronto, Ontario, M5S 3H2, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve W, Montreal, Quebec, H4A 3S5, Canada; Respiratory Division & Sleep Laboratory, McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
38
|
Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res 2019; 1718:159-168. [DOI: 10.1016/j.brainres.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/16/2019] [Accepted: 05/12/2019] [Indexed: 01/10/2023]
|
39
|
O'Connor KM, Lucking EF, Golubeva AV, Strain CR, Fouhy F, Cenit MC, Dhaliwal P, Bastiaanssen TFS, Burns DP, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine 2019; 44:618-638. [PMID: 30898652 PMCID: PMC6606895 DOI: 10.1016/j.ebiom.2019.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It is increasingly evident that perturbations to the diversity and composition of the gut microbiota have significant consequences for the regulation of integrative physiological systems. There is growing interest in the potential contribution of microbiota-gut-brain signalling to cardiorespiratory control in health and disease. METHODS In adult male rats, we sought to determine the cardiorespiratory effects of manipulation of the gut microbiota following a 4-week administration of a cocktail of antibiotics. We subsequently explored the effects of administration of faecal microbiota from pooled control (vehicle) rat faeces, given by gavage to vehicle- and antibiotic-treated rats. FINDINGS Antibiotic intervention depressed the ventilatory response to hypercapnic stress in conscious animals, owing to a reduction in the respiratory frequency response to carbon dioxide. Baseline frequency, respiratory timing variability, and the expression of apnoeas and sighs were normal. Microbiota-depleted rats had decreased systolic blood pressure. Faecal microbiota transfer to vehicle- and antibiotic-treated animals also disrupted the gut microbiota composition, associated with depressed ventilatory responsiveness to hypercapnia. Chronic antibiotic intervention or faecal microbiota transfer both caused significant disruptions to brainstem monoamine neurochemistry, with increased homovanillic acid:dopamine ratio indicative of increased dopamine turnover, which correlated with the abundance of several bacteria of six different phyla. INTERPRETATION Chronic antibiotic administration and faecal microbiota transfer disrupt gut microbiota, brainstem monoamine concentrations and the ventilatory response to hypercapnia. We suggest that aberrant microbiota-gut-brain axis signalling has a modulatory influence on respiratory behaviour during hypercapnic stress. FUND: Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - María C Cenit
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Institute of Agrochemistry and Food Technology (IATA), National Council for Scientific Research (CSIC), Valencia, Spain
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
40
|
Oliveira LM, Oliveira MA, Moriya HT, Moreira TS, Takakura AC. Respiratory disturbances in a mouse model of Parkinson's disease. Exp Physiol 2019; 104:729-739. [PMID: 30758090 DOI: 10.1113/ep087507] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 μg μl-1 ; 0.5 μl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Andrzejewski K, Budzińska K, Kaczyńska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson's disease. Physiol Res 2019; 68:285-293. [PMID: 30628829 DOI: 10.33549/physiolres.933949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing impairments, such as an alteration in breathing pattern, dyspnoea, and sleep apnoea, are common health deficits recognised in Parkinson's disease (PD). The mechanism that underlies these disturbances, however, remains unclear. We investigated the effect of the unilateral damage to the rat nigrostriatal pathway on the central ventilatory response to hypercapnia, evoked by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). The respiratory experiments were carried out in conscious animals in the plethysmography chamber. The ventilatory parameters were studied in normocapnic and hyperoxic hypercapnia before and 14 days after the neurotoxin injection. Lesion with the 6-OHDA produced an increased tidal volume during normoxia. The magnified response of tidal volume and a decrease of breathing frequency to hypercapnia were observed in comparison to the pre-lesion and sham controls. Changes in both respiratory parameters resulted in an increase of minute ventilation of the response to CO(2) by 28% in comparison to the pre-lesion state at 60 s. Our results demonstrate that rats with implemented unilateral PD model presented an altered respiratory pattern most often during a ventilatory response to hypercapnia. Preserved noradrenaline and specific changes in dopamine and serotonin characteristic for this model could be responsible for the pattern of breathing observed during hypercapnia.
Collapse
Affiliation(s)
- K Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
42
|
Fernandes-Junior SA, Carvalho KS, Moreira TS, Takakura AC. Correlation between neuroanatomical and functional respiratory changes observed in an experimental model of Parkinson's disease. Exp Physiol 2018; 103:1377-1389. [PMID: 30070746 DOI: 10.1113/ep086987] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the relationship between neuroanatomical and functional respiratory changes in an experimental model of Parkinson's disease? What is the main finding and its importance? Sixty days after induction of Parkinson's disease in a rat model, there are decreases in baseline breathing and in the number of neurons, density of the neurokinin-1 receptor and density of astrocytes in the ventrolateral respiratory region. These results provide the first evidence that neuroanatomical changes occur before functional respiratory deficits in a Parkinson's disease model and that there is a positive correlation between those sets of changes. The neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in Parkinson's disease. ABSTRACT We showed previously that 60 days after the induction of Parkinson's disease (PD) in a rat model, there are decreases in baseline breathing and in the number of phox2b-expressing neurons of the retrotrapezoid nucleus (RTN) and nucleus of the solitary tract (NTS), as well as a reduction in the density of the neurokinin-1 receptor (NK1r) in the pre-Bötzinger complex (preBötC) and rostral ventrolateral respiratory group (rVRG). Here, our aim was to evaluate the correlation between neuroanatomical and functional respiratory changes in an experimental model of PD. Male Wistar rats with bilateral injections of 6-hydroxydopamine (6-OHDA, 24 μg μl-1 ) or vehicle into the striatum had respiratory parameters assessed by whole-body plethysmography 1 day before and 30, 40 or 60 days after the ablation. From the 30th day after the ablation, we observed a reduction in the number of phox2b neurons in the RTN and NTS and a reduction in the density of astrocytes in the rVRG. At 40 days after the ablation, we observed decreases in the density of NK1r in the preBötC and rVRG and of astrocytes in the RTN region. At 60 days, we observed a reduction in the density of astrocytes in the NTS and preBötC regions. The functional data showed changes in the resting and hypercapnia-induced respiratory rates and tidal volume from days 40-60 after injury. Our data suggest that the neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in PD.
Collapse
Affiliation(s)
- Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Kárin S Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Orexinergic neurons are involved in the chemosensory control of breathing during the dark phase in a Parkinson's disease model. Exp Neurol 2018; 309:107-118. [PMID: 30110606 DOI: 10.1016/j.expneurol.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra compacta (SNpc) and the only risk factor is aging. We showed that in 6-hydroxydopamine (6-OHDA)-model of PD there is a reduction in the neuronal profile within the brainstem ventral respiratory column with a decrease in the hypercapnic ventilatory response. Here we tested the involvement of orexin cells from the lateral hypothalamus/perifornical area (LH/PeF) on breathing in a 6-OHDA PD model. In this model of PD, there is a reduction in the total number of orexinergic neurons and in the number of orexinergic neurons that project to the RTN, without changing the number of CO2-activated orexinergic neurons during the dark phase. The ventilation at rest and in response to hypercapnia (7% CO2) was assessed in animals that received 6-OHDA or vehicle injections into the striatum and saporin anti-Orexin-B or IgG saporin into the LH/PeF during the sleep and awake states. The experiments showed a reduction of respiratory frequency (fR) at rest during the light phase in PD animals only during sleep. During the dark phase, there was an impaired fR response to hypercapnia in PD animals with depletion of orexinergic neurons in awake and sleeping rats. In conclusion, the degeneration of orexinergic neurons in this model of PD can be related to impaired chemoreceptor function in the dark phase.
Collapse
|
44
|
Lee SY, Chen MH, Chiang PL, Chen HL, Chou KH, Chen YC, Yu CC, Tsai NW, Li SH, Lu CH, Lin WC. Reduced gray matter volume and respiratory dysfunction in Parkinson's disease: a voxel-based morphometry study. BMC Neurol 2018; 18:73. [PMID: 29803228 PMCID: PMC5970473 DOI: 10.1186/s12883-018-1074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background The respiratory dysfunction of patients with Parkinson’s disease (PD) has drawn increasing attention. This study evaluated the relationship between gray matter volume (GMV), as determined by voxel-based morphometry (VBM), and respiratory dysfunction in patients with PD and correlated it with systemic inflammatory markers. Methods Whole-brain VBM analysis was performed on 3-dimensional T1-weighted images in 25 PD patients with abnormal pulmonary function (13 men, 12 women; mean age: 62.9 ± 10.8 years) and, for comparison, on 25 sex- and age-matched PD patients with normal pulmonary function (14 men, 11 women; mean age: 62.3 ± 6.9 years). Inflammatory markers were determined by flow cytometry. The differences and correlations in regional GMV, clinical severity and inflammatory markers were determined after adjusting for age, gender and total intracranial volume (TIV). Results Compared with the normal pulmonary function group, the abnormal pulmonary function group had smaller GMV in several brain regions, including the left parahippocampal formation, right fusiform gyrus, right cerebellum crus, and left postcentral gyri. Forced expiratory volume in 1 s (FEV1) and maximal expiratory flow after expiration of 50% of forced vital capacity (MEF50) were positively correlated with regional GMV. There were no significant differences in the level of serum inflammatory markers between two groups. Conclusion Our findings suggested that involvement of the central autonomic network and GM loss may underlie the respiratory dysfunction in PD patients.
Collapse
Affiliation(s)
- Sieh-Yang Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Pi-Ling Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Cheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Chiun-Chieh Yu
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Shau-Hsuan Li
- Department of Oncology and Hematology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan.
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan.
| |
Collapse
|
45
|
Lima JC, Oliveira LM, Botelho MT, Moreira TS, Takakura AC. The involvement of the pathway connecting the substantia nigra, the periaqueductal gray matter and the retrotrapezoid nucleus in breathing control in a rat model of Parkinson's disease. Exp Neurol 2018; 302:46-56. [PMID: 29305892 DOI: 10.1016/j.expneurol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is characterized by a reduction in the number of dopaminergic neurons of the substantia nigra (SNpc), accompanied by motor and non-motor deficiencies such as respiratory failure. Here, our aim was to investigate possible neuronal communications between the SNpc and chemoreceptor neurons within the retrotrapezoid nucleus (RTN), in order to explain neurodegeneration and the loss of breathing function in the 6-OHDA PD animal model. Male Wistar rats received tracer injections in the SNpc, RTN and periaqueductal gray (PAG) regions to investigate the projections between those regions. The results showed that neurons of the SNpc project to the RTN by an indirect pathway that goes through the PAG region. In different groups of rats, reductions in the density of neuronal markers (NeuN) and the number of catecholaminergic varicosities in PAG, as well as reductions in the number of CO2-activated PAG neurons with RTN projections, were observed in a 6-OHDA model of PD. Physiological experiments showed that inhibition of the PAG by bilateral injection of muscimol did not produce resting breathing disturbances but instead reduced genioglossus (GGEMG) and abdominal (AbdEMG) muscle activity amplitude induced by hypercapnia in control rats that were urethane-anesthetized, vagotomized, and artificially ventilated. However, in a model of PD, we found reductions in resting diaphragm muscle activity (DiaEMG) and GGEMG frequencies, as well as in hypercapnia-induced DiaEMG, GGEMG and AbdEMG frequencies and GGEMG and AbdEMG amplitudes. Therefore, we can conclude that there is an indirect pathway between neurons of the SNpc and RTN that goes through the PAG and that there is a defect of this pathway in an animal model of PD.
Collapse
Affiliation(s)
- Juliana C Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Marina T Botelho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
46
|
Raphe Pallidus is Not Important to Central Chemoreception in a Rat Model of Parkinson’s Disease. Neuroscience 2018; 369:350-362. [DOI: 10.1016/j.neuroscience.2017.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/31/2023]
|
47
|
Sun JJ, Ray RS. Tg(Th-Cre)FI172Gsat ( Th-Cre) defines neurons that are required for full hypercapnic and hypoxic reflexes. Biol Open 2017; 6:1200-1208. [PMID: 28684394 PMCID: PMC5576086 DOI: 10.1242/bio.026823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The catecholaminergic (CA) system has been implicated in many facets of breathing control and offers an important target to better comprehend the underlying etiologies of both developmental and adult respiratory pathophysiologies. Here, we used a noninvasive DREADD-based pharmacogenetic approach to acutely perturb Tg(Th-Cre)FI172Gsat (Th-Cre)-defined neurons in awake and unrestrained mice in an attempt to characterize CA function in breathing. We report that clozapine-N-oxide (CNO)-DREADD-mediated inhibition of Th-Cre-defined neurons results in blunted ventilatory responses under respiratory challenge. Under a hypercapnic challenge (5% CO2/21% O2/74% N2), perturbation of Th-Cre neurons results in reduced fR, and . Under a hypoxic challenge (10% O2/90% N2), we saw reduced fR, and , in addition to instability in both interbreath interval and tidal volume, resulting in a Cheyne-Stokes-like respiratory pattern. These findings demonstrate the necessity of Th-Cre-defined neurons for the hypercapnic and hypoxic ventilatory responses and breathing stability during hypoxia. However, given the expanded non-CA expression domains of the Tg(Th-Cre)FI172Gsat mouse line found in the brainstem, full phenotypic effect cannot be assigned solely to CA neurons. Nonetheless, this work identifies a key respiratory population that may lead to further insights into the circuitry that maintains respiratory stability in the face of homeostatic challenges. Summary: DREADD-mediated silencing of Tg(Th-Cre)FI172Gsat-defined neurons in adult mice results in reduced O2 and CO2 breathing reflexes and respiratory rhythm destabilization under hypoxic challenge, resembling Cheyne-Stokes respiration.
Collapse
Affiliation(s)
- Jenny J Sun
- Baylor College of Medicine, Department of Neuroscience, 1 Baylor Plaza, T707, Houston, TX 77030, USA
| | - Russell S Ray
- Baylor College of Medicine, Department of Neuroscience, 1 Baylor Plaza, T707, Houston, TX 77030, USA
| |
Collapse
|
48
|
Oliveira LM, Tuppy M, Moreira TS, Takakura AC. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model. Exp Neurol 2017; 293:172-180. [DOI: 10.1016/j.expneurol.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/05/2023]
|
49
|
Ebel DL, Torkilsen CG, Ostrowski TD. Blunted Respiratory Responses in the Streptozotocin-Induced Alzheimer's Disease Rat Model. J Alzheimers Dis 2017; 56:1197-1211. [PMID: 28106557 DOI: 10.3233/jad-160974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is known for the progressive decline of cognition and memory. In addition to these disease-defining symptoms, impairment of respiratory function is frequently observed and often expressed by sleep-disordered breathing or reduced ability to adjust respiration when oxygen demand is elevated. The mechanisms for this are widely unknown. Postmortem analysis from the brainstem of AD patients reveals pathological alterations, including in nuclei responsible for respiratory control. In this study, we analyzed respiratory responses and morphological changes in brainstem nuclei following intracerebroventricular (ICV) injections of streptozotocin (STZ), a rat model commonly used to mimic sporadic AD. ICV-STZ induced significant astrogliosis in the commissural part of the nucleus tractus solitarii, an area highly involved in respiration control. The astrogliosis was identified by a significant increase in S100B-immunofluorescence that is similar to the astrogliosis found in the CA1 region of the hippocampus. Using plethysmography, the control group displayed a typical age-dependent decrease of ventilation that was absent in the STZ rat group. This is indicative of elevated minute ventilation at rest after STZ treatment. Peripheral chemoreflex responses were significantly blunted in STZ rats as seen by a reduced respiratory rate and minute ventilation to hypoxia. Central chemoreflex responses to hypercapnia, on the other hand, only decreased in respiratory rate following STZ treatment. Overall, our results show that ICV-STZ induces respiratory dysfunction at rest and in response to hypoxia. This provides a new tool to study the underlying mechanisms of breathing disorders in clinical AD.
Collapse
|
50
|
Falquetto B, Tuppy M, Potje SR, Moreira TS, Antoniali C, Takakura AC. Cardiovascular dysfunction associated with neurodegeneration in an experimental model of Parkinson's disease. Brain Res 2016; 1657:156-166. [PMID: 27956121 DOI: 10.1016/j.brainres.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit both motor and non-motor symptoms. Among the non-motor symptoms, cardiovascular autonomic dysfunction is frequently observed. Here, we evaluated baroreflex function, vascular reactivity and neuroanatomical changes in brainstem regions involved in the neural control of circulation in the 6-hydroxydopamine (6-OHDA) model of PD. Male Wistar rats received a bilateral injection of 6-OHDA or vehicle into the striatum. After 61days, baroreflex function and vascular reactivity were assessed. The 6-OHDA and vehicle groups showed similar increases in mean arterial pressure (MAP) in response to phenylephrine (PE). However, the bradycardia observed in the vehicle group was blunted in the 6-OHDA-treated rats. Injection of sodium nitroprusside (SNP) decreased hypotension, tachycardia and vascular relaxation in 6-OHDA-treated rats. Bilateral intrastriatal 6-OHDA led to massive degeneration of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and to reductions in the numbers of A1/C1 and A5 catecholaminergic neurons while sparing A2 neurons within the nucleus of the solitary tract (NTS). 6-OHDA-treated rats also showed decreases in Phox2b-expressing neurons in the NTS and in choline acetyltransferase (ChAT) immunoreactivity in the nucleus ambiguus. Altogether, our data suggest that this model of PD includes neuroanatomical and functional changes that lead to cardiovascular impairment.
Collapse
Affiliation(s)
- Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Marina Tuppy
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Simone R Potje
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|